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Abstract
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Multilevel models are used ubiquitously in the social and behavioral sciences and effect sizes are critical for contextualizing
results. A general framework of R-squared effect size measures for multilevel models has only recently been developed.
Rights and Sterba (2019) distinguished each source of explained variance for each possible kind of outcome variance. Though
researchers have long desired a comprehensive and coherent approach to computing R-squared measures for multilevel
models, the use of this framework has a steep learning curve. The purpose of this tutorial is to introduce and demonstrate
using a new R package — r2mlm — that automates the intensive computations involved in implementing the framework and
provides accompanying graphics to visualize all multilevel R-squared measures together. We use accessible illustrations
with open data and code to demonstrate how to use and interpret the R package output.

Keywords Multilevel models - R-squared - Effect sizes - r2mlm

Introduction

Multilevel models (MLMs) are widely used in the behav-
ioral sciences (Hox, 2010; Raudenbush & Bryk, 2002; Sni-
jders & Bosker, 2011). These models allow researchers to
analyze clustered data structures that result from sampling
and research designs across many areas of psychology. For
example, students can be clustered within schools, people
clustered within groups or dyads, and measurements clus-
tered within person. Multilevel models can be used to avoid
violations of the assumption of independence of observa-
tions for statistical tests and also allow researchers to explore
dependencies and ask questions about the effects of indi-
vidual- and cluster-level predictors on a given outcome.
Effect sizes are necessary for contextualizing the magni-
tude of the results from all kinds of statistical models and
accurately conveying the properties of a sample. As such,
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journals and associations advise or require that effect sizes
be reported (Cumming, 2014; Kelley & Preacher, 2012;
Pek & Flora, 2018; Psychonomic Society, 2012). Histori-
cally, MLMs lacked a comprehensive approach for creating
R-squared effect size measures that represented each dis-
tinct source of explained variance for each possible kind of
outcome variance. Rights and Sterba (2019) addressed this
shortcoming by developing an integrative R-squared effect
size framework that, for the first time, utilized a complete
partitioning of variance for MLMs. This framework pro-
vides separate measures corresponding to each potential
source of explained variance that could account for total,
within-cluster, or between-cluster outcome variance. The
framework subsumes and expands on pre-existing MLM
R-squared measures (from Aguinis & Culpepper, 2015; Bryk
& Raudenbush, 1992; Hox, 2010; Johnson, 2014; Kreft & de
Leeuw, 1998; Nakagawa & Schielzeth, 2013; Raudenbush &
Bryk, 2002; Snijders & Bosker, 2011; Vonesh & Chinchilli,
1997; Xu, 2003). Analytic relationships between previous
measures were provided in derivations in appendices of
Rights and Sterba (2019).

The aim of the current work is to develop accessible
implementation options for applied researchers to incorpo-
rate this integrative framework of effect sizes from Rights
and Sterba (2019) into their empirical work. Using this
R-squared framework properly has a steep learning curve
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because it requires a thorough understanding of MLMs to
conceptualize, interrelate, and visualize all of the R-squared
measures in the framework together as a set. Additionally,
it requires understanding how and why certain measures
change when new terms are added to the multilevel model.
For a researcher accustomed to a one-size-fits-all R-squared
measure for single-level regression analyses, this MLM
R-squared framework is substantially more involved. The
fact that “popular software does not provide easy access”
(Edwards et al., 2008, p. 6150) to MLM R-squared measures
has been a longstanding impediment to their widespread and
successful use in practice (Bickel, 2007; Demidenko et al.,
2012; Jaeger et al., 2017; Kramer, 2005).

In this tutorial, we reduce the slope of this learning curve
in two ways. First, we overview the basics of MLMs and
the framework detailed in Rights and Sterba (2019, 2020).
Second, we introduce and demonstrate a new R package,
r2mlm (Shaw et al., 2020), that automates calculating all
R-squared effect size measures described in the framework
and provides accompanying graphics to visualize all of these
R-squared measures together as an interrelated set. We dem-
onstrate using this R package with openly available, simu-
lated data examples accompanied by step-by-step code, and
provide substantive interpretations of the resulting output.
Given that R-squared measures are covered in virtually every
MLM course, workshop, and textbook, this tutorial will ben-
efit MLM users across the social and behavioral sciences.

Learning objectives and prerequisite
knowledge

The learning objectives for this tutorial are to (1) understand
the integrative R-squared framework detailed in Rights and
Sterba (2019), (2) learn how to interpret the R-squared values
for all measures in the framework, and (3) understand how to
use the r2mlIm R package to automate R-squared effect size
computation and visualization. While we will briefly review
multilevel modelling theory prior to walking through the
examples, this tutorial is intended for researchers who are
already familiar with specifying and interpreting MLMs and
who wish to calculate R-squared effect sizes for their models.
A researcher is sufficiently familiar with MLMs if they know
MLMs partition variance into level 1/within-cluster variance
and level 2/between-cluster variance, know the difference
between fixed and random effects, and have specified MLMs
and interpreted the resulting output in empirical research.
Researchers unfamiliar with these aspects of MLMs are
directed to McCoach (2010) and McCoach and Adelson
(2010) for accessible yet brief introductions to MLMs.
For those interested in comprehensive texts we suggest
Raudenbush and Bryk (2002) or Snijders and Bosker (2011).

Though this R-squared effect size framework can be uti-
lized with any software, when presenting our R functions,
we will assume models were fit in R using the Ime4 or nlme
packages, so it may be preferable (but is not necessary) to
have some experience with R and Ime4 or nlme. For those
without experience with R, a plethora of teaching resources
are available. We recommend the first section of Wickham
and Grolemund (2016), which is available for free online
at www.rdds.had.co.nz. Many more resources are aggre-
gated at bigbookofr.com (Baruffa, 2021). For those without
experience with /me4 or nlme who want a formal introduc-
tion to the packages, we suggest Finch et al. (2014), or the
documentation for each package (Bates et al., 2015; Pinheiro
et al., 2020). Researchers wishing to run MLMSs in other
software can still use the effect size framework within R
by manually entering parameter estimates, which we will
demonstrate later.

Next, we review multilevel modelling theory and effect
sizes, explain the R-squared framework developed by Rights
and Sterba (2019), and subsequently demonstrate our new
software tools to streamline and automate the application of
this framework.

Brief overview: Multilevel modeling

Imagine you wish to examine the effect of student moti-
vation on math test scores. You gather data from middle
school students, and intend to run a linear regression with
motivation as a predictor and math test score as the outcome.
Many traditional statistical methods assume independence of
observations. That is, controlling for motivation, students’
math test scores will not otherwise be “paired, dependent,
correlated, or associated in any way” (Glass & Hopkins,
1996, p. 295). When the assumption of independence is vio-
lated, the standard error is underestimated, which inflates
type I error rates. Given that students in the same classroom
have the same teacher, it is reasonable to suspect that stu-
dents in the same class may be more similar in their math
test scores (because of their shared experiences with teach-
ing style, teaching experience, etc.) than to students in differ-
ent classes, beyond the similarity accounted for by motiva-
tion. That is, there may be some degree of interdependence
between math test scores among students in the same class.

We refer to this kind of data structure as being nested
or clustered. One option for modelling clustered data is a
multilevel model. These models are also known as random
effects models, mixed models, and hierarchical linear mod-
els, among other names. Throughout this tutorial, we will
use the term multilevel model (MLM). Multilevel models
allow distinguishing variance within a cluster (e.g., how
math scores of students vary within the same class) from
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variance between clusters (e.g., how average math scores
vary between classes). Instead of just one (fixed) intercept
and one (fixed) slope per level 1 predictor, multilevel models
allow for cluster-specific (random) intercepts and (random)
slopes that accommodate the similarity of observations
within a cluster. Multilevel models allow the researcher to
answer questions at both the individual level (e.g., how does
a student’s motivation affect math test scores?) and the clus-
ter level (e.g., how does teaching experience affect math test
scores?) and to determine to what extent a model explains
within-cluster (e.g., within-classroom) and between-cluster
(e.g., between-classroom) outcome variation.

The following general equation for an MLM reflects the
variance partitioning into within and between variance:

b
Vi =Xy + 2y’ +wiu + (1)

In this equation, the bolded lowercase letters represent
vectors, which stand in for all of the specific instances of
each type of variable. For example, you could have five level
1 predictors in your model; in the above equation, all five
are contained in the vector x;. The y; is the outcome for a
given unit, i, nested within a given cluster, j. The y values
represent fixed effects, i.e., the across-cluster average regres-
sion coefficients: Yy is a vector of the within (i.e., level 1)
fixed effects; y° is a vector of the between (i.e., level 2) fixed
effects. x;; is a vector of the level 1 predictors, and z; a vector
of the level 2 predictors (including a 1, for the intercept). w ;
is a vector consisting of 1 (again, for the intercept) and all
level 1 predictors that have random slopes. u; is a vector of
the level 2 residuals (i.e., the random intercept residual and
each random slope residual for cluster j), reflecting cluster-
specific deviations from the across-cluster average regres-
sion coefficients. The ri is the residual for a given unit, i;
that is, ri is the deviation of the outcome score from its
cluster-specific expected outcome score conditional on the
predictors and random effects.

Applied to our example of student math test scores
predicted by motivation and teaching experience, we can
express the multilevel regression equation as:

math;; = yoo + yo teaching;; + y,gmotivation;; + Uy; + U, motivation;; + r;; 2)

Here, student math test scores (math;;) are predicted by
the level 1 variable motivation (y,, » motivation;) with a ran-
dom slope (U, « motivation;;) and the level 2 variable teach-
ing experience (y,, « teaching,;); the model also includes the
fixed component of the intercept (y,,) as well as the random
component (Uy), and the level 1 residual (r;). Thus, this
model accounts for the variability in intercepts and slopes
across classrooms and can address questions about how pre-
dictors at both the student and classroom level relate to the
outcome.
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Brief overview: Effect sizes

Per Kelley and Preacher (2012), the term “effect size” encap-
sulates any quantitative reflection of the magnitude of some
phenomenon, with reference to a specific research ques-
tion. This includes a variety of statistics, describing vari-
ous aspects of a model. For example, standard deviation can
describe variability and Cohen’s d can describe differences
between group means. Effect sizes can be standardized (e.g.,
Cohen’s d, expressed in standard deviation units) or unstand-
ardized (e.g., an estimated mean difference, expressed in the
units of the dependent variable) (Pek & Flora, 2018). Report-
ing effect size measures appropriate for a given research ques-
tion is important for contextualizing the results by providing
an indication of practical significance (i.e., “how meaningful
is this effect?”’) beyond just statistical significance.

One popular effect size in traditional statistical frame-
works is R-squared, a standardized effect size computed as
the proportion of variance explained by a model (Wright,
1921). Generically, it can be represented as the ratio of the
outcome variance explained by the model to the total out-
come variance:

,  explained variance

R> = 3

total variance

This yields an intuitive variance explained measure rang-
ing from O to 1, with 0 indicating 0% explained and 1 indi-
cating 100% explained.

As detailed by Rights and Sterba (2019), for MLMs, cal-
culating the proportion of variance explained is complicated
by the fact that there are multiple types of outcome variance
(total vs. within-cluster vs. between-cluster), in contrast to
single-level regression models which have only one type of
outcome variance. Moreover, in MLMs there are multiple
sources that could contribute to explained variance (e.g.,
predictors at different levels via their fixed and random com-
ponents) in contrast to single-level regression models which
have only one source of explained variance (predictors at
that single-level via their fixed components). Some research-
ers developing MLM R-squared measures had provided a
single measure (e.g., Snijders & Bosker 1999, 2011) and
sought an omnibus “one-size-fits-all” measure, analogous
to that in single-level regression (e.g., Orelien & Edwards,
2008). Others have suggested pairs of measures (e.g., Hox,
2010; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002),
but they collapse across sources of explained variance, or
examine only one kind of outcome variance, and can yield
misleading or uninterpretable results (see Rights & Sterba,
2019, 2020 for a thorough review). For example, Johnson
(2014), Nakagawa and Schielzeth (2013), and Snijders
and Bosker (1994, 2011) all presented measures based on
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partitioning of model-implied variance in MLMs but did not ) explained within variance
use a full partitioning of outcome variance. These measures within — @)

did not consider (1) partitioning variance into each of within,
between, and total variance, (2) partitioning explained total
variance into contributions by level 1 predictors versus level
2 predictors via fixed effects, or (3) partitioning explained
variance into contributions via random slope versus via ran-
dom intercept variation. Ultimately, no single or small set
of MLM R-squared measures can thoroughly distinguish
the contribution of each distinct source of variance for each
applicable kind of outcome variance.

Rights and Sterba (2019) overcame these limitations
by developing a framework that provides a comprehensive
suite of R-squared measures that yields a complete picture
of the model’s explanatory power and provides new meas-
ures while subsuming pre-existing measures (Aguinis &
Culpepper, 2015; Bryk & Raudenbush, 1992; Hox, 2010;
Johnson, 2014; Kreft & de Leeuw, 1998; Nakagawa & Schi-
elzeth, 2013; Raudenbush & Bryk, 2002; Snijders & Bosker,
2011; Vonesh & Chinchilli, 1997; Xu, 2003). To increase the
accessibility of this framework, we released an R package
called r2mim that takes an MLM as input and calculates the
R-squared values according to Rights and Sterba’s (2019)
framework (Shaw et al., 2020). To help develop users’ intui-
tions about the framework and their comfort using the R
package, the remainder of this paper will overview Rights
and Sterba’s (2019) framework, then walk through calculat-
ing and interpreting R-squared values using open data and
code.

An R-squared framework for multilevel
models

As mentioned, calculating variance explained for an MLM is
complicated by total variance being partitioned into within
and between variances. The Rights and Sterba (2019) frame-
work intuitively maps variance explained for MLMs by con-
sidering variance explained at each of these levels — within
variance explained and between variance explained — as well
as the total variance (i.e., sum of within and between vari-
ance) explained. Here, we introduce the framework in plain
language to provide an accessible guide, which supplements
the published technical work.

At the within level of the model, there are three possi-
ble sources of variance: the level 1 predictors via the fixed
effects (shorthand: *“f1”), the level 1 predictors via the ran-
dom effects (shorthand: “v”"), and the level 1 residuals (short-
hand: resid). Hence, a within-cluster R-squared measure has
the following form:

vary; + var, + var

Where vary; denotes variance explained by f1, var,
denotes variance explained by v, and var,,;; denotes residual
variance. You can then calculate two distinct effect sizes
from this: within variance explained by level 1 predictors via
fixed effects (termed Rfv(if”l”?” ) and within variance explained
by level 1 predictors via random effects (termed Rfv(;])ﬁn).
Note that a given R-squared is described by two elements: a
subscript and a superscript. The subscripts indicate at what
level variance is being explained: “within” for within-clus-
ter, “between” for between-cluster, and “total” for total. The
superscripts indicate what potential sources of variance are
contributing to variance explained: “f1” for level 1 predictors
via fixed effects, “f2” for level 2 predictors via fixed effects,
and so on. For example, at the within level, the R-squared
measure for the level 1 predictors via fixed effects is repre-
sented as RV}

within®
20 _ vary, S
within " yar,) 4 var, + var g, ©)
v _ var, ;
wihin - yar,y 4 var, + Var g ©)

You can consider each of these effect sizes alone or
add the two to consider variance explained by level 1 pre-

dictors via fixed and random effects combined, yielding
Between variance is composed of the contribution of level
2 predictors via fixed effects (shorthand: “/2”) and cluster-
specific means via intercept variation (shorthand: “m”
yielding the following expression for a between-cluster

R-squared measure:

) explained between variance
R, =
etween

vary, + var,, )

You can then calculate two possible R-squared effect
sizes, quantifying the between variance explained by each
of the two between-cluster sources, respectively:

22) var, )
between —

eveen varp, + var,,

2(m) _ var,

between Varfz + var,, (9)

Here, there is no utility in combining these measures, as
by definition they will account for the entirety of the between
variance and hence will sum to 1 every time.
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Total variance then is the combination of within and
between variance explained, and thus total R-squared meas-
ures take the following form:

) explained total variance

R =
total vary; + varp+var, + +var, + var,, (10)

There are four component effect sizes, each quantifying
total variance explained by the following sources, respec-
tively: level 1 predictors via fixed effects (“f17), level 2 pre-
dictors via fixed effects (“f2”), level 1 predictors via random
slope variation (“v”), and cluster-specific outcome means via
intercept variation (“m

RAD _ vl (11)
total vary; + varg,+var,+var,, + var g,

R _ Va2 12
total vary, + varp,—+var,+var,, + var,, g (12
2w _ vary,
total vary + vary, +var,+var,, + var,,q, (13)
o _ var,,
total vary + Varf2+V&rv +var,, + var,,, (14)

Rights and Sterba (2019) recommend considering how
much variance is explained by each individual component
for the most complete information, but researchers can
additionally add proportions together to consider more gen-
eral questions like “how much variance is explained by all
predictors via fixed effects?” (thg;l = erg;z) + tho(fazl) ). You
can also consider other combinations of these component
effect sizes, for instance, total variance explained by pre-
dictors at both levels via fixed effects and random slopes
(Rfo(gi = thg;; + tho({azl) + Rf{f;;l) and total variance explained
by all sources ( Rz(ﬁm) RV L A 4 RZ(W R2m). The
level 1 residuals‘afe the reh{ammg llmexpfamed %rllance
so there is no component effect size “variance explained by
unexplained variance.”

Researchers may not be accustomed to considering ran-
dom effect variation as “explained variance,” which is the
case with all aforementioned measures containing a v or m
in the superscript (e.g., Ri,(i‘t’zm fo(;zg) Previous MLM lit-
erature has offered two perspectives on how to treat vari-
ance attributable to random intercepts and slopes, called
the “marginal” and “conditional” approaches (e.g., Edwards
et al., 2008; Orelien & Edwards, 2008; Vonesh & Chinchilli,
1997; Wang & Schaalje, 2009; Xu, 2003). In the marginal
approach, all variance attributable to predictors via random
slope variation and attributable to cluster means via random

intercept variation (i.e., sources “v”’ and “m”) is treated as
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unexplained. In the conditional approach, variance attrib-
utable to predictors via random slope variation (“v’’) and/
or attributable to cluster means via random intercept varia-
tion (“m”) is treated as explained. Substantive justification
for why one might want to consider a conditional R-squared
measure was provided in Vonesh and Chinchilli (1997) and
Rights and Sterba (2019).

The Rights and Sterba (2019) framework offers research-
ers access to both the marginal and conditional approaches,
because it separately quantifies variance attributable to each
source that would be entered into the numerator of either a
marginal or conditional measure. The marginal approach
is more common in psychology, whereas the conditional
approach has received more attention in biostatistics (e.g.,
Vonesh & Chinchilli, 1997). Nonetheless, the conditional
approach has actually been used for years in the social
sciences without much recognition. For example, one of
Raudenbush & Bryk’s (1992, Raudenbush & Bryk, 2002)
measures is actually a conditional measure. More broadly,
the conditional approach may be useful for social science
researchers to consider for descriptive purposes to quantify
the degree of each kind of between-cluster heterogeneity.
Otherwise the extent of such heterogeneity is often not dis-
cussed or is interpreted only qualitatively. For example, once
a researcher realizes they have a large portion of varia-
tion attributable to predictors via random slope vari-
ation (th{f;)l), this could, in turn, motivate researchers
to consider possible cross-level interaction terms in
future modelling (Aguinis & Culpepper, 2015; Rights &
Sterba, 2019, 2020). Relatedly, quantifying the extent of
between-cluster outcome variance attributable to inter-
cept variation (Rif;Z;) can easily indicate to the researcher
whether there are substantial differences between
clusters beyond that explained by predictors. In psy-
chology, random effect variation is often thought of as resid-
ual variance, so the idea of “residual variance” as “explained
variance” can be unintuitive. A researcher wishing to quan-
tify variation in intercepts and/or slopes (i.e., source “m”
and/or “v”) without thinking of it as “variance explained”
can instead interpret it with the more neutral language of
variance “attributable to” or “modeled by” the source(s).

Overall, the single-source R-squared measures defined
in Equations 4-14, as well as the combinations described
above, yield 12 different R-squared measures for a given
model, as summarized in Table 1.

Framework assumptions

A few assumptions underlie this framework as originally
delineated by Rights and Sterba (2019). This frame-
work is implementable for the most common multilevel
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Table 1 Definitions of multilevel model R? measures in integrative framework

Measure Definition/Interpretation
Total MLM R? measures
R _ vary, Proportion of total outcome variance explained
total . . .
4l VAt VAL VAL, VAL, VAT g by level 1 predictors via fixed slopes
R _ vatp Proportion of total outcome variance explained
total 4 v v v . .
or VAL VAL VAL VAL, FVAL by level 2 predictors via fixed slopes
R — vary, +vary, Proportion of total outcome variance explained

1o1al " vary; +varg+Var, +Var,, +Var, .,

by all predictors via fixed slopes

RZ(V)I — var, Proportion of total outcome variance explained
totai . .
VAT EVAL HVAL, VAL, VAT g by level 1 predictors via random slope
variation/covariation

R2<m; — var,, Proportion of total outcome variance explained

tota . . . . . .

VAL VAL VAL, VAL, FVAL g by cluster-specific outcome means via random intercept variation
2 _ vaty tvarp, tvar, Proportion of total outcome variance explained

total vz 2 2 2 . . .o .o
‘ VAL VAL VAL VAL, FVAT by predictors via fixed slopes and random slope variation/covariation
RAm) _ v Hvarp ar, var, Proportion of total outcome variance explained
total 2 2 2 2 £ . . .o .o
VAL VAL VAL VAL, FVA g by predictors via fixed slopes and random slope variation/covariation and
by cluster-specific outcome means via random intercept variation
Within-cluster MLM R* measures
21 _ vary Proportion of within-cluster outcome variance explained
within 2 2 2 . .
VAL VA, VA i by level 1 predictors via fixed slopes
2 _ var, Proportion of within-cluster outcome variance explained
within 3 8 ar .. . . .o .o
VAT VAT, VA by level 1 predictors via random slope variation/covariation
2(flv) _ __ vartvar Proportion of within-cluster outcome variance explained
within . s .o Lo
VAl FVALF VAL i by level 1 predictors via fixed slopes and random slope variation/covariation
Between-cluster MLM R? measures
22 _ _VAp Proportion of between-cluster outcome variance explained
between 2 2 . .
varphvar, by level 2 predictors via fixed slopes
20m)  _ __ var, Proportion of between-cluster outcome variance explained
between vary,+var,,

by cluster-specific outcome means via random intercept variation

A given R-squared is described by two elements: a subscript and a superscript. The subscripts indicate at what level variance is being explained:
“within” for within-cluster, “between” for between-cluster, and “total” for total. The superscripts indicate what potential sources of variance are
contributing to variance explained: “f1” for level 1 predictors via fixed effects, “/2” for level 2 predictors via fixed effects, “v” for level 1 predic-
tors via random slope variation/covariation, “m” for cluster-specific outcome means via random intercept variation. Adapted from “Quantifying
explained variance in multilevel models: An integrative framework for defining R-squared measures,” by J. Rights and Sterba, 2019, Psychologi-

cal Methods, 24(3), p. 7. Copyright 2019 by the American Psychological Association.

specification: two-level multilevel models with normally
distributed outcomes and homoscedastic residual vari-
ances. Initially in Rights and Sterba (2019), the framework
assumed level 1 predictors were cluster-mean-centered,
which avoids the pitfall of estimating conflated effects that
are uninterpretable blends of level-specific effects (Enders
& Tofighi, 2007; LaHuis et al., 2014; Raudenbush & Bryk,
2002). Subsequently, the full decomposition of variance
was derived without assuming cluster-mean-centering of

level 1 predictors (Rights & Sterba, 2021). Hence all total,
within-cluster, and between-cluster R-squared measures in
the framework are available for non-cluster-mean-centered
models as well (Rights & Sterba, 2021), as we demonstrate
later in this tutorial. In the Discussion, we also mention
recent generalizations of this framework to accommodate
additional modeling complexities, including heteroscedas-
tic residual variance and alternative centering options, but
here focus pedagogically on the original framework and
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assumptions from Rights and Sterba (2019) due to its greater
simplicity and widespread applicability.

R package

Broadly, this R-squared framework for multilevel models
disaggregates each potential source of variance explained
into distinct effect sizes at within, between, and total levels
of the model. This allows comprehensive consideration of
how each individual and/or composite term in the model
contributes to the proportion of variance explained. The
newly developed package r2mlm introduced in this tutorial
paper facilitates calculating effect sizes with this underlying
framework. To help develop readers’ intuitions about the
framework and illustrate using the R package, we will now
demonstrate calculating and interpreting effect sizes for a
variety of multilevel models using r2mlm in the context of
accessible empirical examples.

Data demonstrations
Example data

For this tutorial, we will use simulated data included with
the r2mim package. To access the dataset and perform all
analyses, the first step is to install and load the package.

install.packages(“r2mlm”)
Library(r2mlm)

The simulated dataset included with the package is called
teachsat, and contains information related to teacher job sat-
isfaction. Teachers are clustered within schools, 30 teachers
per school for 300 schools, for a total of 9000 observations.
The dataset contains the following variables:

e schoollD: the school identification number, range from
1-300. This is our clustering variable.

e teacherlID: a teacher’s ID number within a school, range
from 1-30

e satisfaction: teacher job satisfaction on a 1-10 scale (1 =
low satisfaction)

e control_c: school-mean-centered teacher self-reported
control over the curriculum (lower = less control)

e control_m: school mean rating of teacher’s self-reported
control over the curriculum

e salary_c: school-mean-centered teacher salary (thou-
sands of dollars)

e salary_m: school mean teacher salary (thousands of dol-
lars)

@ Springer

e s_t ratio: student-teacher ratio (number of students per
teacher)

For our examples, we will specify a variety of models
predicting teacher job satisfaction. Throughout the examples
we will evaluate the meaning of various effects through two
lenses: standardized R-squared effect sizes, and unstandard-
ized regression coefficients.

Null model

The null model contains only terms for the fixed and random
components of the intercept of teacher job satisfaction. As
such, the null model is also called the random-intercept-
only model. It is usually the first model estimated because
researchers can easily calculate the intraclass correlation
coefficient (ICC) from it.

Level 1: satisfaction;= f;+ R;;
Level 2: fy;=y40+ Uy;
Combined: satisfaction; =y, + Uy + R;;

null_model <- Lmer(satisfaction ~ 1 + (1 | schoolID),
data = teachsat,
REML TRUE)

summary (null_model)

## Linear mixed model fit by REML ['lmerMod']
## Formula: satisfaction ~ 1 + (1 | schoolID)
## Data: teachsat

##

## REML criterion at convergence: 30098.4

#H#

## Scaled residuals:

#i#t Min 1Q Median 3Q Max
## -3.8269 -0.6385 0.0012 0.6435 3.2874
##

## Random effects:

## Groups  Name Variance Std.Dev.

## schoolID (Intercept) ©.699 0.836

## Residual 1.516 1.231

## Number of obs: 9000, groups: schoolID, 300

##
## Fixed effects:
#i#t Estimate Std. Error t value

## (Intercept) 5.99677 0.04998 120

This model produces one fixed effect estimate for the
intercept. The predicted value of teacher satisfaction across
all teachers in all schools, i.e., the predicted grand mean
of satisfaction, is 6.00. To calculate effect sizes for a given
model, we call r2mlm(model_name). Note that r2mlm can
handle models run using both Ime4 and nlme. For brev-
ity, we demonstrate coding models using /me4, but the
r2mlm(model_name) function call for calculating effect sizes
for models is identical for those created using nlme.
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r2mtm(null_model)

Decomposition

1.0

0.6

04
1

proportion of variance

0.2
1

0.0

within

fixed slopes (within)
fixed slopes (between)
slope variation (within)

ogoaEm

residual (within)

intercept variation (between)

## $Decompositions
#i#t total

within between

## fixed, within 0 7] NA
## fixed, between © NA 7]
## slope variation 0 7] NA
## mean variation ©0.315546785367943 NA 1
## sigma2 0.684453214632058 1 NA
##

## $R2s

## total within between

# f1 o ) NA

#t f2 o0 NA )

## v 7} 7} NA

## m 0.315546785367943 NA 1

#t f ] NA NA

# fv 0 0 NA

## fvm 0.315546785367943 NA NA

There are three components to the function output. First,
there is a bar chart that depicts the R-squared values. Sec-
ond, there are variance decompositions. Third, there are the
R-squared values specified in Rights and Sterba’s (2019)
framework and summarized in Table 1. Note that you can
suppress the bar chart output with the bargraph argument:
r2mlm(model_name, bargraph = FALSE).

For the null model, intercept variation across schools (i.e.,
clusters) is the only thing accounting for variance in teacher

job satisfaction. The function output aligns with our expecta-
tions: in this model, the total variance can only be explained
with information we have about how school means vary on
the outcome. Per the output, 31.6% of the total variance is
accounted for by cluster membership, shown as “mean vari-
ation” in the decomposition output, as “m” in the R-squared
output, and as “intercept variation (between)” in the total bar
graph. Note that “fvm” in the R-squared output (i.e., R;ZO(ZT))
is a combination of variance attributable to predictors at both

levels via fixed effects (“f”), to level 1 predictors via random
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slopes (“v”), and to cluster-specific means via intercept vari-
ance (“m”). Given that no variation is explained by “f” or “v”
in this null model, in this specific situation “fvm” is equal to
“m” in the R-squared output. The remaining 68.4% of vari-
ance is residual variance, shown as “sigma2” in the decom-
position output and “residual (within)” in the total bar graph.
We can double-check the results by manually calculating
the ICC, which describes the proportion of variability in the
outcome accounted for by cluster membership, and is equiv-
alent conceptually and mathematically to Rif:Z; in the special
case of the random-intercept-only model. The ICC is calcu-
lated as ICC = between variance____ - Giyen the model
between variance+within variance
output generated above with the call summary(null_model),
we calculate the ICC as follows:

0.699 / (0.699 + 1.516)

## [1] 0.3155756

With an ICC of 0.316, 31.6% of the variation in teacher
job satisfaction can be attributed to school membership,
matching the output of r2mim.

Level 1 fixed effects

As we just saw, including a random intercept can account
for total and between variance, but no within variance. To
explain within variance, we need to include level 1 predic-
tors. To demonstrate, we’ll now include fixed effects for the
level 1 predictors of school-mean-centered teacher salary
(salary_c) and school-mean-centered perceived control over
the curriculum (control_c). This model assesses whether
teacher salary and control over curriculum are related to job
satisfaction within school. We’ll consider the fixed effects
now, then add random slopes in the next model.

Level 1: satisfaction;= p;+ py;* salary _c;+ fp,;* con-

trol_cl-j+R,-j

Level 2: fy;=yo0+ Uy,
ﬁ1j=710
Pri=720

Combined: satisfaction; =y, +y,o* salary _c;+y,y* con-
trol_c,-j + U0j+Ri]»

L1 _model fixed <- Lmer(satisfaction ~ 1 + salary c + control_c + (1 | schoolID),

data = teachsat,
REML = TRUE)
summary (L1_model_ fixed)

## Linear mixed model fit by REML ['lmerMod']
## Formula: satisfaction ~ 1 + salary c + control_c + (1 | schoolID)

#it Data: teachsat

##

## REML criterion at convergence: 24962.4
iz

## Scaled residuals:

#it Min 1Q Median 30 Max
## -4.6362 -0.6375 ©0.0057 0.6464 3.6596
#H#

## Random effects:

## Groups  Name Variance Std.Dev.
## schoolID (Intercept) ©.7215 ©0.8494
## Residual 0.8384 0.9156
## Number of obs: 9000, groups: schoolID, 300
it

## Fixed effects:

##t Estimate Std. Error t value
## (Intercept) 5.996774 0.049983 119.98
## salary_c 0.074007 ©.001115 66.40
## control_c 0.310644 0.006104 50.89
##

## Correlation of Fixed Effects:

##t (Intr) slry c

## salary c 0.000

## control_c ©.000 -0.005
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Per the model summary of fixed effects, the estimated
intercept for job satisfaction is 6.00 on a 1 to 10 scale;
because both predictors have a mean of 0, we can interpret
this intercept as the estimated grand mean of satisfaction,
as well as the predicted value of satisfaction at the mean of
the predictors. For a one-unit (i.e., thousand-dollar) increase
in salary relative to the school mean, predicted satisfaction
increases by 0.07 units, holding curriculum control constant.

(L1_model_ fixed)

For a one-unit increase in curriculum control relative to
the school mean, predicted satisfaction increases by 0.31
units, holding salary constant. Per the model summary of
random effects, the predicted between-school intercept vari-
ance is 0.72. The estimated within-school residual variation
resulting from individual variation of teachers around their
school’s predicted mean job satisfaction is 0.84.
To calculate effect sizes for this model, we run:

Decomposition

1.0

0.8

proportion of variance
0.4

0.2

D

total within between
W fixed slopes (within)
B fixed slopes (between)
B slope variation (within)
intercept variation (between)
O residual (within)
## $Decompositions
#i# total within between
## fixed, within 0.295843451292118 0.438746423745784 NA
## fixed, between © NA 7}
## slope variation 0 7] NA
## mean variation ©0.325707435364683 NA 1

## sigma2 0.378449113343199 0.561253576254216 NA
##

## $R2s

## total within between
## f1 ©.295843451292118 0.438746423745784 NA

# 2 0 NA )

#v 0 7] NA

## m 0.325707435364683 NA 1

# f 0.295843451292118 NA NA

## fv 0.295843451292118 0.438746423745784 NA

## fvm 0.621550886656801 NA NA
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For the null model, the only component accounting for
variance in job satisfaction was intercept variation. With
the addition of level 1 predictors, we can consider total and/
or within-cluster variance explained by level 1 predictors
via their fixed effects. This is denoted “fixed, within” in the
decomposition output, “f1” in the R-squared output, and
“fixed slopes (within)” in the graphical output. The level
1 predictors explain an estimated 29.6% of the total vari-
ance (the total column of decompositions and R-squareds)
and 43.9% of within variance (the within column) via their
fixed slopes. We can also see that the level 1 predictor via
fixed slopes (“f”) and the cluster means via intercept vari-
ance (“m”) in combination account for 62.2% of total vari-
ance with the “fvm” term. Recall that we haven’t yet added
random slope variation (‘“v”). In the “fvm” term, no variance
is presently explained by “v” because no level 1 predictor
yet has contributed to explained variance via random slope
variation. Between variance is unaffected by the addition of
the level 1 predictors, because they vary exclusively within-
cluster and hence cannot explain between-cluster variation.

The r2mlm() output describes variance explained by
all level 1 predictors via the fixed effects. If we wanted to

examine the unique contributions of each individual fixed
effect, we would compare models using the r2mim_comp()
function. We demonstrate this functionality later.

Level 1 fixed and random effects

Suppose our theory suggests that the effect of curriculum
control on job satisfaction varies across schools. To allow
for such variation, we can add a random slope for curriculum
control to the model, represented by U,; in the equation for

Boj-

Level 1:satisfaction;= fy;+ p;* salary _c;;+ fp;* con-
trol_cl-j+Rl-j
Level 2 :ﬂOJ: 7/00+ UOj

By ="

Boj =720 + Uy

Combined: satisfaction; =y, +y,o* salary _c;+y,y* con-
tr0l_cl~j+ Uoj+ U2j * com‘rol_cij+Rij

L1_model_random <- Lmer(satisfaction ~ 1 + salary c + control_c + (1 + control_c | schoolID),

data =
REML
summary (L1_model_random)
## Linear mixed model fit by

teachsat,
TRUE)

REML [ "LmerMod']

## Formula: satisfaction ~ 1 + salary c + control_c + (1 + control_c [ schoolID)

## Data: teachsat

##

## REML criterion at convergence: 24565.6

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -4.5976 -0.6300 0.0074 0.6395 3.7882

##

## Random effects:

## Groups Name Variance Std.Dev. Corr
## schoolID (Intercept) ©.72400 ©.8509

## control_c 0.02826 0.1681 0.07
## Residual 0.76561 0.8750

## Number of obs: 9000, groups: schoolID, 300
##

## Fixed effects:

#i# Estimate Std. Error t value

## (Intercept) 5.996774 0.049984 119.97

## salary _c 0.074135 0.001078 68.75

## control_c 0.311281 0.011361 27.40

##

## Correlation of Fixed Effects:

#it (Intr) slry c

## salary c 0.000

## control_c ©.058 -0.004
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The fixed effects have the same interpretation as in the
last model, with the exception that the slope of control_c
now represents the across-cluster average slope. In this
model, we newly introduced a random effect for control_c:
the estimated across-school variance in the slope of curricu-
lum control is 0.03. The estimated across-school intercept
variance is 0.72 and the estimated within-school residual
variance is 0.77.

With r2mlm we can consider the impact of adding a ran-
dom effect of curriculum control on variance explained.

r2mlm(L1_model_random)

The impact of the level 1 predictor via its random
slope is denoted “slope variation” in the decompositions
output, “v” in the R-squared output, and “slope varia-
tion (within)” in the graphical output. This added ran-
dom slope accounts for 3.2% of total variance and 4.7%
of within variance. The between variance explained is
unaffected by the addition of the random slope, as the
level 1 variable curriculum control varies exclusively
within cluster and hence cannot explain between-cluster

variance.

Decomposition

e
©
3
Q
o
c
& ©
§ S
>
ks
c
8
E = <
82 o]
o
Q
N
S
o
S =
total within between
W fixed slopes (within)
@ fixed slopes (between)
B slope variation (within)
intercept variation (between)
O residual (within)
## $Decompositions
## total within between
## fixed, within 0.296567159372403 0.440275210302958 NA

## fixed, between © NA

0

## slope variation 0.031859752893799 ©.0472980873377948 NA

## mean variation 0.326405047496696 NA

1

## sigma2 0.345168040237102 ©.512426702359247 NA
#H#

## $R2s

## total within between
## f1 ©.296567159372403 0.440275210302958 NA

#t 2 0 NA )

## v 0.031859752893799 ©.0472980873377948 NA

H## m 0.326405047496696 NA 1

## f  0.296567159372403 NA NA

## fv 0.328426912266202 0.487573297640753 NA

## fvm 0.654831959762898 NA NA
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Level 2 fixed effects

By adding level 1 effects to our model, we have been con-
sidering factors that relate to job satisfaction within schools.
For example, “Within a school, how are salary and cur-
riculum control related to job satisfaction?” and “To what
extent does curriculum control relate to job satisfaction dif-
ferently across schools?” Now, by adding level 2 predic-
tors to the model, we can assess how school-level factors
may affect job satisfaction. For our example, we’ll add
student—teacher ratio, with higher values indicating more
students per teacher. This variable does not vary within
schools, only between schools, and hence will only explain

between-school variance. That is, each school has only one
value for student—teacher ratio.

Level 1: satisfaction;= p; + py;* salary _c;+ p,;* con-
trol_cl-j+Rl-j
Level 2: fy;=yoo+ 1o * s _t_ratio;+ Uy,

ﬂlj =70
Boj = v20 + Uy;

Combined: satisfaction;=yy+ vy, *s_t_ratio;+y,o* sal-
ary _c;i+yy* control _c;+ Uy + Uy control _c;+R;;

L2_model <- Llmer(satisfaction ~ 1 + control c + salary c + s_t_ratio + (1 + control_c |

schoolID),
data = teachsat,
REML = TRUE)
summary (L2_model)

## Linear mixed model fit by REML ['lmerMod']

## satisfaction ~ 1 + control_c + salary c + s_t_ratio + (1 + control _c |

## Formula:

#it schoolID)

## Data: teachsat

##

## REML criterion at convergence: 24507.4

At

## Scaled residuals:

#it Min 1Q Median 30 Max
## -4.6115 -0.6275 0.0108 0.6414 3.7958
##

## Random effects:

## Groups  Name Variance Std.Dev.

## schoolID (Intercept) 0.57478 ©.7581
#it control_c ©.02826 ©0.1681
## Residual 0.76561 ©.87560
## Number of obs: 9000, groups:

#H#

## Fixed effects:

#it Estimate Std. Error t value
## (Intercept) 7.186462 ©0.144236 49.824
## control_c 0.311279 0.011361 27.398
## salary_c 0.074132 0.001078 68.752
## s t _ratio -0.037178 ©0.004285 -8.676
##

## Correlation of Fixed Effects:

##t (Intr) cntrl_ slry c

## control_c ©.017

## salary_c ©0.000 -0.004

## s_t_ratio -0.951 0.000 0.000
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For an increase of one student per teacher, there is a 0.04-
unit decrease in predicted teacher job satisfaction, control-
ling for the other effects in the model. With 72mim, we can

r2mlm(L2_model)

consider the impact of adding this level 2 predictor on vari-
ance explained.

Decomposition

1.0

0.8

proportion of variance
04

0.2
1

0.0
L

total

within between

fixed slopes (within)
fixed slopes (between)
slope variation (within)

OgoEm

residual (within)

intercept variation (between)

## $Decompositions
##

## fixed, within
## fixed, between ©.0676695868874132 NA

total within

between

0.296431806719555 0.440263091958242 NA

0.207134501406624

## slope variation 0.0318477856338068 0.0473006076180897 NA

## mean variation ©.259024355588986 NA

## sigma2 0.34502646517024

##

## $R2s

#i#t total within

## f1 ©.296431806719555 ©.440263091958242 NA
## f2 ©.0676695868874132 NA

## v 0.0318477856338068 0.0473006076180897 NA
## m 0.259024355588986 NA

## f 0.364101393606968 NA NA
## fv 0.395949179240775 ©.487563699576332 NA
## fvm 0.65497353482976 NA NA

0.792865498593376

0.512436300423669 NA

between

0.207134501406624

0.792865498593376
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The impact of the level 2 predictor via its fixed effect
is denoted “fixed, between” in the decompositions output,
“2” in the R-squared output, and “fixed slopes (between)”
in the graphical output. Student—teacher ratio explains 6.8%
of total variance and 20.7% of between-school variance
in teacher job satisfaction via its fixed effect. The level 1
and level 2 predictors together now explain 36.4% of total
variance via fixed effects, captured by the “f” term of the
R-squared output.

Model comparisons

Earlier, we added fixed effects for two level 1 predictors
— salary and curriculum control — to our model at the same
time. We noted that doing so does not tell us how much vari-
ance each effect explains uniquely. One way we can assess
unique contributions of individual predictors to variance
explained is by comparing two models: one model without
the predictor of interest and one model with the predictor of
interest. The first step to getting the associated effect sizes
is to run these models using /mer or nlme.

# Single-effect model, just salary c

The single-effect model model_salary will yield vari-
ance explained by salary alone, the model with both effects
model_both will yield variance explained by both effects
(which we calculated earlier), and the difference between
the two models in Rlzo(fall) and R?V(l’;ll l).n will yield, respectively,
the total and the within variance uniquely explained by
curriculum control over and above salary. We can com-
pare the models using the r2mim_comp() function, which
takes two models as arguments. Because we are interested
in assessing the contributions of the predictors via their
fixed effects, we will focus on the difference in R-squared
measures that have “f1” as their source of explained vari-
ance (see Rights & Sterba, 2020). The graphical output
for this function includes five plots: (1) decomposition
of between-cluster variance for both Model A and Model
B; (2) decomposition of within-cluster variance for both
Model A and Model B; (3) decomposition of total variance
for both Model A and Model B; (4) full decomposition for
Model A; and (5) full decomposition for Model B. Note
that for brevity we only explain (4) and (5), the overall
decomposition plots.

model_salary <- Lmer(satisfaction ~ 1 + salary c + (1 | schoolID),

data = teachsat,
REML = TRUE)

# Model with both effects (the same as 11_model fixed from earlier)
model_both <- Lmer(satisfaction ~ 1 + salary c + control _c + (1 | schoolID),

data = teachsat,
REML = TRUE)
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In our case, Model A is model_salary, so the “Model A
R2s” output describes the variance explained by salary by
itself. Roughly 18.7% of total variance and 27.6% of within-
school variance in teacher job satisfaction is explained by
teacher salary via its fixed effect. Model B is model_both, so
the “Model B R2s” output describes variance explained by
both salary and curriculum control; this matches the earlier
[1_model_fixed output: both level 1 predictors explain 29.6%
of total variance and 43.9% of within-school variance in
job satisfaction via the fixed effects. The variance uniquely
explained by curriculum control accounts for the difference
between the one-effect model and the both-effects model,
and is described in the “R2 differences, Model B - Model
A” output. Curriculum control uniquely explains 10.9% of
total variance and 16.3% of the within-school variance in job
satisfaction via its fixed effect.

Note that if the models being compared are not nested,
you also need to provide your data: r2mim_comp(modelA,
modelB, data). For more on comparing models, including
an elaboration on different strategies and the appropriate
R-squared difference measure to use for each possible type
of model comparison, see Rights and Sterba (2020).

Manual entry

If you used another software to run MLMs (e.g., MPlus,
SPSS) and not Ime4 or nlme in R, then you can manually
enter information about your model and dataset to calculate
R-squared estimates using r2mlm_manual, which takes the
following parameters as input:

@ Springer

data: your dataset

within_covs: list of numbers or variable names corre-
sponding to the column numbers or variable names in
your dataset for level 1 predictors

between_covs: list of numbers or variable names corre-
sponding to the column numbers or variable names in
your dataset for level 2 predictors

random_covs: list of numbers or variable names corre-
sponding to the column numbers or variable names in
your dataset for level 1 predictors with random effects
gamma_w: list of fixed slope estimates for level 1 predic-
tors in the order listed in within_covs

gamma_b: list of intercept estimate (if applicable) fol-
lowed by fixed slope estimates for level 2 predictors in
the order listed in between_covs

Tau: random effect covariance matrix. The first row/
column denotes the intercept variances and covariances;
set to 0 if intercept is fixed. Subsequent rows/columns
denote random slope variances and covariances in the
order listed in random_covs

sigma?2: level 1 residual variance

has_intercept: true/false indicating whether your model
estimates an intercept; default value of true
clustermeancentered: true/false indicating whether your
level 1 predictors are centered-within-cluster; default
value of true

Manual entry for /2_model would look as follows:



Behavior Research Methods (2023) 55:1942-1964

1959

r2mlm_manual (data = teachsat,
within_covs = c(4, 5),
between _covs = c(8),
random_covs = c(4),
gamma_w = c(0.311, 0.074),
gamma_b = c(7.186, -60.037),
Tau = matrix(c(0.575, 0.009, 0.009, 0.028), 2, 2),
sigma2 = 0.766,
has_intercept = TRUE,
clustermeancentered = TRUE)

Decomposition

e _
-
X .
o
Q
Q
o
8 «© |
®© o
>
—
(o]
c
S
T <
g2 o
[e]
—
Q
N
o
o
o
total within between
W fixed slopes (within)
B fixed slopes (between)
B slope variation (within)
intercept variation (between)
O residual (within)

## $Decompositions

#i total within between

## fixed, within 0.296022422439019 ©0.439625147440015 NA

## fixed, between ©0.0671264807082975 NA 0.205500898247648
## slope variation 0.0316015152901635 0.0469316503266841 NA

## mean variation 0.259521632661036 NA 0.794499101752352
## sigma2 0.345727948901484 ©.513443202233301 NA

##

## $R2s

#i# total within between

## f1 0.296022422439019 0.439625147440015 NA

## 2 0.0671264807082975 NA 0.205500898247648

## v 0.0316015152901635 0.0469316503266841 NA

## m 0.259521632661036 NA 0.794499101752352

## f 0.363148903147317 NA NA

## fv 0.39475041843748 0.486556797766699 NA

## fvm 0.654272051098516 NA NA
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Excepting some trivial differences due to rounding the
input values, these results match those calculated with
r2mlm(12_model). A similar manual entry process is pos-
sible for comparing models using r2mlm_comp_manuall().

Models with non-cluster-mean-centered
level 1 predictors

Researchers do not always wish to cluster-mean-center level
1 predictors. For example, in longitudinal contexts in which

teachsat$salary <- teachsat$salary c + 2

uncentered_model <- Lmer(satisfaction ~ salary +

“time” is a level 1 predictor, researchers might want to center
“time” at the first measurement occasion rather than at a
person’s mean time. If a researcher’s level 1 predictors are
not all cluster-mean-centered, the r2mim package provides
two options for calculating R-squared values: the r2mim()
function and the r2mim_long_manual() function. To dem-
onstrate both options, we will first remove the cluster-mean-
centering from salary_c by adding a constant to every value.
We will then run a model predicting satisfaction by salary
(uncentered).

(1 | schoolID), teachsat)

The r2mim() function calculates a decomposition of vari-
ance yielding total measures.

r2mlm(uncentered_model )

Decomposition
O =
e
g ©
c o
(
=
g © |
el o
o]
& <
€ (=
o
Q
e o ]
Q o
o |
o
B fixed slopes
B slope variation
intercept variation
0O residual
## $Decompositions
#it total
## fixed 0.1869275
## slope variation ©.0000000
## mean variation ©.3219662
## sigma2 0.4911063
##
## $R2s
#it total
## f 0.1869275
## v  0.0000000
## m  0.3219662
## fv  0.1869275

## fvm 0.5088937
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Alternatively, the r2milm_long_manual() function
calculates both a total decomposition of variance and

1.0

0.8

proportion of variance

0.6

0.4

0.2

0.0

Decomposition

total

## $Decompositions

##

## fixed
## fixed
## slope
## slope

slopes (within)
slopes (between)
variation (within)

variation (between)
## intercept variation (between)

## residual (within)

##

## fixed
## fixed

## slop
## slop

&)
e

slopes (within)
slopes (between)
variation (within)

variation (between)
## intercept variation (between)

## residual (within)

#i#

## fixe
## fixe
## slop
## slop

d
d
e
e

slopes (within)
slopes (between)
variation (within)

variation (between)
## intercept variation (between)

## residual (within)

##

## $R2s
#i#

## 1
##t £2
## v1
## v2
## m
## f
## fv
## fvm
#it

## f1
#t £2
## v1
## v2
## m
## f
## fv

total

7]
7]
2
7]
7]
o
(2
0

.186907226965456

within between

0.186907226965456

0.321974234044723
0.491118538989821

0.275663900032059

0.724336099967941

.321974234044723
.186907226965456
.186907226965456
.508881461010179

between
NA

0.

761887047387227

NA

[
1

NA

0.

236629819043657

## fvm NA

236629819043657

B fixed slopes (within)
@ fixed slopes (between)
B slope variation (within)
@ slope variation (between)
intercept variation (between)
O residual (within)
761887047387227
236629819043657
within
0.275663900032059
NA
0
NA
NA
NA
0.275663900032059
NA

level-specific decompositions of variance, yielding total,
within-cluster, and between-cluster measures.
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See Rights and Sterba (2021) for a demonstration and
more information about using r2mim_long_manual() to cal-
culate R-squareds for models with heteroscedastic variance
estimates. Note that an automatic r2mim_long() function is
under active development.

Discussion

Reporting effect sizes is necessary to contextualize results.
Rights and Sterba (2019) developed a comprehensive effect
size framework for R-squared in MLMs that integrates
previously developed MLM R-squareds as special cases,
and Shaw et al. (2020) implemented the framework into
an accessible R package, r2mlm. In this tutorial, we dem-
onstrated how to use and interpret output from r2mim. We
will now discuss considerations for appropriately reporting
results, package limitations, and future directions.

Appropriate reporting

The most important consideration when reporting and inter-
preting R-squared values is context: they should be reported
in the context of other model information, and understood in
the context of the data at hand, how the variables were meas-
ured, and the relevant literature. As a standardized effect
size, R-squared has advantages and drawbacks (Pek & Flora,
2018). Advantageously, it has an intuitive zero-to-one range
regardless of the measures involved. This standardization
facilitates interpreting results for measures that do not have
meaningful units. However, standardized metrics are calcu-
lated based on the variability of the sample. As such, they
cannot necessarily be compared across samples that have
substantially different degrees of variation in the outcome
and/or the predictors. Additionally, some unstandardized
metrics do have interpretable units that provide valuable
insights related to a research question. As exemplified in the
above data demonstration, one should interpret raw MLM
parameter estimates alongside standardized R-squared effect
sizes — as well as additional information like significance
of and precision of the estimates — to yield a full picture of
one’s results.

Assessing the size of an R-squared value is also a context-
specific exercise. The cutoffs for R-squared values proposed
in Cohen (1988) are sometimes treated as global recom-
mendations. However, Cohen noted that his cutoffs were
suggestions that should be rejected if they are “unsuited to
the substantive content of any given investigation” (p. 414).
The takeaway from his recommendations was that small,
medium, and large benchmarks were for a given context,
and researchers should consider their R-squared measures
in the context of the relevant literature and their theory. The
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interpretation of a given R-squared should be tempered by
considerations like sample size, measures involved, and the
nature of a manipulation (Cortina & Landis, 2009).

Finally, we will note that effect sizes are part of a toolbox
of rigorous research practices that also includes transpar-
ent reporting and valid measurement. To complement the
greater flexibility afforded by our r2miIm R package regard-
ing what R-squared measures to report, we recommend that
researchers also preregister their study and include mention
of the effect sizes they will report and what sizes they expect
or consider large given the context.

Relation to other R packages

There are other R packages and functions dedicated to esti-
mating multilevel R-squared values, but none that provide
the full partitioning of variance that r2mim does. The multi-
levelR?2 function from the mitml package (Grund et al., 2021)
allows users to calculate the MLM R-squared values pro-
posed by Raudenbush and Bryk (2002), Snijders and Bosker
(2011), and LaHuis et al. (2014). The r2glmm package
(Jaeger, 2017) implements R-squared measures described
in Johnson (2014), Jaeger et al. (2017), and Edwards et al.
(2008). In the linear mixed model framework, the function-
ality of both packages is subsumed by r2mim. r2glmm does
extend the three sets of measures from Johnson (2014), Jae-
ger et al. (2017), and Edwards et al. (2008) to a generalized
linear mixed model framework with, for instance, binary
outcomes. For mapping these special cases onto notation
from the general framework of measures, see Table 3 in
Rights and Sterba (2019); for discussion on the relation
between the general framework and the Jaeger et al. (2017)
and Edwards et al. (2008) measures, see Rights and Sterba
(2019, 2020).

Future directions and limitations

Effect sizes for MLMs are the subject of active methodologi-
cal research. As evidenced by the breadth of the Rights and
Sterba (2019) framework and the number of independently
developed R-squared measures predating and subsumed
by it, there are a number of different ways of decomposing
explained variance for a multilevel model. One can break
total variance down by more general categories of source
contribution (i.e., contributions of all predictors via fixed
effects — source f1+f2 — vs. contribution of all random
effects — source m+v) or further by individual source type
(e.g., contributions of predictors via level 1 fixed effects — f1
— versus contributions of predictors via level 2 fixed effects
— £2). Furthermore, there are multiple ways of quantifying
the contribution of individual predictors. Rights and Sterba
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(2020) discuss a simultaneous approach in which R-squared
differences between models quantify proportions of vari-
ance explained by individual terms over and above all other
terms, as well as a hierarchical approach in which R-squared
differences quantify the proportion of variance explained
by individual terms over and above the previously entered
terms. An alternative approach, known as Shapley regres-
sion (Shapley, 1953) or dominance analysis (Budescu, 1993;
Azen & Budescu, 2003), involves considering all possible
subset models to which a predictor could be added and com-
puting the average change in an R-squared measure arising
from adding the target predictor (versus another predictor)
into each different possible subset model. This approach has
been extended from the single-level to the multilevel con-
text using a subset of possible R-squared difference meas-
ures (Luo & Azen, 2013), and in future work can be further
extended to use the full suite of R-squared difference meas-
ures from Rights and Sterba (2020).

As illustrated, the r2mlm R package can be used to cal-
culate effect sizes for two-level MLMs. Functionality for
three-or-more-level models (Rights & Sterba, in press) is in
development. There is currently a manual entry option for
three-level models; see help(r2mlm3) for documentation.
Functionality for other model complexities is also in devel-
opment. There is currently a manual entry option for models
with heteroscedastic and/or autocorrelated level 1 residu-
als, which also provides level-specific variance explained
under any centering option; see help(r2mlm_long_manual)
for documentation, and Rights and Sterba (2021) for more
details. Cross-classified models are not currently supported.
You cannot use the I() function within a model to create
higher-order terms; such terms need to exist explicitly as
variables in your dataset. Additionally, only your cluster
variable can be categorical in the dataset; all other variables
in the model must be numeric (thus, to incorporate categori-
cal predictors, one must directly input the associated inde-
pendent variable codes, e.g., dummy or effects codes). The
r2mlm package is under active development. If any inter-
ested readers would like to report a bug or make a request for
functionality, they can file an issue or pull request at www.
github.com/mkshaw/r2mlm.
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