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Abstract
Purpose – This paper aims to investigate methods of implementing in-process fault avoidance in robotic friction stir welding (FSW).
Design/methodology/approach – Investigations into the possibilities for automatically detecting gap-faults in a friction stir lap weld were
conducted. Force signals were collected from a number of lap welds containing differing degrees of gap faults. Statistical analysis was carried out to
determine whether these signals could be used to develop an automatic fault detector/classifier.
Findings – The results demonstrate that the frequency spectra of collected force signals can be mapped to a lower dimension through discovered
discriminant functions where the faulty welds and control welds are linearly separable. This implies that a robust and precise classifier is very plausible,
given force signals.
Research limitations/implications – Future research should focus on a complete controller using the information reported in this paper. This should
allow for a robotic friction stir welder to detect and avoid faults in real time. This would improve manufacturing safety and yield.
Practical implications – This paper is applicable to the rapidly expanding robotic FSW industry. A great advantage of heavy machine tool versus
robotic FSW is that the robot cannot supply the same amount of rigidity. Future work must strive to overcome this lack of mechanical rigidity with
intelligent control, as has been examined in this paper.
Originality/value – This paper investigates fault detection in robotic FSW. Fault detection and avoidance are essential for the increased robustness of
robotic FSW. The paper’s results describe very promising directions for such implementation.
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1. Introduction

1.1 Friction stir welding

Friction stir welding (FSW) is a relatively new welding

technique where the samples are joined through mechanical

stirring. Figure 1 shows the basic workings of FSW.
The tool pin in the figure is rotating while traversing the

material to be welded. The shoulder of the tool generates heat

which allows the material to be plasticized but not melted.

FSW has a number of advantages over fusion methods

including (Cook et al., 2004):

. excellent mechanical properties;

. no filler material, non-consumable tool;

. no fumes, porosity or spatter; and

. ability to weld alloys difficult for fusion methods.

Because of its advantages, FSW is currently employed in a

number of industries including: aerospace, maritime, railroad

and automobile. However, improved control and fault

detection/avoidance are an important component for the

continued expansion of FSW.

1.2 Automation of FSW

In this research, we examine a paradigm for monitoring the

FSW process. We are interested in this in order to improve the

robustness and reliability of automated FSW.
One of the challenges in fault avoidance in FSW is fault

detection. Some of the faults associated with FSWare difficult

to observe non-destructively. A “worm-hole” fault, which is a

void in the weld line, may exist completely below the weld
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surface and therefore be unobservable to a human inspector.

These faults can severely weaken the integrity of the weld. For

this reason, the development of an in-process monitoring

system is essential for both quality control and process yield.
In-process detection of faults in FSW is not trivial. A

number of techniques for detecting weld quality and faults

have been published, and many involve high-quality sensors

and advanced machine learning techniques (Boldsaikhan et al.,

2006, Chen et al., 2003). “First-order” sensing, the

observation of the weld visually or direct observation of

process signals, often does not provide evidence of fault

occurrence. However, if the signals are first processed using

modern signal processing and machine learning techniques,

fault detection can be achieved. This means that feedback

control for FSW is a two-step process. The raw signal data

obtained from either dynamometers, acoustic emission

sensors or accelerometers must first be applied to a

computational unit which can quickly detect faults, or rank

fault likelihood, and this information can in turn be

accounted for by a process controller. In FSW, the

controller can attempt to affect change by adjusting the tool

rotation speed, sample traversal speed or plunge depth if it is

possible to correct the for the detected fault, or else alert the

operator of fault occurrence. This scheme is represented in

the control loop shown in Figure 2.
In order for a successful feedback loop, fault detection

schemes must be developed for all faults, and for all weld

processes. In this paper, an investigation into the possibility of

using force readings as a signal for the detection of gaps is

presented. Gaps, caused by poor fit-up between samples to be

welded, are spaces in the weld joint prior to welding. The

presence of poor fit-up, like poor weld parameter selection, is
not a fault in and of itself, but rather a fault causing condition.
In Leonard and Lockyer (2003), gaps are listed as a potential
cause of void (worm-hole) formation.

2. Experiment setup

2.1 Friction stir lap welding

As an experimental test bed, friction stir lap welding (FSLW),
which is the joining of two metal sheets placed one on the
other by FSW is used. Current applications of FSLW include
hermetically closed boxes, wheel rims and car back supports
(Ericsson et al., 2007). A problem-causing condition could be
the existence of a gap between the weld samples. Kawasaki
et al. (2004) discuss the difficulties of FSWoverlap welds with
gaps. In this work, this sample problem is used to investigate
the previously discussed control system. Specifically, the
application of signal processing and machine learning
techniques provides the ability to detect these faults.

2.2 Material and equipment

The samples used were 1/8 in thick 6061 Aluminum. Two
samples were mounted and clamped directly one on the other
as shown in Figure 3. All welds were run with a spindle speed
of 2,000 rpm, and a traversal speed of 16 ipm. These values
were shown to be effective FSLW parameters in the paper
“Lap Joints produced by FSWon flat aluminum EN AW-6082
profiles” and worked well for this research (Mishina and
Norlin, 2003). The tool used was a 01 steel tool, with a 5/8 in.
shoulder and threaded cylindrical 0.16 in. long pin.
Gaps were created in the samples using a milling machine.

The gap depths used are: no gap, 0.0004 in. 0.0008in.
0.0012 in., 0.0016 in., 0.0020 in., 0.0030 in., 0.0040 in. and
0.0050 in. The gaps were applied to one plate and a normal
plate was placed and clamped on top for experimental welds.
The plates are shown in Figure 4.
Force signals were collected with a Kistler Dynamometer at

1,000Hz.

3. Results

3.1 Initial results

After welds were completed, a visual inspection of the weld
surface was carried out to determine if there were clear visual

Figure 1 Outline of friction stir welding
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cues of the inserted gaps. In Figure 5, the surface of the weld

with 0.0050 in. gaps inserted is shown to look normal, with no
obvious trenches, flash or other surface features. The close up

in Figure 5(b) is looking at the surface over the gap at close
range to illustrate the lack of any clear signs of defects on the

surface.

3.2 Collected force signals

A graph showing typical axial forces for the different gap

depths is shown in Figure 6(a).
One can see that for gaps of depth 0.002 in. or greater a

large noticeable drop in axial force can be expected, while the

drop is negligible for 0.001 in. and below. This can be further
emphasized by examining the gap section in greater detail in

Figure 6(b). From this we observe that the gap produces a

1,000N reduction in force when the gap is larger than
0.002 in. There are smaller but still noticeable reductions up

until 0.0012 in. These sudden drops in force are a good cue

for an automated welding system that it is welding over a gap
in the material, with the amount of force proportional to the

severity of the gap. However, it is also possible that this

information, left unprocessed, may be insufficient for accurate
detection of gaps. Forces can vary from other causes. Also,

when the gaps are smaller, the change in force appears

insufficient for discrimination.

3.3 Feature extraction

In order for an automatic robotic welding system to detect
faults given these force signals, the processing block in the

control loop must extract meaningful information from the

data. Simply providing the force signals may not give a robotic
controller an indication of how to proceed. Feature

extraction, which means representing the larger data set by

a smaller representation which more effectively and
purposefully describes the data helps a classifier develop a

decision-making process (Fukunaga, 1972). In the case of this
experiment, by converting the data into the frequency domain
and then applying techniques such as principal component
analysis (PCA) and linear discriminant analysis, low-
dimensional subspaces are found in which the data were
nearly linearly separable, making categorization
straightforward.

3.4 Frequency analysis

The frequency domain provides a rich source of information
for analysis. It is quite possible that gaps will create “chatter”
or amplify existing frequencies with increased oscillation. The
Fourier transform can be used to determine the spectral
density of the force signals. This allows for comparison of the
frequency components of the collected force signals. Since,
the forces are sampled, a good method for the computation of
the Fourier transform is the Fast Fourier Transform, a
computational method, which is implemented in Matlab
(Lathi, 1998). One issue with the Fourier Transform is that
either the frequency spectra for the entire signal must be
computed, or else the signal must be windowed. Windowing
involves selecting portions of the time signal in order to get a
perspective of what the frequency spectra is at a given
moment in time. For this experiment, the force signals are
each windowed over the gap regions, to examine differences

Figure 4 Inserted gap of 0.0008 in

Figure 5 Surface of weld with 0.0050 in. gap
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Figure 6 (a) Axial forces; (b) Axial forces (zoomed)
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in spectra over gaps, rather than over the whole weld. The

only exceptions are the control welds, which have no gaps, so

more of the weld is used. However, the window size is

constant in all cases, approximately 2 s long.

3.5 Principal component analysis

As stated earlier, it is important to find a compact, or low-

dimensional representation of the data. In this experiment,

the collected data were represented by frequency spectra of

welds run with and without varying gaps inserted. If we

consider spectra with 100 frequency bins which implies that

each sample is described by a point in a 100-dimensional

space. PCA attempts to project these points on to a lower

dimensional space, chosen according to which dimensions

maintain the highest variance (Figure 7). This is

accomplished by diagonalizing the covariance matrix of the

data. This operation reduces the redundancy found in data,

resulting in a new, and more meaningful low-dimensional

data-set (Shlens, 2005). Although it is not necessarily the best

representation from a statistical perspective, PCA is used to

project all the samples on to a 2D space. The results of this

are informative.
Shown in Figure 8(a)-(c), are the resulting 2D

representations of the weld samples after PCA with the

projections of the control welds represented by red x’s and

the gap welds by black circles The figures are split to show the

results when the principal components are computed with a

varying amount of gap sizes included. Notice that after

0.004 in. gaps the representations become linearly separable.

This is actually a very good result considering the fact that

PCA is an unsupervised technique, meaning that no

information about the classes of the data were provided to

the algorithm to encourage this separation. It occurred

naturally due to the fundamental differences of the data being

analyzed by PCA.

3.6 Linear discriminant analysis

Linear discriminant analysis, or Fisher’s linear discriminant, is

also a dimensionality reduction technique. However, unlike

PCA, it is given a priori knowledge of the classes of the

samples and then finds a lower-dimensional projection that

maximizes the class separability. This is accomplished by

solving equations which maximize between-class scatter and

minimize within class scatter (Welling, 2007). The results of

applying this are shown in Figure 8.
From Figure 8, it can be seen that even if the gap is

0.0002 in., LDA provides a 2D representation of the data

where control welds and gap welds are linearly separable.

4. Conclusions and future work

This research demonstrates two methods which could be

used in designing an automatic fault detection/avoidance

system for FSW. Statistical methods can be used as a pre-

step to derive representations of force data which provide

good insight into the state of the current weld. Deriving

these representations may take some time off-line, but the

projections can be then done quickly online. This can

in turn be used to devise a complete real time fault

avoidance control which would allow reliable and robust

robotic FSW.

Figure 7 (a) PCA with only gaps greater than 0.001 in.; (b) PCA with
only gaps greater than 0.002 in.; (c) PCA with only gaps greater that
0.004 in
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Figure 8 Linear discriminant analysis
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