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Abstract 

s the relationship between tool wear and process parameter

(FSW)  of  a  Metal  Matrix  Composite  (Al  359/SiC/20p). 

(MMCs)  are  superabrasive   materials  which  consist   of   ce

throughout  a  larger  metal  matrix.  Fusion welded  MMC joint

porosities  in  the  heat  affected  zone,   disturbances  in  the  particle

translate  to  a  reduction  in  weld  strength,  and  the  formation 

(Al4C3) caused by localized melting. Though these effects ca

through careful  control of heat input, a solid -state joining process

more   viable   alternative.  However,  FSW  of  MMCs  is  severely
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1.  Introduction 
 

Friction Stir Welding (FSW

(TWI)  of  Cambridge,  Englan

cylindrical rotating tool is plu
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tool shoulder. As a solid stat
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autogenous process, and lowe
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An emerging area of FS
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machine, MMCs remain a 
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Bamptom, 2005).  An MM

matrix and the harder, reinforcin
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own set of unique problems
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(FSW) is a joining technique developed by The Weldin

England  in 1991  (Thomas  et al., 1991).  In traditiona
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Carbide particulate and 80% Al 359. 

Storjohann  et  al.  (2005),  a  fusion  welded  MM

y  in  the  heat-affected  zone,  the  dissolution  of  

ormation  of a deleterious  theta phase  (Al4C3) caused b

n et al. found that these defects could be reduced or

the heat input, they conclude that a solid-state joinin

viable alternative. FSW of MMCs, however, is not 

problems, the chief among these being rapid tool wear. Althoug

weld 

Welding Institute 

traditional FSW, a 

plasticization of 

the material 

width of the 

 over fusion 

inherent in an 

estimated as 

Additionally, FSW 

grinding,  etc.) 

 where it is 

2XXX and 

circumferential welds of 

 NASA has 

architecture: the 

 two of the 

aerospace 

rabrasive materials 

difficulty to 

reserved for use 

 (Kunze & 

continuous  metal 

 Aluminum 

Association 

the material 

MMC  joint  is 

 reinforcing 

by localized 

r eliminated 

joining process 

 without its 

Although the 



Statistical Modeling and Prediction of Wear in Friction Stir Welding of a Metal…  3 
 

 

physical  mechanism  underlying  tool  wear  in  the  FSW  of  composites  is  not  well- 

understood, previous experimental studies have attempted to characterize the dependence 

of  wear  on  process  parameters.  An  investigation  published  bv  Prado  et  al.  (2003) 

provides a  preliminary assessment of the wear of cylindrical threaded tools in the butt 

welding of Al 6061/Al2O3/20p. Prado et al. (2003) observed that the most dramatic wear 

coincided with  higher  rotation  speeds  and lower  traverse  rates.  Data reported in an 

analogous  study  by  Fernandez  and  Murr  (2003),  which  considers  butt  welds  of  Al 

359/SiC/20p, supports a similar conclusion. This paper is not an attempt to reproduce the 

results  of the previous  researchers,  but instead  seeks an empirically  based statistical 

model  which  can  predict  tool  wear  in  the  joining  of  the  composite  material  Al 

359/SiC/20p. The experiment which serves as the basis for this model utilizes a Taguchi 

design  with three factors  at three levels,  which  together  comprise  an L27  orthogonal 

design matrix. 
 
 
 

 
2.  Experimental Design 

 

The process  parameters  considered  in this study (rotation speed, traverse speed, and 

length of weld) were selected based on the apparatus limits of the FSW test bed in the 

Vanderbilt Welding Automation Laboratory. In Taguchi nomenclature, these parameters 

comprise the factors which are hypothesized to influence the response parameter, tool 

wear.  The  levels  of  the  factors  were  chosen  based  on  the  apparatus  limits  of  the 

Vanderbilt  University  Welding   Automation  Laboratory   (VUWAL),   which  uses  a 

Milwaukee #2K Universal Milling Machine modified for FSW. Table 1 summarizes the 

factors and levels considered in this experiment. The Taguchi methodology used in this 

work is similar to that used in other published studies,  including investigations which 

characterize tool wear incurred in drilling of metal composites (Davim, 2003a) and tool 

wear associated with turning of these materials (Davim 2003b). 

 

Table 1. Factors and levels for experimental study 
 

Factor Level 1 Level 2 Level 3 
Rotation speed (RPM) 1000 1500 2000 
Traverse speed (IPM) 5 7 9 
Length of weldment (inches) 8 16 24 

 

These factors and levels comprise twenty-seven (3
3
) test cases, which are represented 

by the tree diagram in Figure 1 (Berger & Maurer, 2002). The factors in the array are 

orthogonal (uncorrelated) and each case occurs with equal probability. 
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Figure 1. Tree diagram of twenty-seven test cases (values for levels appear in bold and 
the corresponding probability is indicated to the left of a particular level). 

 

 

3.  Experimental Procedure 
 

Commercial-grade  Al  359/SiC/20p  material  was  provided  by  mc21,  a  composites 

manufacturer based in Carson City, Nevada. The material was sheared into rectangular 

plates measuring 8”x1.5”x.2”; for the experiments, two such plates are aligned adjacently 

in a butt joint  configuration.  The tool geometry selected for this experiment  was the 

Trivex, an approximately  triangular probe shape which arose from the CFD modeling 

work of TWI researchers Shercliff and Colegrove (2006), who found that it was effective 

in reducing traversing forces by 18 to 25 percent and the axial force by as much as 12 

percent. The surfaces of the probe are convex and  the three vertices, when connected, 

form an equilateral triangle. Each vertex is located at the center of a circle which contains 
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The outline of the Trivex shape is shown in Figure
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Figure 2. Top view of Trivex probe. 

associated with use of the Trivex tool makes it ideally

materials, in which the tool is subjected to higher force

unreinforced  Aluminum  alloy.  Additionally,  the  Trivex’

area to probe area , is significantly larger than that o
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steel Trivex tools used in this study had a swept diamete
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twenty-seven test cases considered in this study, only 
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equally discernable in Figure 4, which overlays the images for the 1500 RPM, 7 IPM 

case. 

 

 
 

Figure 3. Evolution of wear for 2000 RPM, 7 IPM. A) original probe B) after 8 inches of 

weldment C) after 16 inches of weldment D) after 24 inches of weldment. 
 
 

 
 

Figure 4. Overlay of tool probe images for 1500 RPM, 7 IPM case. 
 
 

4.  Analysis 
 

The data for the test cases is summarized in Table 2. 

 
Table 2 . Array for rotation speed, traverse rate, distance welded and total wear 

 
 

test rotation speed 

(rpm) 
traverse rate 

(in/min) 
distance 

welded (in) 
total wear 

(%)  
1 1000 5 8 3.69 
2 1000 5 16 5.92 
3 1000 5 24 7.55 
4 1000 7 8 1.24 
5 1000 7 16 2.75 
6 1000 7 24 3.79 
7 1000 9 8 1.42 
8 1000 9 16 4.67 
9 1000 9 24 4.97 
10 1500 5 8 5.83 
11 1500 5 16 15.63 
12 1500 5 24 16.05 
13 1500 7 8 2.97 
14 1500 7 16 12.3 
15 1500 7 24 17.16 
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Table 2. (Continued) 
 

 

test rotation speed 

(rpm) 
traverse rate 

(in/min) 
distance 

welded (in) 
total wear 

(%)  
16 1500 9 8 4.03 
17 1500 9 16 6.55 
18 1500 9 24 15.59 
19 2000 5 8 8.37 
20 2000 5 16 15.39 
21 2000 5 24 25.22 
22 2000 7 8 7.15 
23 2000 7 16 11.70 
24 2000 7 24 17.58 
25 2000 9 8 4.04 
26 2000 9 16 10.07 
27 2000 9 24 14.95 

 

A statistical analysis of the data in the Taguchi L27  array was performed using the 

software package PASW Statistics  17.  Least-squares  multiple  regression  was used to 

construct  seven models, which are detailed in Table 3. Though the predictors for each 

model differ, the outcome variable (percent tool wear) is the same for all cases. Predictors 

were entered simultaneously using the forced entry method. 

 

Table 3 . Multiple regression models for wear of Trivex tool 
 

Model 

Number 

 

Predictors 
 

R 
 

 

�� 
Adjusted 

        �� 

 

F change 
Sig. F 

Change 
1          ω 0.585 0.342 0.316 13.006 0.001 

2          ν 0.279 0.078 0.041 2.102 0.160 
3          l 0.627 0.393 0.369 16.204 0.000 
4        ω,ν 0.648 0.420 0.371 8.682 0.001 
5      ω , l 0.858 0.735 0.713 33.862 0.000 
6        ν, l 0.686 0.471 0.427 10.677 0.000 
7      ω, ν, l 0.902 0.813 0.789 33.339 0.000 

 

The multiple regression coefficients R for the models suggest that the predictors which most 
strongly correlate with tool wear are rotation speed ω and length of weld l. Model 5, which 
includes both of these predictors, has an R value of 0.858 and an �� value of 0.735, indicating 
that the choice of these parameters accounts for 73.5 percent of the variability in tool wear 
observed in our sample. The best-fitting linear model is model 7, which includes all three 
predictors and has an �� value of 0.813.  Hence the inclusion of the additional predictor ν 
(travel speed) improves the predictive ability of the model by7.8 percent (for comparison, the 
predictors ω and l, which correspond to rotation speed and length of weld, account for 34.2 
percent and 39.3 percent of the variance, respectively).  The adjusted �� value for this model, 
0.789, differs from �� by only 0.024, an indication that the model should generalize well.  The 
ability of the model to 
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0.76) when applied to the general population.  Though a cursory comparison of the 

values can provide a quick assessment of the model’s applicability, cross

validation techniques are needed before conclusions can be drawn regarding the model

efficacy.  The F statistics which appear in Table 3 measure the significance of the changes 

 the exception of model 2, which considers travel

significant at the 0.001 level. 

table for tool wear model with ω, ν, and l as predictors

f Squares Df Mean Square F Sig.

812.749 3 270.916 33.339 
186.903 23 8.126   
999.652 26    

for  the  linear  multiple  regression  model  which  include

shown in Table 4. Based on its comparatively large F

level, the three-predictor model was retained for further

coefficients �� for the tool wear model are summarized in Table

d for these coefficients are based on the results of the

Unstandardized coefficients for tool wear model 

 Sig. 
Constant -6.028 0.091 

          l 0.584 0.000 

            ν -1.038 0.005 

      ω 0.009 0.000 

 � 1.038ν � 0.009� � 6.028        (equation 2) 

tool wear, l is distance welded (in inches), ω is rotatio

o rate of traverse (inches per minute). The regressio

e linear weights  which map the predictor variable

RPM) in rotation speed corresponds to a 0.009 percen

(1IPM) in travel speed coincides with a 1.038 percent decreas

length of the weld by 1 inch increases the wear by 0.584 

percent (0.788- 

0.76) when applied to the general population.  Though a cursory comparison of the �� and 

s applicability, cross-

usions can be drawn regarding the model’s 

efficacy.  The F statistics which appear in Table 3 measure the significance of the changes 

l speedas a 

predictors 

Sig. 
1.5E-08 

includes  all 

F-value and 

r study. 

Table 5. 

e t- test. 

rotation speed 

regression model is 

variables to the 

percent increase 

decrease in 

 percent 
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5.  Cross-Validation Study 
 

Although the R
2   

value indicates that the linear model is a good representation of the data 

in  Table  2, the efficacy of the model can be further assessed through cross-validation. 

Cross-validation studies are used to test the predictive power of the model by applying 

the regression equation to a separate data set (with the same predictors) than that which 

was used to  construct the model.  A popular cross-validation technique which does not 

require the generation  of additional data points is data splitting.  Data splitting, as its 

names implies, involves random  extraction  of a portion of the data which is used to 

construct a regression model; the remaining data points can then be compared with the 

outcome predicted by the model.  Unfortunately, the small number of data points in our 

set  precludes  use  of  this  method.  As  an  alternative,  a  few  additional  welds  were 

performed at parameters different from those used to formulate the multiple regression 

model. The four parameters chosen for the cross-validation test are listed in Table 6. 

 

Table 6 . Parameters for Cross-Validation Study. 
 

Test ω (rpm) ν (in/min) l (in) 

A 1250 5 8 
B 1750 9 8 
C 1750 9 16 
D 1400 6 8 

 

Table 7 compares the values for percent wear obtained under these conditions with 

those predicted by the model. The maximum percent error is for case A, which 

underpredicts the amount of tool wear  by  13  percent.  Though  there  are  slight  

discrepancies  between  the  actual  and predicated values of percent wear, the measured 

values exhibit behavior consistent with the trend predicted  by the regression model. 

For instance, cross-validation parameters with comparatively larger values of  
��

�
 (such as 

case C) correspond to greater wear.   

 

Table 7 . Comparison of Actual and Predicted Percent Wear Values 
 

Test Percent Wear (Measured) Percent Wear (Predicted) Percent Error 
A 5.45 4.72 13.39 
B 4.95 5.05 -2.02 
C 10.06 9.72 3.38 
D 5.45 5.02 7.89 

 
 

6.  Conclusions and Discussion 
 

Tool wear in the Friction Stir Welding of the Metal Matrix Composite Al 359/SiC/20p 

was characterized for various process parameters using a Taguchi L27  orthogonal array. 

Three factors (rotation speed, traverse rate, and length of weld) were correlated with a 
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     single  outcome  variable,  percent  tool   wear.   The  multiple  regression   model    

     (� � 0.584 − 1.038ν + 0.009� − 6.028 with an ��
 value of 0.81) indicates that   

     wear is  strongly dependent on process parameters.  This relationship is of the form  

     � ∝
��

�
, where wear �, is inversely proportional to traverse rate, ν, and directly 

    proportional to rotation speed, ω, and length of weld, l.           

It should be noted that the accuracy of the model hinges largely on the 

soundness of our   methods for measuring wear. Wear measurements obtained using 

imaging software are found in the literature (Prado et al., 2003) but employing this 

methodology rests on two major assumptions: 

 
i)  Wear is confined to the probe. Although mechanical gauging does not indicate 

the  length of  the  probe  is increasing,  it is possible  that  some  shoulder  wear 

occurs. Previous research has suggested that wear of the shoulder is nominal (Liu 

et al. 2003). 

ii)   Wear is symmetric. We assume that the wear observed for the imaged cross- 

section is characteristic of the amount of wear for other (unimaged) regions of 

the probe. 

 
The wear measurements are additionally dependent on the contrast capabilities of 

the camera and the lighting, which clearly delineate the boundary between the edge 

of the probe and the grid background. The definition of this boundary is of critical 

importance for  the  subsequent   area   calculations.   Although  photographic   

methods  have  some limitations, they tend to be more accurate than mechanical 

gauging methods. 

The factors considered in the experiments were chosen based on previous studies 

in the literature (Prado et al., 2003; Fernandez & Murr, 2003; Liu et al., 2005). 

Though the trends predicted by our model are consistent with those reported by 

Fernandez and Murr (2003), the R
2  

value for the three-predictor model indicates that 

approximately 19 percent of the variability of  tool  wear in our sample cannot be 

accounted for by the process parameters (rotation speed,  travel rate, and distance 

welded) included in the design of experiments. This suggests the existence of 

additional factors which may influence the wear rate. Subsequent studies should  

consider the effects of tool geometry, percentage reinforcement of the composite 

material, size and type of reinforcement particles, and/or tilt angle on wear. 

The model also tells us little about the mechanism by which wear occurs. We have 

assumed that the wear is abrasive, initiated by contact between the tool and the abrasive 

reinforcing particles. However, tribological studies are necessary to determine if there are 

additional  components of wear that are not abrasive, such as adhesion or fretting.  The 

functional relationship between wear and process parameters derived from the multiple 

regression model may provide additional insight into the wear mechanism.  The 

proportionality between wear and process parameters (� ∝
��

�
) is a bit on the nonintuitive 

side, since wear is usually regarded as a drag phenomenon. If that were the case, the 

amount of wear would be expected to increase with increasing travel speed, v; 
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instead,  the opposite  is observed.  The inverse relation between travel rate and wear 

suggests that wear is governed by shear phenomena, an idea which will be explored in 

future research.  It  is hoped that a fundamental understanding of the wear process will 

point toward tool designs or selection of parameters which reduce the amount of wear. 

As a final caveat,  the statistical  model developed  in this study is specific  to the 

Trivex  tool and the experimental setup of the Vanderbilt University Welding Automation 

Laboratory.  Future work will focus on the use of dimensionless parameters (such as 

the 
��

�
  term) to reduce the number of variables and thus expand the applicability of 

similar empirically derived wear models for FSW.   
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