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Abstract 

 

Friction Stir Welding (FSW) is a relatively new welding technique where metals 

are joined through mechanical stirring. Due to its numerous advantages over older 

welding methods, it has been implemented in an increasing number of industries. 

However, there are remaining challenges to be overcome in FSW. One of the most 

serious is its reliance on accurate weld parameters. Additionally, faults or poor quality 

welds can develop from problems not easily detectible by an operator or robotic welder. 

In our work, we pursue automatic means of detecting fault occurrences and other quality 

problems. Force signals are collected from control welds run in aluminum as well as 

welds containing gap faults. Signal processing techniques, specifically Support Vector 

Machines (SVMs), are then used to correctly detect fault occurrences. Results 

demonstrate the ability for in-process fault detection of FSW. 

 

Introduction 

 
 Friction Stir Welding (FSW), a welding technique that joins metals through 

mechanical stirring, is finding applications in an increasing number of industries.  A 

diagram showing the essential workings of FSW is shown in figure 1.  A cylindrical tool 

is rotated while traversing along the weld line.  The material is plasticized—but not 

melted—and stirred together.  The advantage of this type of welding over traditional 

fusion techniques include excellent mechanical properties, no filler material, a non-

consumable tool, and no fumes, porosity or spatter. [2] 

 



 
Figure 1 Friction Stir Welding Basic Diagram [2] 

 

  

 

Robotic control and automatic fault detection 

 

 One of the challenges involved with FSW is fault detection.  Faults such as tool 

misalignment and excessive flash can reduce the quality of the weld.  If these faults are 

observed on a weld, the piece will be defective unless the fault is detected in-process 

early enough to allow for correction. 

 A complete robotic FSW system must include a means for detecting faults and a 

feedback loop for correcting them.  In this work, we present one method for fault 

detection using the frequency spectra of collected force signals. For our experimental test 

bed we use Friction Stir Lap Welding. 

  

Friction Stir Lap Welding 

 

 In Friction Stir Lap Welding, the materials to be welded together are laid one on 

top of the other and the FSW tool is plunged through the top material into the second.  

Current uses of this type of FSW include hermetically closed boxes, wheel rims, and car 

back supports [4].  Our set-up for Friction Stir Lap Welding is shown in figure 2. 

 



 
 

Figure 2 Friction Stir Lap Welding Setup 

 

Gap Detection and Ranking  
 

 In order to demonstrate the possibilities for fault detection in FSW using force 

signals, we used the specific problems of gap occurrence in lap welding.  A gap can occur 

between the two samples welded together and can lessen the integrity of the weld.  The 

paper “Application of friction stir welding to construction of railway vehicles” gives 

examples of the difficulties of gaps in lap welding [5]. 

 In the experiments performed for this paper, some samples that contain no gaps 

are run while other samples have 0.0002” to 0.005” gaps milled into portions of the lower 

sample.  Force signals are collected using a Kistler Dynamometer during the weld.  The 

frequency spectra of these signals are then determined using the Fast Fourier Transform.  

Finally, SVMs are used to determine whether the gap faults can be detected and classified 

given the frequency spectra of the collected force signals. 

 

Support Vector Machines 

 

 A Support Vector Machine (SVM) is a machine learning algorithm which 

traditionally works by mapping input feature vectors into a feature space and then 

determining a decision plane in that feature space.  One of the key benefits of this 

technique is its good generalization [3].  Additionally, SVMs can be considered more 

transparent than a neural network and therefore may provide more physiological insight.  

This may help correlate the work presented here with related research in modeling of 

FSW and FSW fault development. 

 For this work, an implementation of SVMs written for MATLAB was used [1]. 

 

Experimental Setup 



 

 In the experiments, force signals were collected from samples containing no gaps 

and those with gap depths measuring 0.0002”, 0.0004”, 0.0008”, 0.0012”, 0.0016”, 

0.002”, 0.003”, 0.004”, and 0.005”. 

 The first experiment (Gap Fault Detection) was performed in order to determine 

whether or not a SVM classifier could be built from the collected frequency spectra of the 

axial forces which could differentiate between welds that contained gaps and those that 

did not. Additionally, the performance of the classifier with respect to the depth of the 

gaps was calculated. 

 The second experiment (Gap Fault Ranking) involved determining whether a 

classifier could be built which could rate the severity of the detected gaps using the same 

signal data.  A variation of SVM called Support Vector Regression was used in this case. 

 

 

Results 
 

Gap Fault Detection 

 

 In the case of gap fault detection, the frequency spectra of the various runs were 

computed and used as input vectors for a SVM.  It was discovered that because the 

spectra contained a large number of frequencies, good performance was only achieved if 

the results were “binned” (placing the averages of regions of frequencies into bins to 

reduce the dimension of the spectra).  Classifiers were built using different-sized subsets 

of the data.  Specifically, some classifiers were built and tested using all of the collected 

data, while others were built and tested using only the control and larger gaps in order to 

compare the effectiveness of the classifier given very small gaps (0.0002”). 

 For this first experiment, ten-fold cross validation was used to determine the 

effectiveness of the classifier.  The data was randomly divided into ten groups; the 

classifier was then trained on nine of the groups and tested on the tenth.  This was done 

for each of the ten groups and the average accuracy is computed.  Training a SVM 

involves presenting the input vectors (the binned frequency spectra) and the labels (either 

gap or no gap) for each run and finding the decision plane in the feature space.  This 

decision plane is then used for classification.  Testing then means using the SVM to 

classify a given input vector (frequency spectra) and comparing it to a known label.  The 

ten-fold cross validation process was performed five times and the overall accuracy was 

then computed. 

 Accuracy results for different bin sizes are shown in figure 3.  As can be seen 

from this figure, over and under-binning resulted in the worst performance.  The 

partitioning of the data into 200 bins yielded the best overall results.  Figure 4 shows the 

detection accuracy for a 200-bin partition. 

 



 
Figure 3 Accuracy Results of SVM given varying bin counts 

 

 

 

 
Figure 4 Accuracy of SVM with 200 Bins 

 

 

 These results indicate that high degrees of accuracy in detecting the presence of 

gaps between the weld samples are obtainable using the method presented above.  More 

specifically, perfect detection accuracy was achieved when gap size was 0.004” and 

above.  Although the training of an SVM might consume some amount of time, its 

implementation amounts to a simple algebraic computation and can be done quickly.  



This would indicate that using SVMs to interpret collected force frequency spectra data 

can reliably detect even small gap faults.  Furthermore, this can be done in real time. 

 

Gap Fault Ranking 

 

 In the second experiment, Support Vector Regression is used.  This is a technique 

based on Support Vector Classification where the distance from the decision plane is 

returned rather than a simple classification.  The data from experiment 1, transformed 

into the frequency domain and binned, was then applied to Support Vector Regression in 

this experiment.  This process returned an arbitrary number which was hypothesized to be 

related to the depth of the gap.  A leave-one-out validation method was used, which 

means that the SVM was trained on all samples except one and then tested on the 

remaining sample.  This process was repeated for all samples.  The results of this 

experiment are shown in figure 5. 

 

 
Figure 5 Result of Support Vector Regression 

 

 As can be observed in figure 5, a strong correlation exists between the depth of 

the gap and the output of the SVM.  A mapping between the arbitrary output and the 

actual gap depth could be devised in order to predict the unobservable gap depth.  This 

suggests that this method can be used not only to determine whether a gap exists, but also 

to characterize the severity of that gap.   

 

Conclusion 
 

 A method for the detection of gap faults in friction stir lap welding was presented.  

This SVM-based method both identifies the presence of gaps and indicates the gap 

depths.  The results presented in this paper show the effectiveness and accuracy of this 

technique, which can be used in a variety of other FSW fault detection scenarios.  Future 

research will aim to apply this SVM classification technique to such scenarios. 
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