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Abstract
Multilevel models are used ubiquitously in the social and behavioral sciences and effect sizes are critical for contextualizing 
results. A general framework of R-squared effect size measures for multilevel models has only recently been developed. 
Rights and Sterba (2019) distinguished each source of explained variance for each possible kind of outcome variance. Though 
researchers have long desired a comprehensive and coherent approach to computing R-squared measures for multilevel 
models, the use of this framework has a steep learning curve. The purpose of this tutorial is to introduce and demonstrate 
using a new R package – r2mlm – that automates the intensive computations involved in implementing the framework and 
provides accompanying graphics to visualize all multilevel R-squared measures together. We use accessible illustrations 
with open data and code to demonstrate how to use and interpret the R package output.
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Introduction

Multilevel models (MLMs) are widely used in the behav-
ioral sciences (Hox, 2010; Raudenbush & Bryk, 2002; Sni-
jders & Bosker, 2011). These models allow researchers to 
analyze clustered data structures that result from sampling 
and research designs across many areas of psychology. For 
example, students can be clustered within schools, people 
clustered within groups or dyads, and measurements clus-
tered within person. Multilevel models can be used to avoid 
violations of the assumption of independence of observa-
tions for statistical tests and also allow researchers to explore 
dependencies and ask questions about the effects of indi-
vidual- and cluster-level predictors on a given outcome.

Effect sizes are necessary for contextualizing the magni-
tude of the results from all kinds of statistical models and 
accurately conveying the properties of a sample. As such, 

journals and associations advise or require that effect sizes 
be reported (Cumming, 2014; Kelley & Preacher, 2012; 
Pek & Flora, 2018; Psychonomic Society, 2012). Histori-
cally, MLMs lacked a comprehensive approach for creating 
R-squared effect size measures that represented each dis-
tinct source of explained variance for each possible kind of 
outcome variance. Rights and Sterba (2019) addressed this 
shortcoming by developing an integrative R-squared effect 
size framework that, for the first time, utilized a complete 
partitioning of variance for MLMs. This framework pro-
vides separate measures corresponding to each potential 
source of explained variance that could account for total, 
within-cluster, or between-cluster outcome variance. The 
framework subsumes and expands on pre-existing MLM 
R-squared measures (from Aguinis & Culpepper, 2015; Bryk 
& Raudenbush, 1992; Hox, 2010; Johnson, 2014; Kreft & de 
Leeuw, 1998; Nakagawa & Schielzeth, 2013; Raudenbush & 
Bryk, 2002; Snijders & Bosker, 2011; Vonesh & Chinchilli, 
1997; Xu, 2003). Analytic relationships between previous 
measures were provided in derivations in appendices of 
Rights and Sterba (2019).

The aim of the current work is to develop accessible 
implementation options for applied researchers to incorpo-
rate this integrative framework of effect sizes from Rights 
and Sterba (2019) into their empirical work. Using this 
R-squared framework properly has a steep learning curve 
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because it requires a thorough understanding of MLMs to 
conceptualize, interrelate, and visualize all of the R-squared 
measures in the framework together as a set. Additionally, 
it requires understanding how and why certain measures 
change when new terms are added to the multilevel model. 
For a researcher accustomed to a one-size-fits-all R-squared 
measure for single-level regression analyses, this MLM 
R-squared framework is substantially more involved. The 
fact that “popular software does not provide easy access” 
(Edwards et al., 2008, p. 6150) to MLM R-squared measures 
has been a longstanding impediment to their widespread and 
successful use in practice (Bickel, 2007; Demidenko et al., 
2012; Jaeger et al., 2017; Kramer, 2005).

In this tutorial, we reduce the slope of this learning curve 
in two ways. First, we overview the basics of MLMs and 
the framework detailed in Rights and Sterba (2019, 2020). 
Second, we introduce and demonstrate a new R package, 
r2mlm (Shaw et al., 2020), that automates calculating all 
R-squared effect size measures described in the framework 
and provides accompanying graphics to visualize all of these 
R-squared measures together as an interrelated set. We dem-
onstrate using this R package with openly available, simu-
lated data examples accompanied by step-by-step code, and 
provide substantive interpretations of the resulting output. 
Given that R-squared measures are covered in virtually every 
MLM course, workshop, and textbook, this tutorial will ben-
efit MLM users across the social and behavioral sciences.

Learning objectives and prerequisite 
knowledge

The learning objectives for this tutorial are to (1) understand 
the integrative R-squared framework detailed in Rights and 
Sterba (2019), (2) learn how to interpret the R-squared values 
for all measures in the framework, and (3) understand how to 
use the r2mlm R package to automate R-squared effect size  
computation and visualization. While we will briefly review 
multilevel modelling theory prior to walking through the 
examples, this tutorial is intended for researchers who are 
already familiar with specifying and interpreting MLMs and 
who wish to calculate R-squared effect sizes for their models.  
A researcher is sufficiently familiar with MLMs if they know 
MLMs partition variance into level 1/within-cluster variance  
and level 2/between-cluster variance, know the difference 
between fixed and random effects, and have specified MLMs 
and interpreted the resulting output in empirical research. 
Researchers unfamiliar with these aspects of MLMs are 
directed to McCoach (2010) and McCoach and Adelson 
(2010) for accessible yet brief introductions to MLMs. 
For those interested in comprehensive texts we suggest  
Raudenbush and Bryk (2002) or Snijders and Bosker (2011).

Though this R-squared effect size framework can be uti-
lized with any software, when presenting our R functions, 
we will assume models were fit in R using the lme4 or nlme 
packages, so it may be preferable (but is not necessary) to 
have some experience with R and lme4 or nlme. For those 
without experience with R, a plethora of teaching resources 
are available. We recommend the first section of Wickham 
and Grolemund (2016), which is available for free online 
at www.​r4ds.​had.​co.​nz. Many more resources are aggre-
gated at bigbo​okofr.​com (Baruffa, 2021). For those without 
experience with lme4 or nlme who want a formal introduc-
tion to the packages, we suggest Finch et al. (2014), or the 
documentation for each package (Bates et al., 2015; Pinheiro 
et al., 2020). Researchers wishing to run MLMs in other 
software can still use the effect size framework within R 
by manually entering parameter estimates, which we will 
demonstrate later.

Next, we review multilevel modelling theory and effect 
sizes, explain the R-squared framework developed by Rights 
and Sterba (2019), and subsequently demonstrate our new 
software tools to streamline and automate the application of 
this framework.

Brief overview: Multilevel modeling

Imagine you wish to examine the effect of student moti-
vation on math test scores. You gather data from middle 
school students, and intend to run a linear regression with 
motivation as a predictor and math test score as the outcome. 
Many traditional statistical methods assume independence of 
observations. That is, controlling for motivation, students’ 
math test scores will not otherwise be “paired, dependent, 
correlated, or associated in any way” (Glass & Hopkins, 
1996, p. 295). When the assumption of independence is vio-
lated, the standard error is underestimated, which inflates 
type I error rates. Given that students in the same classroom 
have the same teacher, it is reasonable to suspect that stu-
dents in the same class may be more similar in their math 
test scores (because of their shared experiences with teach-
ing style, teaching experience, etc.) than to students in differ-
ent classes, beyond the similarity accounted for by motiva-
tion. That is, there may be some degree of interdependence 
between math test scores among students in the same class.

We refer to this kind of data structure as being nested 
or clustered. One option for modelling clustered data is a 
multilevel model. These models are also known as random 
effects models, mixed models, and hierarchical linear mod-
els, among other names. Throughout this tutorial, we will 
use the term multilevel model (MLM). Multilevel models 
allow distinguishing variance within a cluster (e.g., how 
math scores of students vary within the same class) from 

http://www.r4ds.had.co.nz/
http://www.bigbookofr.com/
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variance between clusters (e.g., how average math scores 
vary between classes). Instead of just one (fixed) intercept 
and one (fixed) slope per level 1 predictor, multilevel models 
allow for cluster-specific (random) intercepts and (random) 
slopes that accommodate the similarity of observations 
within a cluster. Multilevel models allow the researcher to 
answer questions at both the individual level (e.g., how does 
a student’s motivation affect math test scores?) and the clus-
ter level (e.g., how does teaching experience affect math test 
scores?) and to determine to what extent a model explains 
within-cluster (e.g., within-classroom) and between-cluster 
(e.g., between-classroom) outcome variation.

The following general equation for an MLM reflects the 
variance partitioning into within and between variance:

In this equation, the bolded lowercase letters represent 
vectors, which stand in for all of the specific instances of 
each type of variable. For example, you could have five level 
1 predictors in your model; in the above equation, all five 
are contained in the vector xij. The yij is the outcome for a 
given unit, i, nested within a given cluster, j. The γ values 
represent fixed effects, i.e., the across-cluster average regres-
sion coefficients: γw is a vector of the within (i.e., level 1) 
fixed effects; γb is a vector of the between (i.e., level 2) fixed 
effects. xij is a vector of the level 1 predictors, and zj a vector 
of the level 2 predictors (including a 1, for the intercept). wij 
is a vector consisting of 1 (again, for the intercept) and all 
level 1 predictors that have random slopes. uj is a vector of 
the level 2 residuals (i.e., the random intercept residual and 
each random slope residual for cluster j), reflecting cluster-
specific deviations from the across-cluster average regres-
sion coefficients. The rij is the residual for a given unit, i; 
that is, rij is the deviation of the outcome score from its 
cluster-specific expected outcome score conditional on the 
predictors and random effects.

Applied to our example of student math test scores 
predicted by motivation and teaching experience, we can 
express the multilevel regression equation as:

Here, student math test scores (mathij) are predicted by 
the level 1 variable motivation (γ10 * motivationij) with a ran-
dom slope (U1j * motivationij) and the level 2 variable teach-
ing experience (γ01 * teachingij); the model also includes the 
fixed component of the intercept (γ00) as well as the random 
component (U0j), and the level 1 residual (rij). Thus, this 
model accounts for the variability in intercepts and slopes 
across classrooms and can address questions about how pre-
dictors at both the student and classroom level relate to the 
outcome.

(1)yij = x�
ij
�
w + z�

j
�
b + w�

ij
uj + rij.

(2)mathij = �
00
+ �

01
teachingij + �

10
motivationij + U

0j + U
1jmotivationij + rij

Brief overview: Effect sizes

Per Kelley and Preacher (2012), the term “effect size” encap-
sulates any quantitative reflection of the magnitude of some 
phenomenon, with reference to a specific research ques-
tion. This includes a variety of statistics, describing vari-
ous aspects of a model. For example, standard deviation can 
describe variability and Cohen’s d can describe differences 
between group means. Effect sizes can be standardized (e.g., 
Cohen’s d, expressed in standard deviation units) or unstand-
ardized (e.g., an estimated mean difference, expressed in the 
units of the dependent variable) (Pek & Flora, 2018). Report-
ing effect size measures appropriate for a given research ques-
tion is important for contextualizing the results by providing 
an indication of practical significance (i.e., “how meaningful 
is this effect?”) beyond just statistical significance.

One popular effect size in traditional statistical frame-
works is R-squared, a standardized effect size computed as 
the proportion of variance explained by a model (Wright, 
1921). Generically, it can be represented as the ratio of the 
outcome variance explained by the model to the total out-
come variance:

This yields an intuitive variance explained measure rang-
ing from 0 to 1, with 0 indicating 0% explained and 1 indi-
cating 100% explained.

As detailed by Rights and Sterba (2019), for MLMs, cal-
culating the proportion of variance explained is complicated 
by the fact that there are multiple types of outcome variance 
(total vs. within-cluster vs. between-cluster), in contrast to 
single-level regression models which have only one type of 
outcome variance. Moreover, in MLMs there are multiple 
sources that could contribute to explained variance (e.g., 
predictors at different levels via their fixed and random com-
ponents) in contrast to single-level regression models which 
have only one source of explained variance (predictors at 
that single-level via their fixed components). Some research-
ers developing MLM R-squared measures had provided a 
single measure (e.g., Snijders & Bosker 1999, 2011) and 
sought an omnibus “one-size-fits-all” measure, analogous 
to that in single-level regression (e.g., Orelien & Edwards, 
2008). Others have suggested pairs of measures (e.g., Hox, 
2010; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002), 
but they collapse across sources of explained variance, or 
examine only one kind of outcome variance, and can yield 
misleading or uninterpretable results (see Rights & Sterba, 
2019, 2020 for a thorough review). For example, Johnson 
(2014), Nakagawa and Schielzeth (2013), and Snijders 
and Bosker (1994, 2011) all presented measures based on 

(3)R2 =
explained variance

total variance
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partitioning of model-implied variance in MLMs but did not 
use a full partitioning of outcome variance. These measures 
did not consider (1) partitioning variance into each of within, 
between, and total variance, (2) partitioning explained total 
variance into contributions by level 1 predictors versus level 
2 predictors via fixed effects, or (3) partitioning explained 
variance into contributions via random slope versus via ran-
dom intercept variation. Ultimately, no single or small set 
of MLM R-squared measures can thoroughly distinguish 
the contribution of each distinct source of variance for each 
applicable kind of outcome variance.

Rights and Sterba (2019) overcame these limitations 
by developing a framework that provides a comprehensive 
suite of R-squared measures that yields a complete picture 
of the model’s explanatory power and provides new meas-
ures while subsuming pre-existing measures (Aguinis & 
Culpepper, 2015; Bryk & Raudenbush, 1992; Hox, 2010; 
Johnson, 2014; Kreft & de Leeuw, 1998; Nakagawa & Schi-
elzeth, 2013; Raudenbush & Bryk, 2002; Snijders & Bosker, 
2011; Vonesh & Chinchilli, 1997; Xu, 2003). To increase the 
accessibility of this framework, we released an R package 
called r2mlm that takes an MLM as input and calculates the 
R-squared values according to Rights and Sterba’s (2019) 
framework (Shaw et al., 2020). To help develop users’ intui-
tions about the framework and their comfort using the R 
package, the remainder of this paper will overview Rights 
and Sterba’s (2019) framework, then walk through calculat-
ing and interpreting R-squared values using open data and 
code.

An R‑squared framework for multilevel 
models

As mentioned, calculating variance explained for an MLM is 
complicated by total variance being partitioned into within 
and between variances. The Rights and Sterba (2019) frame-
work intuitively maps variance explained for MLMs by con-
sidering variance explained at each of these levels – within 
variance explained and between variance explained – as well 
as the total variance (i.e., sum of within and between vari-
ance) explained. Here, we introduce the framework in plain 
language to provide an accessible guide, which supplements 
the published technical work.

At the within level of the model, there are three possi-
ble sources of variance: the level 1 predictors via the fixed 
effects (shorthand: “f1”), the level 1 predictors via the ran-
dom effects (shorthand: “v”), and the level 1 residuals (short-
hand: resid). Hence, a within-cluster R-squared measure has 
the following form:

Where varf1 denotes variance explained by f1, varv 
denotes variance explained by v, and varresid denotes residual 
variance. You can then calculate two distinct effect sizes 
from this: within variance explained by level 1 predictors via 
fixed effects (termed R2(f1)

within
 ) and within variance explained 

by level 1 predictors via random effects (termed R2(v)

within
 ). 

Note that a given R-squared is described by two elements: a 
subscript and a superscript. The subscripts indicate at what 
level variance is being explained: “within” for within-clus-
ter, “between” for between-cluster, and “total” for total. The 
superscripts indicate what potential sources of variance are 
contributing to variance explained: “f1” for level 1 predictors 
via fixed effects, “f2” for level 2 predictors via fixed effects, 
and so on. For example, at the within level, the R-squared 
measure for the level 1 predictors via fixed effects is repre-
sented as R2(f1)

within
.

You can consider each of these effect sizes alone or 
add the two to consider variance explained by level 1 pre-
dictors via fixed and random effects combined, yielding 
R
2(f1v)

within
= R

2(f1)

within
+ R

2(v)

within
.

Between variance is composed of the contribution of level 
2 predictors via fixed effects (shorthand: “f2”) and cluster-
specific means via intercept variation (shorthand: “m”), 
yielding the following expression for a between-cluster 
R-squared measure:

You can then calculate two possible R-squared effect 
sizes, quantifying the between variance explained by each 
of the two between-cluster sources, respectively:

Here, there is no utility in combining these measures, as 
by definition they will account for the entirety of the between 
variance and hence will sum to 1 every time.

(4)R2

within
=

explained within variance

var f1 + varv + varresid

(5)R
2(f1)

within
=

var f1

var f1 + varv + varresid

(6)R
2(v)

within
=

varv

var f1 + varv + varresid

(7)R2

between
=

explained between variance

var f2 + varm

(8)R
2(f2)

between
=

var f2

var f2 + varm

(9)R
2(m)

between
=

varm

var f2 + varm
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Total variance then is the combination of within and 
between variance explained, and thus total R-squared meas-
ures take the following form:

There are four component effect sizes, each quantifying 
total variance explained by the following sources, respec-
tively: level 1 predictors via fixed effects (“f1”), level 2 pre-
dictors via fixed effects (“f2”), level 1 predictors via random 
slope variation (“v”), and cluster-specific outcome means via 
intercept variation (“m”):

Rights and Sterba (2019) recommend considering how 
much variance is explained by each individual component 
for the most complete information, but researchers can 
additionally add proportions together to consider more gen-
eral questions like “how much variance is explained by all 
predictors via fixed effects?” ( R2(f )

total
= R

2(f1)

total
+ R

2(f2)

total
 ). You 

can also consider other combinations of these component 
effect sizes, for instance, total variance explained by pre-
dictors at both levels via fixed effects and random slopes 
( R2(fv)

total
= R

2(f1)

total
+ R

2(f2)

total
+ R

2(v)

total
 ), and total variance explained 

by all sources ( R2(fvm)

total
= R

2(f1)

total
+ R

2(f2)

total
+ R

2(v)

total
+ R

2(m)

total
 ). The 

level 1 residuals are the remaining unexplained variance, 
so there is no component effect size “variance explained by 
unexplained variance.”

Researchers may not be accustomed to considering ran-
dom effect variation as “explained variance,” which is the 
case with all aforementioned measures containing a v or m 
in the superscript (e.g., R2(v)

within
 , R2(m)

total
 ). Previous MLM lit-

erature has offered two perspectives on how to treat vari-
ance attributable to random intercepts and slopes, called 
the “marginal” and “conditional” approaches (e.g., Edwards 
et al., 2008; Orelien & Edwards, 2008; Vonesh & Chinchilli, 
1997; Wang & Schaalje, 2009; Xu, 2003). In the marginal 
approach, all variance attributable to predictors via random 
slope variation and attributable to cluster means via random 
intercept variation (i.e., sources “v” and “m”) is treated as 

(10)R2

total
=

explained total variance

var f1 + var f2+varv + +varm + varresid

(11)R
2(f1)

total
=

var f1

var f1 + var f2+varv+varm + varresid

(12)R
2(f2)

total
=

var f2

var f1 + var f2+varv+varm + varresid

(13)R
2(v)

total
=

varV

var f1 + var f2 +varv+varm + varresid

(14)R
2(m)

total
=

varm

var f1 + var f2+varv +varm + varresid

unexplained. In the conditional approach, variance attrib-
utable to predictors via random slope variation (“v”) and/
or attributable to cluster means via random intercept varia-
tion (“m”) is treated as explained. Substantive justification 
for why one might want to consider a conditional R-squared 
measure was provided in Vonesh and Chinchilli (1997) and  
Rights and Sterba (2019).

The Rights and Sterba (2019) framework offers research-
ers access to both the marginal and conditional approaches, 
because it separately quantifies variance attributable to each 
source that would be entered into the numerator of either a 
marginal or conditional measure. The marginal approach 
is more common in psychology, whereas the conditional 
approach has received more attention in biostatistics (e.g., 
Vonesh & Chinchilli, 1997). Nonetheless, the conditional 
approach has actually been used for years in the social 
sciences without much recognition. For example, one of 
Raudenbush & Bryk’s (1992, Raudenbush & Bryk, 2002)  
measures is actually a conditional measure. More broadly, 
the conditional approach may be useful for social science 
researchers to consider for descriptive purposes to quantify 
the degree of each kind of between-cluster heterogeneity. 
Otherwise the extent of such heterogeneity is often not dis- 
cussed or is interpreted only qualitatively. For example, once  
a researcher realizes they have a large portion of varia-
tion attributable to predictors via random slope vari-
ation ( R2(v)

total
 ), this could, in turn, motivate researchers 

to consider possible cross-level interaction terms in 
future modelling (Aguinis & Culpepper, 2015; Rights & 
Sterba, 2019, 2020). Relatedly, quantifying the extent of 
between-cluster outcome variance attributable to inter-
cept variation ( R2(m)

total
 ) can easily indicate to the researcher 

whether there are substantial differences between 
clusters beyond that explained by predictors. In psy- 
chology, random effect variation is often thought of as resid- 
ual variance, so the idea of “residual variance” as “explained 
variance” can be unintuitive. A researcher wishing to quan-
tify variation in intercepts and/or slopes (i.e., source “m” 
and/or “v”) without thinking of it as “variance explained” 
can instead interpret it with the more neutral language of  
variance “attributable to” or “modeled by” the source(s).

Overall, the single-source R-squared measures defined 
in Equations 4–14, as well as the combinations described 
above, yield 12 different R-squared measures for a given 
model, as summarized in Table 1.

Framework assumptions

A few assumptions underlie this framework as originally 
delineated by Rights and Sterba (2019). This frame-
work is implementable for the most common multilevel 
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specification: two-level multilevel models with normally 
distributed outcomes and homoscedastic residual vari-
ances. Initially in Rights and Sterba (2019), the framework 
assumed level 1 predictors were cluster-mean-centered, 
which avoids the pitfall of estimating conflated effects that 
are uninterpretable blends of level-specific effects (Enders 
& Tofighi, 2007; LaHuis et al., 2014; Raudenbush & Bryk, 
2002). Subsequently, the full decomposition of variance 
was derived without assuming cluster-mean-centering of 

level 1 predictors (Rights & Sterba, 2021). Hence all total, 
within-cluster, and between-cluster R-squared measures in 
the framework are available for non-cluster-mean-centered 
models as well (Rights & Sterba, 2021), as we demonstrate 
later in this tutorial. In the Discussion, we also mention 
recent generalizations of this framework to accommodate 
additional modeling complexities, including heteroscedas-
tic residual variance and alternative centering options, but 
here focus pedagogically on the original framework and 

Table 1   Definitions of multilevel model R2 measures in integrative framework

A given R-squared is described by two elements: a subscript and a superscript. The subscripts indicate at what level variance is being explained: 
“within” for within-cluster, “between” for between-cluster, and “total” for total. The superscripts indicate what potential sources of variance are 
contributing to variance explained: “f1” for level 1 predictors via fixed effects, “f2” for level 2 predictors via fixed effects, “v” for level 1 predic-
tors via random slope variation/covariation, “m” for cluster-specific outcome means via random intercept variation. Adapted from “Quantifying 
explained variance in multilevel models: An integrative framework for defining R-squared measures,” by J. Rights and Sterba, 2019, Psychologi-
cal Methods, 24(3), p. 7. Copyright 2019 by the American Psychological Association.

Measure Definition/Interpretation

Total MLM R2 measures

R
2(f1)

total
=

var f1

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by level 1 predictors via fixed slopes

R
2(f2)

total
=

var f2

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by level 2 predictors via fixed slopes

R
2(f )

total
=

var f1+var f2

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by all predictors via fixed slopes

R
2(v)

total
=

varv

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by level 1 predictors via random slope  
variation/covariation

R
2(m)

total
=

varm

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by cluster-specific outcome means via random intercept variation

R
2(fv)

total
=

var f1+var f2+varv

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by predictors via fixed slopes and random slope variation/covariation

R
2(fvm)

total
=

var f1+var f2+varv+varm

var f1+var f2+varv+varm+varresid

Proportion of total outcome variance explained  
by predictors via fixed slopes and random slope variation/covariation and  
by cluster-specific outcome means via random intercept variation

Within-cluster MLM R2 measures

R
2(f1)

within
=

var f1

var f1+varv+varresid

Proportion of within-cluster outcome variance explained  
by level 1 predictors via fixed slopes

R
2(v)

within
=

varv

var f1+varv+varresid

Proportion of within-cluster outcome variance explained  
by level 1 predictors via random slope variation/covariation

R
2(f1v)

within
=

var f1+varv

var f1+varv+varresid

Proportion of within-cluster outcome variance explained  
by level 1 predictors via fixed slopes and random slope variation/covariation

Between-cluster MLM R2 measures

R
2(f2)

between
=

var f2

var f2+varm

Proportion of between-cluster outcome variance explained  
by level 2 predictors via fixed slopes

R
2(m)

between
=

varm

var f2+varm

Proportion of between-cluster outcome variance explained  
by cluster-specific outcome means via random intercept variation
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assumptions from Rights and Sterba (2019) due to its greater 
simplicity and widespread applicability.

R package

Broadly, this R-squared framework for multilevel models 
disaggregates each potential source of variance explained 
into distinct effect sizes at within, between, and total levels 
of the model. This allows comprehensive consideration of 
how each individual and/or composite term in the model 
contributes to the proportion of variance explained. The 
newly developed package r2mlm introduced in this tutorial 
paper facilitates calculating effect sizes with this underlying 
framework. To help develop readers’ intuitions about the 
framework and illustrate using the R package, we will now 
demonstrate calculating and interpreting effect sizes for a 
variety of multilevel models using r2mlm in the context of 
accessible empirical examples.

Data demonstrations

Example data

For this tutorial, we will use simulated data included with 
the r2mlm package. To access the dataset and perform all 
analyses, the first step is to install and load the package.

The simulated dataset included with the package is called 
teachsat, and contains information related to teacher job sat-
isfaction. Teachers are clustered within schools, 30 teachers 
per school for 300 schools, for a total of 9000 observations. 
The dataset contains the following variables:

•	 schoolID: the school identification number, range from 
1–300. This is our clustering variable.

•	 teacherID: a teacher’s ID number within a school, range 
from 1–30

•	 satisfaction: teacher job satisfaction on a 1–10 scale (1 = 
low satisfaction)

•	 control_c: school-mean-centered teacher self-reported 
control over the curriculum (lower = less control)

•	 control_m: school mean rating of teacher’s self-reported 
control over the curriculum

•	 salary_c: school-mean-centered teacher salary (thou-
sands of dollars)

•	 salary_m: school mean teacher salary (thousands of dol-
lars)

•	 s_t_ratio: student-teacher ratio (number of students per 
teacher)

For our examples, we will specify a variety of models 
predicting teacher job satisfaction. Throughout the examples 
we will evaluate the meaning of various effects through two 
lenses: standardized R-squared effect sizes, and unstandard-
ized regression coefficients.

Null model

The null model contains only terms for the fixed and random 
components of the intercept of teacher job satisfaction. As 
such, the null model is also called the random-intercept-
only model. It is usually the first model estimated because 
researchers can easily calculate the intraclass correlation 
coefficient (ICC) from it.

Level 1: satisfactionij = β0j + Rij
Level 2: β0j = γ00 + U0j
Combined: satisfactionij = γ00 + U0j + Rij

This model produces one fixed effect estimate for the 
intercept. The predicted value of teacher satisfaction across 
all teachers in all schools, i.e., the predicted grand mean 
of satisfaction, is 6.00. To calculate effect sizes for a given 
model, we call r2mlm(model_name). Note that r2mlm can 
handle models run using both lme4 and nlme. For brev-
ity, we demonstrate coding models using lme4, but the 
r2mlm(model_name) function call for calculating effect sizes 
for models is identical for those created using nlme.
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There are three components to the function output. First, 
there is a bar chart that depicts the R-squared values. Sec-
ond, there are variance decompositions. Third, there are the 
R-squared values specified in Rights and Sterba’s (2019) 
framework and summarized in Table 1. Note that you can 
suppress the bar chart output with the bargraph argument: 
r2mlm(model_name, bargraph = FALSE).

For the null model, intercept variation across schools (i.e., 
clusters) is the only thing accounting for variance in teacher 

job satisfaction. The function output aligns with our expecta-
tions: in this model, the total variance can only be explained 
with information we have about how school means vary on 
the outcome. Per the output, 31.6% of the total variance is 
accounted for by cluster membership, shown as “mean vari-
ation” in the decomposition output, as “m” in the R-squared 
output, and as “intercept variation (between)” in the total bar 
graph. Note that “fvm” in the R-squared output (i.e., R2(fvm)

total
 ) 

is a combination of variance attributable to predictors at both 
levels via fixed effects (“f”), to level 1 predictors via random 
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slopes (“v”), and to cluster-specific means via intercept vari-
ance (“m”). Given that no variation is explained by “f” or “v” 
in this null model, in this specific situation “fvm” is equal to 
“m” in the R-squared output. The remaining 68.4% of vari-
ance is residual variance, shown as “sigma2” in the decom-
position output and “residual (within)” in the total bar graph.

We can double-check the results by manually calculating 
the ICC, which describes the proportion of variability in the 
outcome accounted for by cluster membership, and is equiv-
alent conceptually and mathematically to R2(m)

total
 in the special 

case of the random-intercept-only model. The ICC is calcu-
lated as ICC =

between variance

between variance+within variance
 . Given the model 

output generated above with the call summary(null_model), 
we calculate the ICC as follows:

With an ICC of 0.316, 31.6% of the variation in teacher 
job satisfaction can be attributed to school membership, 
matching the output of r2mlm.

Level 1 fixed effects

As we just saw, including a random intercept can account 
for total and between variance, but no within variance. To 
explain within variance, we need to include level 1 predic-
tors. To demonstrate, we’ll now include fixed effects for the 
level 1 predictors of school-mean-centered teacher salary 
(salary_c) and school-mean-centered perceived control over 
the curriculum (control_c). This model assesses whether 
teacher salary and control over curriculum are related to job 
satisfaction within school. We’ll consider the fixed effects 
now, then add random slopes in the next model.

Level 1: satisfactionij = β0j + β1j ∗ salary _ cij + β2j ∗ con-
trol _ cij + Rij
Level 2: β0j = γ00 + U0j
               β1j = γ10
               β2j = γ20

Combined: satisfactionij = γ00 + γ10 ∗ salary _ cij + γ20 ∗ con-
trol _ cij + U0j + Rij
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Per the model summary of fixed effects, the estimated 
intercept for job satisfaction is 6.00 on a 1 to 10 scale; 
because both predictors have a mean of 0, we can interpret 
this intercept as the estimated grand mean of satisfaction, 
as well as the predicted value of satisfaction at the mean of 
the predictors. For a one-unit (i.e., thousand-dollar) increase 
in salary relative to the school mean, predicted satisfaction 
increases by 0.07 units, holding curriculum control constant. 

For a one-unit increase in curriculum control relative to 
the school mean, predicted satisfaction increases by 0.31 
units, holding salary constant. Per the model summary of 
random effects, the predicted between-school intercept vari-
ance is 0.72. The estimated within-school residual variation 
resulting from individual variation of teachers around their 
school’s predicted mean job satisfaction is 0.84.

To calculate effect sizes for this model, we run:
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For the null model, the only component accounting for 
variance in job satisfaction was intercept variation. With 
the addition of level 1 predictors, we can consider total and/
or within-cluster variance explained by level 1 predictors 
via their fixed effects. This is denoted “fixed, within” in the 
decomposition output, “f1” in the R-squared output, and 
“fixed slopes (within)” in the graphical output. The level 
1 predictors explain an estimated 29.6% of the total vari-
ance (the total column of decompositions and R-squareds) 
and 43.9% of within variance (the within column) via their 
fixed slopes. We can also see that the level 1 predictor via 
fixed slopes (“f”) and the cluster means via intercept vari-
ance (“m”) in combination account for 62.2% of total vari-
ance with the “fvm” term. Recall that we haven’t yet added 
random slope variation (“v”). In the “fvm” term, no variance 
is presently explained by “v” because no level 1 predictor 
yet has contributed to explained variance via random slope 
variation. Between variance is unaffected by the addition of 
the level 1 predictors, because they vary exclusively within-
cluster and hence cannot explain between-cluster variation.

The r2mlm() output describes variance explained by 
all level 1 predictors via the fixed effects. If we wanted to 

examine the unique contributions of each individual fixed 
effect, we would compare models using the r2mlm_comp() 
function. We demonstrate this functionality later.

Level 1 fixed and random effects

Suppose our theory suggests that the effect of curriculum 
control on job satisfaction varies across schools. To allow 
for such variation, we can add a random slope for curriculum 
control to the model, represented by U2j in the equation for 
β2j.

Level 1 : satisfactionij = β0j + β1j ∗ salary _ cij + β2j ∗ con-
trol _ cij + Rij
Level 2 : β0j = γ00 + U0j

   

Combined: satisfactionij = γ00 + γ10 ∗ salary _ cij + γ20 ∗ con-
trol _ cij + U0j + U2j ∗ control _ cij + Rij

�
1j = �

10

�
2j = �

20
+ U

2j
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The fixed effects have the same interpretation as in the 
last model, with the exception that the slope of control_c 
now represents the across-cluster average slope. In this 
model, we newly introduced a random effect for control_c: 
the estimated across-school variance in the slope of curricu-
lum control is 0.03. The estimated across-school intercept 
variance is 0.72 and the estimated within-school residual 
variance is 0.77.

With r2mlm we can consider the impact of adding a ran-
dom effect of curriculum control on variance explained.

The impact of the level 1 predictor via its random 
slope is denoted “slope variation” in the decompositions 
output, “v” in the R-squared output, and “slope varia-
tion (within)” in the graphical output. This added ran-
dom slope accounts for 3.2% of total variance and 4.7% 
of within variance. The between variance explained is 
unaffected by the addition of the random slope, as the 
level 1 variable curriculum control varies exclusively 
within cluster and hence cannot explain between-cluster 
variance.
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Level 2 fixed effects

By adding level 1 effects to our model, we have been con-
sidering factors that relate to job satisfaction within schools. 
For example, “Within a school, how are salary and cur-
riculum control related to job satisfaction?” and “To what 
extent does curriculum control relate to job satisfaction dif-
ferently across schools?” Now, by adding level 2 predic-
tors to the model, we can assess how school-level factors 
may affect job satisfaction. For our example, we’ll add 
student–teacher ratio, with higher values indicating more 
students per teacher. This variable does not vary within 
schools, only between schools, and hence will only explain 

between-school variance. That is, each school has only one 
value for student–teacher ratio.

Level 1: satisfactionij = β0j + β1j ∗ salary _ cij + β2j ∗ con-
trol _ cij + Rij
Level 2: β0j = γ00 + γ01 ∗ s _ t _ ratioj + U0j

         
  

Combined: satisfactionij = γ00 + γ01 ∗ s _ t _ ratioj + γ10 ∗ sal-
ary _ cij + γ20 ∗ control _ cij + U0j + U2j ∗ control _ cij + Rij

�
1j = �

10

�
2j = �

20
+ U

2j
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For an increase of one student per teacher, there is a 0.04-
unit decrease in predicted teacher job satisfaction, control-
ling for the other effects in the model. With r2mlm, we can 

consider the impact of adding this level 2 predictor on vari-
ance explained.
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The impact of the level 2 predictor via its fixed effect 
is denoted “fixed, between” in the decompositions output, 
“f2” in the R-squared output, and “fixed slopes (between)” 
in the graphical output. Student–teacher ratio explains 6.8% 
of total variance and 20.7% of between-school variance 
in teacher job satisfaction via its fixed effect. The level 1 
and level 2 predictors together now explain 36.4% of total 
variance via fixed effects, captured by the “f” term of the 
R-squared output.

Model comparisons

Earlier, we added fixed effects for two level 1 predictors 
– salary and curriculum control – to our model at the same 
time. We noted that doing so does not tell us how much vari-
ance each effect explains uniquely. One way we can assess 
unique contributions of individual predictors to variance 
explained is by comparing two models: one model without 
the predictor of interest and one model with the predictor of 
interest. The first step to getting the associated effect sizes 
is to run these models using lmer or nlme.

The single-effect model model_salary will yield vari-
ance explained by salary alone, the model with both effects 
model_both will yield variance explained by both effects 
(which we calculated earlier), and the difference between 
the two models in R2(f1)

total
 and R2(f1)

within
 will yield, respectively, 

the total and the within variance uniquely explained by 
curriculum control over and above salary. We can com-
pare the models using the r2mlm_comp() function, which 
takes two models as arguments. Because we are interested 
in assessing the contributions of the predictors via their 
fixed effects, we will focus on the difference in R-squared 
measures that have “f1” as their source of explained vari-
ance (see Rights & Sterba, 2020). The graphical output 
for this function includes five plots: (1) decomposition 
of between-cluster variance for both Model A and Model 
B; (2) decomposition of within-cluster variance for both 
Model A and Model B; (3) decomposition of total variance 
for both Model A and Model B; (4) full decomposition for 
Model A; and (5) full decomposition for Model B. Note 
that for brevity we only explain (4) and (5), the overall 
decomposition plots.
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In our case, Model A is model_salary, so the “Model A 
R2s” output describes the variance explained by salary by 
itself. Roughly 18.7% of total variance and 27.6% of within-
school variance in teacher job satisfaction is explained by 
teacher salary via its fixed effect. Model B is model_both, so 
the “Model B R2s” output describes variance explained by 
both salary and curriculum control; this matches the earlier 
l1_model_fixed output: both level 1 predictors explain 29.6% 
of total variance and 43.9% of within-school variance in 
job satisfaction via the fixed effects. The variance uniquely 
explained by curriculum control accounts for the difference 
between the one-effect model and the both-effects model, 
and is described in the “R2 differences, Model B - Model 
A” output. Curriculum control uniquely explains 10.9% of 
total variance and 16.3% of the within-school variance in job 
satisfaction via its fixed effect.

Note that if the models being compared are not nested, 
you also need to provide your data: r2mlm_comp(modelA, 
modelB, data). For more on comparing models, including 
an elaboration on different strategies and the appropriate 
R-squared difference measure to use for each possible type 
of model comparison, see Rights and Sterba (2020).

Manual entry

If you used another software to run MLMs (e.g., MPlus, 
SPSS) and not lme4 or nlme in R, then you can manually 
enter information about your model and dataset to calculate 
R-squared estimates using r2mlm_manual, which takes the 
following parameters as input:

•	 data: your dataset
•	 within_covs: list of numbers or variable names corre-

sponding to the column numbers or variable names in 
your dataset for level 1 predictors

•	 between_covs: list of numbers or variable names corre-
sponding to the column numbers or variable names in 
your dataset for level 2 predictors

•	 random_covs: list of numbers or variable names corre-
sponding to the column numbers or variable names in 
your dataset for level 1 predictors with random effects

•	 gamma_w: list of fixed slope estimates for level 1 predic-
tors in the order listed in within_covs

•	 gamma_b: list of intercept estimate (if applicable) fol-
lowed by fixed slope estimates for level 2 predictors in 
the order listed in between_covs

•	 Tau: random effect covariance matrix. The first row/
column denotes the intercept variances and covariances; 
set to 0 if intercept is fixed. Subsequent rows/columns 
denote random slope variances and covariances in the 
order listed in random_covs

•	 sigma2: level 1 residual variance
•	 has_intercept: true/false indicating whether your model 

estimates an intercept; default value of true
•	 clustermeancentered: true/false indicating whether your 

level 1 predictors are centered-within-cluster; default 
value of true

Manual entry for l2_model would look as follows:
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Excepting some trivial differences due to rounding the 
input values, these results match those calculated with 
r2mlm(l2_model). A similar manual entry process is pos-
sible for comparing models using r2mlm_comp_manual().

Models with non‑cluster‑mean‑centered 
level 1 predictors

Researchers do not always wish to cluster-mean-center level 
1 predictors. For example, in longitudinal contexts in which 

“time” is a level 1 predictor, researchers might want to center 
“time” at the first measurement occasion rather than at a 
person’s mean time. If a researcher’s level 1 predictors are 
not all cluster-mean-centered, the r2mlm package provides 
two options for calculating R-squared values: the r2mlm() 
function and the r2mlm_long_manual() function. To dem-
onstrate both options, we will first remove the cluster-mean-
centering from salary_c by adding a constant to every value. 
We will then run a model predicting satisfaction by salary 
(uncentered).

The r2mlm() function calculates a decomposition of vari-
ance yielding total measures.
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Alternatively, the r2mlm_long_manual() function 
calculates both a total decomposition of variance and 

level-specific decompositions of variance, yielding total, 
within-cluster, and between-cluster measures.
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See Rights and Sterba (2021) for a demonstration and 
more information about using r2mlm_long_manual() to cal-
culate R-squareds for models with heteroscedastic variance 
estimates. Note that an automatic r2mlm_long() function is 
under active development.

Discussion

Reporting effect sizes is necessary to contextualize results. 
Rights and Sterba (2019) developed a comprehensive effect 
size framework for R-squared in MLMs that integrates 
previously developed MLM R-squareds as special cases, 
and Shaw et al. (2020) implemented the framework into 
an accessible R package, r2mlm. In this tutorial, we dem-
onstrated how to use and interpret output from r2mlm. We 
will now discuss considerations for appropriately reporting 
results, package limitations, and future directions.

Appropriate reporting

The most important consideration when reporting and inter-
preting R-squared values is context: they should be reported 
in the context of other model information, and understood in 
the context of the data at hand, how the variables were meas-
ured, and the relevant literature. As a standardized effect 
size, R-squared has advantages and drawbacks (Pek & Flora, 
2018). Advantageously, it has an intuitive zero-to-one range 
regardless of the measures involved. This standardization 
facilitates interpreting results for measures that do not have 
meaningful units. However, standardized metrics are calcu-
lated based on the variability of the sample. As such, they 
cannot necessarily be compared across samples that have 
substantially different degrees of variation in the outcome 
and/or the predictors. Additionally, some unstandardized 
metrics do have interpretable units that provide valuable 
insights related to a research question. As exemplified in the 
above data demonstration, one should interpret raw MLM 
parameter estimates alongside standardized R-squared effect 
sizes – as well as additional information like significance 
of and precision of the estimates – to yield a full picture of 
one’s results.

Assessing the size of an R-squared value is also a context-
specific exercise. The cutoffs for R-squared values proposed 
in Cohen (1988) are sometimes treated as global recom-
mendations. However, Cohen noted that his cutoffs were 
suggestions that should be rejected if they are “unsuited to 
the substantive content of any given investigation” (p. 414). 
The takeaway from his recommendations was that small, 
medium, and large benchmarks were for a given context, 
and researchers should consider their R-squared measures 
in the context of the relevant literature and their theory. The 

interpretation of a given R-squared should be tempered by 
considerations like sample size, measures involved, and the 
nature of a manipulation (Cortina & Landis, 2009).

Finally, we will note that effect sizes are part of a toolbox 
of rigorous research practices that also includes transpar-
ent reporting and valid measurement. To complement the 
greater flexibility afforded by our r2mlm R package regard-
ing what R-squared measures to report, we recommend that 
researchers also preregister their study and include mention 
of the effect sizes they will report and what sizes they expect 
or consider large given the context.

Relation to other R packages

There are other R packages and functions dedicated to esti-
mating multilevel R-squared values, but none that provide 
the full partitioning of variance that r2mlm does. The multi-
levelR2 function from the mitml package (Grund et al., 2021) 
allows users to calculate the MLM R-squared values pro-
posed by Raudenbush and Bryk (2002), Snijders and Bosker 
(2011), and LaHuis et  al. (2014). The r2glmm package 
(Jaeger, 2017) implements R-squared measures described 
in Johnson (2014), Jaeger et al. (2017), and Edwards et al. 
(2008). In the linear mixed model framework, the function-
ality of both packages is subsumed by r2mlm. r2glmm does 
extend the three sets of measures from Johnson (2014), Jae-
ger et al. (2017), and Edwards et al. (2008) to a generalized 
linear mixed model framework with, for instance, binary 
outcomes. For mapping these special cases onto notation 
from the general framework of measures, see Table 3 in 
Rights and Sterba (2019); for discussion on the relation 
between the general framework and the Jaeger et al. (2017) 
and Edwards et al. (2008) measures, see Rights and Sterba 
(2019, 2020).

Future directions and limitations

Effect sizes for MLMs are the subject of active methodologi-
cal research. As evidenced by the breadth of the Rights and 
Sterba (2019) framework and the number of independently 
developed R-squared measures predating and subsumed 
by it, there are a number of different ways of decomposing 
explained variance for a multilevel model. One can break 
total variance down by more general categories of source 
contribution (i.e., contributions of all predictors via fixed 
effects – source f1+f2 – vs. contribution of all random 
effects – source m+v) or further by individual source type 
(e.g., contributions of predictors via level 1 fixed effects – f1 
– versus contributions of predictors via level 2 fixed effects 
– f2). Furthermore, there are multiple ways of quantifying 
the contribution of individual predictors. Rights and Sterba 
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(2020) discuss a simultaneous approach in which R-squared 
differences between models quantify proportions of vari-
ance explained by individual terms over and above all other 
terms, as well as a hierarchical approach in which R-squared 
differences quantify the proportion of variance explained 
by individual terms over and above the previously entered 
terms. An alternative approach, known as Shapley regres-
sion (Shapley, 1953) or dominance analysis (Budescu, 1993; 
Azen & Budescu, 2003), involves considering all possible 
subset models to which a predictor could be added and com-
puting the average change in an R-squared measure arising 
from adding the target predictor (versus another predictor) 
into each different possible subset model. This approach has 
been extended from the single-level to the multilevel con-
text using a subset of possible R-squared difference meas-
ures (Luo & Azen, 2013), and in future work can be further 
extended to use the full suite of R-squared difference meas-
ures from Rights and Sterba (2020).

As illustrated, the r2mlm R package can be used to cal-
culate effect sizes for two-level MLMs. Functionality for 
three-or-more-level models (Rights & Sterba, in press) is in 
development. There is currently a manual entry option for 
three-level models; see help(r2mlm3) for documentation. 
Functionality for other model complexities is also in devel-
opment. There is currently a manual entry option for models 
with heteroscedastic and/or autocorrelated level 1 residu-
als, which also provides level-specific variance explained 
under any centering option; see help(r2mlm_long_manual) 
for documentation, and Rights and Sterba (2021) for more 
details. Cross-classified models are not currently supported. 
You cannot use the I() function within a model to create 
higher-order terms; such terms need to exist explicitly as 
variables in your dataset. Additionally, only your cluster 
variable can be categorical in the dataset; all other variables 
in the model must be numeric (thus, to incorporate categori-
cal predictors, one must directly input the associated inde-
pendent variable codes, e.g., dummy or effects codes). The 
r2mlm package is under active development. If any inter-
ested readers would like to report a bug or make a request for 
functionality, they can file an issue or pull request at www.​
github.​com/​mkshaw/​r2mlm.

Availability of Data  The data analyzed in the above manuscript are 
available as part of the r2mlm package, https://​CRAN.R-​proje​ct.​org/​
packa​ge=​r2mlm.

Code Availability  All software and code used in the above manuscript 
is provided in the manuscript itself.

Authors’ Contributions  MS and JKF developed the manuscript struc-
ture. MS and JDR created the illustrative dataset and wrote and tested 
the R functions. MS coded the examples. All authors contributed to 
writing the manuscript and the R package documentation.

Funding  This research was supported by an Association for Psycho-
logical Science small grant, the Fonds de recherché du Québec – Nature 
et technologies, a Natural Sciences and Engineering Research Council 
of Canada Discovery Grant and Discovery Launch Supplement.

Declarations 

Conflict of Interest/Competing Interests  The authors have no conflicts 
of interest to declare that are relevant to the content of this article.

Ethics Approval  Not applicable.

Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

 References

Aguinis, H., & Culpepper, S. A. (2015). An expanded decision-making 
procedure for examining cross-level interaction effects with multi-
level modeling. Organizational Research Methods, 18, 155–176. 
https://​doi.​org/​10.​1177/​10944​28114​563618

Azen, R., & Budescu, D. V. (2003). The dominance analysis approach 
for comparing predictors in multiple regression. Psychological 
Methods,  8(2), 129–148. https://​doi.​org/​10.​1037/​1082-​989X.8.​
2.​129

Baruffa, O. (2021). Big Book of R. http://​bigbo​okofr.​com
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear 

Mixed Effects Models Using lme4. Journal of Statistical Software, 
67(1), 1–48. https://​doi.​org/​10.​18637/​jss.​v067.​i01

Bickel, R. (2007). Multilevel analysis for applied research. It’s just 
regression! New York, NY: Guilford Press.

Budescu, D. V. (1993). Dominance analysis: A new approach to the 
problem of relative importance of predictors in multiple regres-
sion. Psychological Bulletin, 114(3), 542–551. https://​doi.​org/​10.​
1037/​0033-​2909.​114.3.​542

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear mod-
els: Applications and data analysis methods. Newbury Park, CA: 
Sage.

Cohen, J. (1988). Statistical Power Analysis for the Behavioural Sci-
encesa (2nd ed.): Lawrence Erlbaum Associates.

Cortina, J. M., & Landis, R. S. (2009). When small effect sizes tell a 
big story, and when large effect sizes don't Statistical and meth-
odological myths and urban legends: Doctrine, verity and fable in 
the organizational and social sciences. (pp. 287-308). New York, 
NY, US: Routledge/Taylor & Francis Group.

Cumming, G. (2014). The New Statistics: Why and How. Psychologi-
cal Science, 25(1), 7–29. https://​doi.​org/​10.​1177/​09567​97613​
504966

Demidenko, E., Sargent, J., & Onega, T. (2012). Random effects coef-
ficient of determination for mixed and meta-analysis models. 
Communications in Statistics Theory and Methods, 41, 953–969. 
https://​doi.​org/​10.​1080/​03610​926.​2010.​535631

Edwards, L. J., Muller, K. E., Wolfinger, R. D., Qaqish, B. F., & 
Schabenberger, O. (2008). An R2 statistic for fixed effects in the 
linear mixed model. Statistics in Medicine, 27, 6137–6157. https://​
doi.​org/​10.​1002/​sim.​3429

Enders, C., & Tofighi, D. (2007). Centering Predictor Variables in 
Cross-Sectional Multilevel Models: A New Look at An Old Issue. 
Psychological Methods, 12, 121–138. https://​doi.​org/​10.​1037/​
1082-​989X.​12.2.​121

http://www.github.com/mkshaw/r2mlm
http://www.github.com/mkshaw/r2mlm
https://cran.r-project.org/package=r2mlm
https://cran.r-project.org/package=r2mlm
https://doi.org/10.1177/1094428114563618
https://doi.org/10.1037/1082-989X.8.2.129
https://doi.org/10.1037/1082-989X.8.2.129
http://bigbookofr.com
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1037/0033-2909.114.3.542
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1080/03610926.2010.535631
https://doi.org/10.1002/sim.3429
https://doi.org/10.1002/sim.3429
https://doi.org/10.1037/1082-989X.12.2.121
https://doi.org/10.1037/1082-989X.12.2.121


1964	 Behavior Research Methods (2023) 55:1942–1964

Finch, W. H., Bolin, J. E., & Kelley, K. (2014). Multilevel Modeling 
Using R: Taylor & Francis.

Glass, G. V., & Hopkins, K. D. (1996). Statistical Methods in Educa-
tion and Psychology: Allyn and Bacon.

Grund, S., Robitzsch, A., & Luedtke, O. (2021). mitml: Tools for Mul-
tiple Imputation in Multilevel Modeling. R package version 0.4-3. 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​mitml

Hox, J. J. (2010). Multilevel analysis: Techniques and applications, 
2nd ed. New York, NY, US: Routledge/Taylor & Francis Group.

Jaeger, B. C. (2017). r2glmm: Computes R Squared for Mixed (Mul-
tilevel) Models. R package version 0.1.2. https://​CRAN.R-​proje​
ct.​org/​packa​ge=​r2glmm

Jaeger, B. C., Edwards, L. J., Das, K., & Sen, P. K. (2017). An R2 
statistic for fixed effects in the generalized linear mixed model. 
Journal of Applied Statistics, 44, 1086–1105. https://​doi.​org/​10.​
1080/​02664​763.​2016.​11937​25

Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth's 
R2GLMM to random slopes models. Methods in Ecology and 
Evolution, 5(9), 944–946. https://​doi.​org/​10.​1111/​2041-​210X.​
12225

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological 
Methods, 17(2), 137–152. https://​doi.​org/​10.​1037/​a0028​086

Kramer, M. (2005). R2 statistics for mixed models. 2005 Proceed-
ings of the Conference on Applied Statistics in Agriculture (pp. 
148–160). Manhattan, KS: Kansas State University.

Kreft, I. G., & de Leeuw, J. (1998). Introducing Multilevel Modeling. 
https://​doi.​org/​10.​4135/​97818​49209​366

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). 
Explained Variance Measures for Multilevel Models. Organiza-
tional Research Methods, 17(4), 433–451. https://​doi.​org/​10.​1177/​
10944​28114​541701

Luo, W., & Azen, R. (2013). Determining Predictor Importance in 
Hierarchical Linear Models Using Dominance Analysis. Journal 
of Educational and Behavioral Statistics, 38(1), 3–31. https://​doi.​
org/​10.​3102/​10769​98612​458319

McCoach, D. B., & Adelson, J. L. (2010). Dealing With Dependence 
(Part I): Understanding the Effects of Clustered Data. Gifted Child 
Quarterly, 54(2), 152–155. https://​doi.​org/​10.​1177/​00169​86210​
363076

McCoach, D. B. (2010). Dealing With Dependence (Part II): A Gentle 
Introduction to Hierarchical Linear Modeling. Gifted Child Quar-
terly, 54(3), 252–256. https://​doi.​org/​10.​1177/​00169​86210​373475

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method 
for obtaining R2 from generalized linear mixed-effects models. 
Methods in Ecology and Evolution, 4(2), 133–142. https://​doi.​
org/​10.​1111/j.​2041-​210x.​2012.​00261.x

Orelien, J. G., & Edwards, L. J. (2008). Fixed-effect variable selection 
in linear mixed models using R2 statistics. Computational Statis-
tics & Data Analysis, 52(4), 1896–1907.

Pek, J., & Flora, D. B. (2018). Reporting effect sizes in original psy-
chological research: A discussion and tutorial. Psychological 
Methods, 23(2), 208–225. https://​doi.​org/​10.​1037/​met00​00126

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team (2020). 
nlme: Linear and Nonlinear Mixed Effects Models. R package 
version 3.1–144, https://​CRAN.R-​proje​ct.​org/​packa​ge=​nlme

Psychonomic Society (2012). Statistical Guidelines. Psychonomic 
Society. https://​www.​psych​onomic.​org/​page/​stati​stica​lguid​elines

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: 
Applications and Data Analysis Methods: SAGE Publications.

Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance 
in multilevel models: An integrative framework for defining 

R-squared measures. Psychological Methods, 24(3), 309–338. 
https://​doi.​org/​10.​1037/​met00​00184

Rights, J. D., & Sterba, S. K. (2020). New Recommendations on the 
Use of R-Squared Differences in Multilevel Model Comparisons. 
Multivariate Behavioral Research, 55(4), 568–599. https://​doi.​
org/​10.​1080/​00273​171.​2019.​16606​05

Rights, J. D., & Sterba, S. K. (2021). Effect size measures for longitu-
dinal growth analyses: Extending a framework of multilevel model 
R-squareds to accommodate heteroscedasticity, autocorrelation, 
nonlinearity, and alternative centering strategies. New directions 
for child and adolescent development, 2021(175), 65–110. https://​
doi.​org/​10.​1002/​cad.​20387

Rights, J. D., & Sterba, S. K. (in press). R-squared measures for mul-
tilevel models with three or more levels. Multivariate Behavioral 
Research.

Shapley, L. S. (1953). Contributions to the Theory of Games (AM-28), 
Volume II. In K. Harold William & T. Albert William (Eds.), 17. 
A Value for n-Person Games (pp. 307–318). Princeton University 
Press.

Shaw, M., Rights, J. D., Sterba, S. K., & Flake, J. K. (2020). r2mlm: 
R-Squared Measures for Multilevel Models. https://​doi.​org/​10.​
31234/​osf.​io/​xc4sv

Snijders, T. A. B., & Bosker, R. J. (1994). Modeled Variance in Two-
Level Models. Sociological Methods & Research, 22(3), 342–363. 
https://​doi.​org/​10.​1177/​00491​24194​02200​3004

Snijders, T. A. B., & Bosker, R. J. (2011). Multilevel Analysis: An 
Introduction to Basic and Advanced Multilevel Modeling. London: 
SAGE Publications.

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An 
introduction to basic and advanced multilevel modeling. London, 
UK: Sage.

Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and nonlinear mod-
els for the analysis of repeated measurements. New York, NY: 
Marcel Dekker.

Wang, J., & Schaalje, G. B. (2009). Model Selection for Linear Mixed 
Models Using Predictive Criteria. Communications in Statistics - 
Simulation and Computation, 38(4), 788–801. https://​doi.​org/​10.​
1080/​03610​91080​26453​62

Wickham, H., & Grolemund, G. (2016). R for Data Science: Import, 
Tidy, Transform, Visualize, and Model Data: O'Reilly Media.

Wright, S. (1921). Correlation and Causation. Journal of Agricultural 
Research, 20, 557–585.

Xu, R. (2003). Measuring explained variation in linear mixed effects 
models. Statistics in Medicine, 22, 3527–3541. https://​doi.​org/​
10.​1002/​sim.​1572

Open Practices Statement
The data and materials analyzed in the manuscript are available 

as part of the r2mlm package, https://​CRAN.R-​proje​ct.​org/​packa​
ge=​r2mlm.

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://cran.r-project.org/package=mitml
https://cran.r-project.org/package=r2glmm
https://cran.r-project.org/package=r2glmm
https://doi.org/10.1080/02664763.2016.1193725
https://doi.org/10.1080/02664763.2016.1193725
https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.1111/2041-210X.12225
https://doi.org/10.1037/a0028086
https://doi.org/10.4135/9781849209366
https://doi.org/10.1177/1094428114541701
https://doi.org/10.1177/1094428114541701
https://doi.org/10.3102/1076998612458319
https://doi.org/10.3102/1076998612458319
https://doi.org/10.1177/0016986210363076
https://doi.org/10.1177/0016986210363076
https://doi.org/10.1177/0016986210373475
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1037/met0000126
https://cran.r-project.org/package=nlme
https://www.psychonomic.org/page/statisticalguidelines
https://doi.org/10.1037/met0000184
https://doi.org/10.1080/00273171.2019.1660605
https://doi.org/10.1080/00273171.2019.1660605
https://doi.org/10.1002/cad.20387
https://doi.org/10.1002/cad.20387
https://doi.org/10.31234/osf.io/xc4sv
https://doi.org/10.31234/osf.io/xc4sv
https://doi.org/10.1177/0049124194022003004
https://doi.org/10.1080/03610910802645362
https://doi.org/10.1080/03610910802645362
https://doi.org/10.1002/sim.1572
https://doi.org/10.1002/sim.1572
https://cran.r-project.org/package=r2mlm
https://cran.r-project.org/package=r2mlm

	r2mlm: An R package calculating R-squared measures for multilevel models
	Abstract
	Introduction
	Learning objectives and prerequisite knowledge
	Brief overview: Multilevel modeling
	Brief overview: Effect sizes
	An R-squared framework for multilevel models
	Framework assumptions
	R package
	Data demonstrations
	Example data

	Null model
	Level 1 fixed effects
	Level 1 fixed and random effects
	Level 2 fixed effects
	Model comparisons
	Manual entry
	Models with non-cluster-mean-centered level 1 predictors
	Discussion
	Appropriate reporting
	Relation to other R packages
	Future directions and limitations
	References


