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ABSTRACT

Applications of multilevel models (MLMs) with three or more levels have increased along-
side expanding software capability and dataset availability. Though researchers often
express interest in R-squared measures as effect sizes for MLMs, R-squareds previously pro-
posed for MLMs with three or more levels cover a limited subset of choices for how to
quantify explained variance in these models. Additionally, analytic relationships between
total and level-specific versions of MLM R-squared measures have not been clarified, despite
such relationships becoming increasingly important to understand when there are more lev-
els. Furthermore, the impact of predictor centering strategy on R-squared computation and
interpretation has not been explicated for MLMs with any number of levels. To fill these
gaps, we extend the Rights and Sterba two-level MLM R-squared framework to three or
more levels, providing a general set of measures that includes preexisting three-level meas-
ures as special cases and yields additional results not obtainable from existing measures.
We mathematically and pedagogically relate total and level-specific R-squareds, and show
how all total and level-specific R-squared measures in our framework can be computed
under any centering strategy. Finally, we provide and empirically demonstrate software
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(available in the r2mIm R package) to compute measures and graphically depict results.

Social science researchers are increasingly fitting
multilevel models (MLMs) with three or more levels
as software capability and dataset availability expand
(e.g., Chen, Zhu, & Zhou, 2015; Curran, McGinley,
Serrano, & Burfeind, 2012; Dollard et al., 2012; Gong,
Kim, Lee, & Zhu, 2013; Liu, Liao, & Loi, 2012; Maier,
Vitiello, & Greenfield, 2012; Van den Noortgate et al.,
2013). An example three-level data structure involves
students (at level-1) nested within classrooms (at
level-2) nested within schools (at level-3). Though
researchers often want to report R-squared (R*) meas-
ures as effect sizes for MLMs (e.g., Bickel, 2007;
Edwards et al., 2008; Jaeger et al, 2017; Johnson,
2014; Kramer, 2005; LaHuis et al., 2014; Lorah, 2018;
Nakagawa & Schielzeth, 2013; Orelien & Edwards,
2008; Recchia, 2010; Roberts et al, 2011; Wang &
Schaalje, 2009; Xu, 2003; Zheng, 2000), MLM applica-
tions with three or more levels rarely do so. In con-
trast, applications of two-level models commonly
report R? (LaHuis et al., 2014).

Unfortunately, R* measures previously proposed for
MLMs with three or more levels cover a limited sub-
set of the choices for how to quantify explained

variance in these models. This may be a contributing
factor to their underutilization in practice. Another
contributing factor may be that precise analytic rela-
tionships between total and level-specific R*> meas-
ures—which become increasingly important to
understand when there are more levels, and hence
more level-specific measures—have gone unaddressed.
To fill these gaps, we extend the two-level MLM R®
framework of Rights and Sterba (2019) to three or
more levels, providing a comprehensive set of meas-
ures that not only includes preexisting three-level
measures as special cases but also yields additional
substantively meaningful results that cannot be
obtained using existing measures. Further, we newly
delineate mathematical relationships between total and
level-specific R”s and explain why it is important to
understand such relationships in applied practice.
Additionally, we derive and explicate the impact of
centering strategy for predictors (e.g., cluster-mean-
centering versus centering-by-a-constant) on R*> com-
putation and interpretation for MLMs with any num-
ber of levels, and we show how to quantify total and
level-specific variance explained under any centering
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strategy for MLMs with any number of levels. We
also explain how (any-level) MLM R? results from our
framework can be computed and graphically visual-
ized in a simultaneous and integrated fashion, thereby
avoiding the previous concern that “the use of these
[R?] techniques, however, can become confusing... as
the models become more complex” (Raudenbush &
Bryk, 2002, p. 149). We provide software (now also
available in the R package r2milm; Shaw, Rights,
Sterba, & Flake, 2020) to compute measures in our
framework and produce graphical depictions of
results, and we illustrate its utility with an empirical
example. We conclude with guidance for how to use
R-squared differences (AR?) to compute the unique
contribution of individual terms in such models. Our
methodological developments support researchers’
efforts to convey practical significance by facilitating
their understanding of, and ability to report, R’s in
MLMs with clustering beyond two levels.

We begin by reviewing the utility of reporting R
measures in MLMs. Second, we review the three-level
MLM. Third, we discuss existing R measures that
have been proposed for three (or more) level models,
describe their limitations, and explain how our frame-
work overcomes these limitations. Next we present
our framework of R* measures for three-level MLMs.
Subsequently, we describe relationships among total
and level-specific R> measures and explain their sub-
stantive implications. We then empirically illustrate
the use of our framework of R’ in a three-level appli-
cation studying math achievement, provide general
recommendations for practice, and describe software
implementation for three-level MLMs. Subsequently,
we provide and discuss the extension of our frame-
work to MLMs with any number of levels.

Throughout the majority of the article, we follow
widespread methodological recommendations to cen-
ter all lower-level predictors (i.e., all predictors below
the highest level of nesting) using cluster-mean-cen-
tering so that they contain variance at only one level
(e.g., Algina & Swaminathan, 2011; Curran et al. 2012;
Curran & Bauer, 2011; Enders & Tofighi, 2007;
Hofmann & Gavin, 1998; Preacher, Zyphur, & Zhang,
2010; Raudenbush & Bryk, 2002; Rights, Preacher, &
Cole, 2020; Snijders & Bosker, 2012), which prevents
conflation of level-specific effects. However, in a later
section we show how all total and level-specific R*
measures in our framework can nonetheless be com-
puted for MLMs that do not use cluster-mean-cluster-
ing for some or all lower-level predictors, and we
discuss the impact of centering choice on R*> computa-
tion and interpretation.

MULTIVARIATE BEHAVIORAL RESEARCH @ 341

Utility of reporting R? for three-level models

In general, R*s are useful indications of effect size in
that they assess the proportion of outcome variance
explained (e.g., Cohen et al., 2003; Gelman & Pardoe,
2006) on an interpretable metric with meaningful
bounds of 0 and 1. The complication in three-level
models, over that of single- or two-level models, is
that variance can be explained by sources at level-1,
level-2, and level-3. This makes the use of R* meas-
ures—in particular, those that distinguish among
alternative sources of explained variance—particularly
important to consider for three-level contexts.

To appreciate the utility of R*> measures for three-
level models, consider the following. In an analysis in
which students are nested within classrooms within
schools, there is outcome variability across students
within classrooms (i.e., variance at level-1), across
classrooms within schools (i.e., variance at level-2),
and across schools (i.e., variance at level-3). To under-
stand the mechanisms through which the outcome
can be explained, one must then consider the extent
to which each of these different levels contributes.
This type of question can be difficult to assess even in
two-level contexts, but becomes even more burden-
some as the number of levels/potential sources of vari-
ability increase, particularly if one is examining only
regression coefficients, random effect (co)variances,
and associated p-values (as is common in practice;
Roberts et al., 2011; Xu, 2003). R* measures for three-
level contexts help alleviate this burden by allowing
researchers to quantify, on an interpretable proportion
metric, the amount of variance explained by sources
at each level of the hierarchical structure. If, for
instance, it turns out that a non-negligible proportion
of the total outcome variance is explained only by stu-
dent-level characteristics, then a researcher can better
understand that the outcome is not predicted by class-
room-level or school-level characteristics included in
the model and, instead, the student-level characteris-
tics being modeled are likely most important
to consider.

Three-level multilevel model

The three-level MLM for the outcome y;y, for level-1
unit i, level-2 unit j, and level-3 unit k, can be repre-
sented as:

/ / / /
Yijk = Y000 +x 1ijk¥1 +x 2jkY> + X3kY; +W 1x2ijk W24k
/ ’
+ W L3iikQraak T Z 2435k Q0e3x T Eijk

e,»jk ~ N(O, 0'2)
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Upojk 0 T1e2
9.3 | ~ MVN 0], 0 T3
.3k 0 0 T Tas

(1)
The first four terms denote the fixed portion of the
model, with the first term (y,,,) representing the fixed
component of the intercept, and the next three terms
(x'1jky; and X5y, and X'3y;) representing fixed
components of slopes at each of the three levels.
Specifically, x5 denotes the vector of level-1 predic-
tors with vy, denoting the vector of the level-1 fixed
components of slopes; X,j denotes the vector of the
level-2 predictors with y, denoting the vector of level-
2 fixed components of slopes; and xs; denotes the vec-
tor of level-3 predictors with y; denoting the vector of
level-3 fixed components of slopes." Note that Xy
can contain cross-level interaction terms (i.e., product
terms) between level-1 and level-2 or -3 variables (as
these product terms will vary only at level-1; Rights &
Sterba, 2019), whereas X, can contain cross-level
interaction terms between level-2 and level-3 variables
(as these product terms will vary only at level-2).

The next term (W'1.2ikW142j%) represents the random
portion across level-2 units. Specifically, Wy
denotes a vector whose first element is 1 (for the
level-2 random component of the intercept) and
whose subsequent elements are level-1 predictors with
randomly varying slopes across level-2 units; uy.oj
denotes a vector of the corresponding level-2 random
effect residuals (note that the “*” in the subscripts
denotes “across,” and hence the “1*2” subscript in
Wik means it contains level-1 variables with slopes
varying across level-2 units). The next two terms
(W L3ikQ,ax and  z'2.3jkq,,3,) represent the random
portion across level-3 units. Specifically, Wy,
denotes a vector of 1 (for the level-3 random compo-
nent of the intercept) and level-1 predictors with ran-
domly varying slopes across level-3 units (where again
the “*” subscript notation denotes “across”), q,s
denotes a vector of the corresponding level-3 random
effect residuals (with the first element being the level-
3 random component of the intercept), z,.3j denotes
a vector of level-2 predictors with randomly varying
slopes across level-3 units, and q,,5, denotes a vector
of the corresponding level-3 random effect residuals.
Note that a given level-1 predictor can be in both
Wik and Wi if it has a random slope varying
across both level-2 and level-3 units. All random effect

residuals in Wi, Q3 and q,,s; are assumed multi-
variate normally distributed, with corresponding
covariance matrices Ty, Ti.3, and To.s, respectively,
with T3 containing covariances between terms in
Q. and q,,;; because residuals across levels are
orthogonal, all across-level correlations are 0. The last
term in the model (e;jx) denotes the level-1 residual,
which is normally distributed with variance o°.

To avoid conflating level-specific effects in the
Equation (1) model, each level-1 variable is decom-
posed into purely level-1, -2, and -3 components via
cluster-mean-centering (often called group-mean-cen-
tering) and each level-2 variable is decomposed into
purely level-2 and -3 components via cluster-mean-
centering (e.g., Brincks et al., 2017). More specifically,
for a level-1 variable, xjx, the level-3 component
(given as x.g) is computed2 as the level-3 cluster
mean of x;; the level-2 component (given as
Xjk — X.x) is computed by subtracting x.; from x;i’s
level-2 cluster mean (given as xj); and the level-1
component is x;x — X.jx. For a level-2 variable wy, the
level-3 component (given as wy) is computed as the
level-3 cluster mean of wj; and the level-2 component
is wjx — wy (e.g., Brincks et al.,, 2017). Note that any
level-3 predictor can be grand-mean-centered or left
uncentered. If there is interest in potential between-
cluster effects of level-1 predictors for a particular
application, the level-2 and/or level-3 means of the
level-1 variables can be included as separate predic-
tors; however, there is no requirement that these be
added. Similarly, one can include a level-3 cluster-
mean of a level-2 variable as a separate predictor if
interest lies in between-level-3-cluster effects of the
level-2 variable. For specific guidance on interpreting
between- and within-cluster effects of categorial pre-
dictors (with two or more categories), see Yaremych,
Preacher, and Hedeker (2020; submitted).

Existing three-level R* measures

In this section we define the R’s that have been devel-
oped for three-level contexts and describe their limita-
tions. In the subsequent section, we summarize how
our framework overcomes these limitations. Note that
certain preexisting R’s quantify variance explained via
both fixed and random effects (commonly termed
conditional measures), whereas others quantify vari-
ance explained via only fixed effects (commonly
termed marginal measures; Nakagawa & Schielzeth,

‘Letting P,, P, and P, denote the number of level-1, level-2, and level-3
predictors, note that xq is P, X1, y; is Pe X1, Xp is Py, X1, ¥, is Py,
x1, x3¢ is P, x1, and y; is P, x1.

Here we are assuming that the level-3 cluster-mean is computed as the
mean value of the level-1 observations of Xijk within level-3 cluster k,
which we denote x.x.



2013; Vonesh & Chinchilli, 1997). Additionally, some
preexisting R’s have been previously defined as the
reduction in residual variances (going from a null model
to the full model) whereas others have been defined as
the squared correlation between observed and predicted
outcomes. Nonetheless we show that each of these kinds
of measures are special cases of our general framework
and can be understood as estimating some underlying
proportion of variance explained.

Snijders and Bosker’s (2012) measure

A total R°—quantifying the proportion of total outcome
variance explained—was developed for three-level MLMs
by Snijders and Bosker (1999, p. 104; 2012, p. 113):

2
Pooo 1+ Tooo + 0

Rigp=1-— ()
Pooo(nutt) T Tooo(nuil) + Ufmw)
Here ¢y, denotes level-3 intercept variance, 7o

denotes level-2 intercept variance, and % denotes the
level-1 residual variance from the fitted model. The
Pooo(ml)> T000(mal)> and 0€W”) denote variance compo-
nents from a random-intercept-only null model, i.e.,
a model with no predictors and an intercept that
varies randomly across level-2 and level-3 units.
Consequently, @g(uuy represents overall outcome
variance at level-3, too(nu) overall outcome variance
at level-2, and O'%nu”) overall outcome variance at
level-1. R%,; is a total R* measure in that the sum of
the latter three terms (in the denominator) repre-
sents the total outcome variance.’

Note that this R3,; measure requires constraining
the random slope variances to 0. Though it is possible
that a researcher may not be interested in slope vari-
ance specifically, methodologists have noted that it is
preferable to have the measure reflect the structure of
the full model of interest (e.g., Gurka et al., 2011;
Jaeger et al., 2017; Johnson, 2014). Additionally, R,
involves a two-model fitting approach that can yield
negative values (e.g., if due to chance fluctuation in
estimates, the sum of the null model variance compo-
nent estimates is smaller than the sum of the fitted
model variance component estimates; Snijders &

*Though here we define R%, as a “total” measure, Snijders and Bosker
(2012, p. 113) call this a “level-1 measure” in the sense that it quantifies
variance explained across all observations (i.e., across all level-1 units).
However, variance across all observations includes not just purely level-1
variance (i.e., purely within-cluster variance) but also includes level-2 and
level-3 variance (i.e., across-cluster variance). In other words, the
denominator of R_%&B contains the total outcome variance. As such, we
feel it is most appropriate to refer to R%, as a total measure (quantifying
the proportion of total outcome variance explained), and use the term
“level-1 measure” to refer to measures with only level-1 outcome variance
in the denominator. Our definition of total and level-specific measures is
consistent with the MLM R? literature (see e.g., Lahuis et al., 2014).
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Bosker, 1994). Further, R%., assesses only variance
explained by predictors via fixed effects; this kind of
measure is often termed a marginal total R* (in
essence, predicted scores are “marginalized” across
random effects). Thus, it is not possible to use Rigp to
assess the degree to which the outcome can be
explained by any other source (e.g., via random
effects, as is the case with other measures discussed
shortly). Finally, R3, ; provides an overall summary of
variance explained marginally by all predictors; hence,
it tells a researcher nothing about the relative import-
ance of predictors at different levels (e.g., student- vs.
classroom- vs. school-level predictors).

Nakagawa and Schielzeth’s (2013) measures with
Johnson’s (2014) extension

Two other total R* measures were developed for three-
level MLMs by Nakagawa and Schielzeth (2013, p. 137).
They also required constraining random slope variances
to 0; however, they were both recently extended to allow
for random slope variation by Johnson (2014, p. 945). For
generality we discuss Johnson’s (2014) latter meas-
ures only.

The first measure, Rzzvsl(m)’ is a marginal total R?
meaning that it quantifies the proportion of total vari-
ance explained by the predictors via fixed effects only,
like R3gp :

2
9

Rii(m) = 3)

02 + 0%, + 0%, + 0
Here, o*} denotes the variance attributable to predic-
tors via fixed components of slopes. 67, and o7,
denote the mean random effect variance across obser-
vations for level-2 and level-3 random effects, respect-
ively.4 The second measure, Rfm(c), is termed a
conditional total R* in that it quantifies the proportion
of total variance explained via both fixed and random
effects (in essence, predicted scores are “conditioned”
on random effects) and is given as:
X 0} + 01, + 0i;
Rso0=% =5 . 5 . 5 (4)
0f+ 0, +053+0

Note that, similar to Ry neither Ryg ., nor

R can distinguish among variance explained by

2
NSJ(c)

“For instance, with a random intercept and one level-1 predictor with a
random slope across level-2 and level-3 units, the observation-specific
across-level-2  random effect variance can be written as ale.jk =
var(ugi + uiXx) and the observation-specific across-level-3 random
effect variance as afyjk = var(ugok + UnXi). The quantities o7, and o7
are the expected values of these observation-specific random effect
variances (see Johnson, 2014, for further detail).
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level-1, -2, and -3 predictors. Second, though it is pos-
sible to assess the degree to which any random effect
varijability is important in understanding the outcome
(i.e., by comparing Rzzvy(m) and RNS] ), the RNS]<)
measure provides no way of further dlstlngmshlng
between contributions of predictors via random slope
variation vs. contributions of cluster means via ran-
dom intercept variation. Hence, these measures do not
help researchers deeming random slope variation of
substantive interest but random intercept variation
not of substantive interest.

Raudenbush and Bryk’s (2002) measures

Another set of three-level MLM R? measures, devel-
oped by Raudenbush and Bryk (2002, p. 79, Eqn. 4.20
and p. 85, Eqn. 4.24) (see also Bryk & Raudenbush,
1992), are level-specific, rather than total, measures
(meaning that they quantify the proportion of level-
specific outcome variance that is explained). These are
commonly called proportion reduction in residual vari-
ance measures.” For level-1, this is given as

2 2
Oy — O
Rzzz&B,l = (nz,z) (5)
(null)
and for level-2:
T -7
R%Q&B = 000(null) 000 ©6)
’ T000(null)
and for level-3:
Dooo(nuin) — Pooo
Ry = —) 0 7)

D000(null)

Symbols in Equations (5)-(7) have the same definitions
as in Equation (2). Though not apparent from
Equations (5)-(7), it will be shown later analytically that
actually R2e, is a conditional R* at level-1, whereas
Rigp 5 is a marginal R* at level-3, and R2, , is a hybrid
of a conditional and marginal measure at level-2.

Note that, going from a random-intercept-only null
model to the full fitted model of interest, the residual
variance at level-1 or level-2 can decrease both due to
predictors via fixed components of slopes and due to
predictors via random slope variation. Raudenbush
and Bryk’s (2002) level-1 and level-2 measures (Rygp
and Rgj ,) both combine these two potential sources
of explained variance with no way of decomposing
them, making these measures uninterpretable blends

These are also often called pseudo-R?> measures. Although they can be
computed for any null model (Hoffman, 2015), they are interpretable as
the overall level-specific variance explained only when using a random-
intercept-only null (explained further in Rights & Sterba, 2020).

of sources, similar to RNS]( discussed above. Second,
similar to Rigp, theRjes 1’R12z&3 »» and Rpgp, meas-
ures all have the potential to be negative. Lastly, the
Rigps 1> Riap o and Riep; measures focus only on
level-specific variance, to the exclusion of total vari-
ance. As will be discussed in an upcoming section,
examining only level-specific measures can yield mis-
leading results regarding the overall importance of
sources at different levels.

Singer and Willett’s (2003) and Peugh and Heck’s
(2017) measure

A final existing total R* measure for three-level MLMs
we will discuss (Singer & Willett, 2003, p. 102; also
disseminated by Peugh & Heck, 2017, p. 47) involves
several steps: first, using the MLM-estimated fixed
effects, one computes marginal predicted scores (i.e.,

not including random effect residuals;
~ (marg N N N N
yfjk "= Jo00 + X1t 1 +X 0> +X'5d5),  then  com-

putes the Pearson correlation between these predicted
scores and the observed scores, and lastly squares this
correlation to obtain the Ry, :
Ry = corr(7e™™. yi)” (8)
Note that, like Rs&B and RNS] (m)> the R is also a
marginal total R* measure and thus does not help assess
relative importance of random effects. Additionally,
similar to the other total measures (Rggp Ry, and
NS] ))> the RZe does not distinguish among variance
explamed by level-1, -2, and -3 predictors.

One other measure to note was provided by
Gelman and Pardoe (2006) but we do not focus on it
here because it is specific to Bayesian estimation (e.g.,
requires computation using posterior simulation
draws) whereas the vast majority of MLMs are fit
using frequentist estimation methods. However, when
computing their measure at the observation-level, it is
analogous to a conditional total R* (Johnson’s [2014]

RNS 10 , defined above).

How our framework overcomes limitations of
existing three-level R> measures

Our framework overcomes limitations of existing
three-level R’s by providing a more comprehensive
and flexible set of measures—all obtainable from a
single fitted model that can include random slopes,
and all related analytically and graphically to facilitate
a cohesive interpretation. More specifically, compared
with existing R?s for three-level models, our frame-
work of three-level R*> measures has the following
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Table 1. Definitions of three-level MLM R® measures in framework for cluster-mean-centered models*: Interpret as a set of sin-
gle-source-of-explained-variance measures or sum measures with the same denominator to form a combination-source measure
that quantifies variance explained by a combination of sources.

Definition (Interpretation)

Proportion of total outcome variance explained by level-1 predictors via fixed components
Proportion of total outcome variance explained by level-2 predictors via fixed components
Proportion of total outcome variance explained by level-3 predictors via fixed components
Proportion of total outcome variance explained by level-1 predictors via random slope variation/
Proportion of total outcome variance explained by level-1 predictors via random slope variation/
=— Proportion of total outcome variance explained by level-2 predictors via random slope variation/
Proportion of total outcome variance explained by cluster-specific outcome means via intercept

Proportion of total outcome variance explained by cluster-specific outcome means via intercept

Proportion of level-1 outcome variance explained by level-1 predictors via fixed components
Proportion of level-1 outcome variance explained by level-1 predictors via random slope variation/

Proportion of level-1 outcome variance explained by level-1 predictors via random slope variation/

Measure
Total MLM R? measures: Can be used as a set or in combination
g2 _ V1P
s —
Eqn. 9 of slopes
2B _ V2P,
w2 o L2 <32
Eqn. 9 of slopes
26 _ Y 3P375
R
Eqn. 9 of slopes
gna) _ r(Ei2Tia)
: =
Ean. 9 covariation across level-2 units
g2a) _ tr(X1:3Th.3)
YT Egn. 9 o X
' covariation across level-3 units
R2) tr(X2:3T23)
t Eqn. 9 o .
: covariation across level-3 units
2(my) _ To0o
R = Eqn. 9 ati i
: variation across level-2 units
R2<m3) — Pooo
Y T Egn. 9 - ;
: variation across level-3 units
Level-1 MLM R? measures: Can be used as a set or in combination
g2 _ V1P
=
Eqn. 20 of slopes
g2a) _ tr(Z1:2The2)
: — 27 152)
Eqn. 20 covariation across level-2 units
g2 _ ME1sThs)
' 7 Egn. 20 - X
: covariation across level-3 units

Level-2 MLM R? measures: Can be used as a set or in combination

g2t _ V2P0
2 Eqgn. 21

Proportion of level-2 outcome variance explained by level-2 predictors via fixed components

of slopes
tr(Xo.3T . . . . . .
Rﬁ‘”“” = % Proportion of level-2 outcome variance explained by level-2 predictors via random slope variation/
an. covariation across level-3 units
§<m2) = % Proportion of level-2 outcome variance explained by cluster-specific outcome means via intercept
an. variation across level-2 units

Level-3 MLM R? measures: Can be used as a set

2(f) _ Y3 P373

3
Eqn. 22 of slopes
RAms) _ Pooo
3 Eqn. 22

Proportion of level-3 outcome variance explained by level-3 predictors via fixed components

Proportion of level-3 outcome variance explained by cluster-specific outcome means via intercept
variation across level-3 units

Notes. Terms in this table are defined in manuscript text. *Cluster-mean-centered model = model in which all lower-level predictors (here, all level-1 and
level-2 predictors) are cluster-mean-centered. See Table 5 for corresponding table of measures for three-level non-cluster-mean-centered models (i.e.,
models in which at least one lower-level predictor is not cluster-mean-centered).

benefits: (1) It provides more generality by subsuming
both new and old measures (Online Appendix A pro-
vides proofs showing that the separately developed
previous R’s for three-level MLMs [Rfypz Rig s
R%\IS](m)’ Risw> Riss1> Riaso Riaps] each corres-
pond, in the population, to a special-case measure
computable from our framework, as elaborated later
with reference to Table 2). (2) Our framework also
provides more flexibility by supplying more options
for source(s) contributing to explanation given a par-
ticular type of outcome variance—total vs. level-spe-
cific (as elaborated later with reference to Table 1).
(3) Our framework provides more coherence through
graphical visualizations of relationships among its

constituent measures, enabling them to be viewed and
interpreted as an integrated set (elaborated later with
reference to Figure 1). Further details on the first two
benefits of the framework are as follows.

First, unlike the total R*> measures previously pro-
posed for three-level models (RZgp, Ri,sj(c), RIZVS](M,
RZ), our framework provides total measures that
allow researchers to distinguish among variance
explained by: (1) predictors via fixed components of
slopes, vs. (2) predictors via random slope variation,
vs. (3) cluster-specific outcome means via intercept
variation. Previous total R*s for three-level models did
not distinguish (2) and (3), yet it is foreseeable that
researchers could be interested in considering (2) but
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Table 2. Relating existing three-level R* measures to those in our framework (supporting proofs of population equivalencies are

provided in Online Appendix B).

Existing Equation in Using our framework in Table 1, the same
Measure current paper Citation population quantity is measured by ...
Rgst Equation (2) Snijders and Bosker (2012) R 1 2B g25) ¢

R12v51( m Equation (3) Johnson’s (2014) extension* of Rf(f‘) + Rz(fZ +Rf(f3)
Nakagawa and Schielzeth (2013) ; ; ]

Ri,s,( 0 Equation (4) Johnson's (2014) extension™ of Rf( L Rf“) + Rf( Qs Rf(v’“) + Rf(v‘”) + Rf("“) + Rf(mZ) + Rf(m3)
Nakagawa and Schielzeth (2013) ]

Rfm“ Equation (5) Raudenbush and Bryk (2002) Rf(‘) + Rf(v‘”) + Rf("”)

Ries.2 Equation (6) Raudenbush and Bryk (2002) Rﬁ(fﬂ + R;“’M)

Ries 3 Equation (7) Raudenbush and Bryk (2002) Rz(fj)

R Equation (8) Singer and Willett (2003); Rz(f‘ + R +Rf(f3)

Peugh and Heck (2017)

Notes: T = The RZ,, measure requires constraining all random slope variances to 0, but the corresponding measure from our framework does not require
this constraint. Hence our measure and Rg&g would be estimating the same population quantity if random slope variances were constrained to 0.
Because this constraint is neither necessary nor recommended using our framework, this constraint is not demonstrated in this manuscript.

* = The R;VS](m) and Ri,sm

measures for random intercept models proposed by Nakagawa & Schielzeth (2013) were extended to random slope models

by Johnson (2014); here we relate Johnson's extended version to our framework.

%8— \
< .y
e ° |\ Dz

total level-1

source
1

vi2
vi3
v23

L

DDEEEEO0DNN

m3
resid

level-2 level-3

Notes. Shorthand labels for each source of explained variance are given in the legend; corresponding
full definitions of each source are provided in manuscript Equations 10-18. MLM= multilevel model.

Figure 1. Visualization of three-level MLM R* measures in framework: Proportions of total variance (column 1), level-1 variance
(column 2), level-2 variance (column 3), and level-3 variance (column 4) attributable to each source of explained variance.

not (3) as explained variance (see rationales in
Aguinis & Culpepper, 2015; Rights & Sterba, 2018,
2019). Further, again unlike the total R’s previously
proposed for three-level models (RZ;, RNS]()
R%\,S]( ) R%), our framework provides total R’s that
further unpack (1), from above, by distinguishing
among variance explained by: (1a) level-1 predictors
vs. (1b) level-2 predictors vs. (1c) level-3 predictors
via fixed components of slopes—making it possible to
separately assess the contribution of each source

individually from one fitted model. Additionally,
unlike all of the previously-proposed total R’s for
three-level models, our framework provides total R%s
that further unpack (2), from above, by distinguishing
among variance attributable to predictors via different
kinds of random slope variation: (2a) variation of
level-1 slopes across level-2 units, (2b) variation of
level-1 slopes across level-3 units, and (2¢) variation
of level-2 slopes across level-3 units.® Our framework
of measures accomplishes these generalizations using



a more complete partitioning of model-implied total
outcome variance.

Unlike the level-specific R® measures previously
proposed for three-level models (Rigp 1> Rpgp > and
R}ep3), our framework supplies level-specific Rs
using only a single fitted model. This is not only more
convenient than a two-model-fitting approach but,
importantly, it also ensures that no measures will be
negative (provided a proper solution is obtained). Our
framework accomplishes this by providing the first set
of model-implied expressions for level-1-specific, level-
2-specific, and level-3-specific measures. Further, again
unlike the level-specific R®s previously proposed for
three-level models, level-specific measures in our frame-
work distinguish between variance explained by predic-
tors via fixed components of slopes vs. via random
slope variation.

Full partitioning of variance used to create a
more general framework of R> measures

Employing a more general and complete partitioning
of model-implied variance than used previously cru-
cially affords us greater flexibility in creating R>s for
three-level MLMs. Taking the variance of Equation
(1) yields the following model-implied outcome vari-
ance for a three-level MLM:

! / !
var(yi) = var(Yogo + X 1jjk¥; + X 2jk¥2 + X 3173
/ !
+ W raikUr2jk + le*3ijkql*3k + 223k Qo3 T+ eijk)

=7 101y, +7,Pov, + 73 Ps7; + tr(EnaTio)
+ tr(E13T1s) + tr(X2:3T2u3) + @goo + Tooo + 02

)

(see derivation in Appendix A, supplementary mater-
ial) with ®;, ®,, and®; denoting covariance matrices
of level-1, level-2, and level-3 predictors, respectively,
and Xy, X3, and X,.; denoting covariance matri-
ces of elements in W' 1.5k, W 3ik, and z'5.35, respect-
ively. Other symbols were defined above.

Each term in Equation (9) reflects variance attribut-
able to one of nine different sources:

®Even when slope variability is not considered substantively interesting in
and of itself, variance explained via slope variability could, in future
modeling, instead be explained by cross-level interactions via fixed effects
(Aguinis & Culpepper, 2015). Breaking down slope variability into
component parts can aid researchers in understanding specifically what
type of cross-level interactions (e.g., level-1 x level-2, level-1 x level-3,
and/or level-2 x level-3) could be considered.
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Y@y, = variance attributable to level-1
predictors via fixed components of slopes
(shorthand : variance attributable to “f;”)

(10)

Y ,®,y, = variance attributable to level-2

predictors via fixed components of slopes
(shorthand : variance attributable to “f,”)

(11)

Y @3y, = variance attributable to level-3

predictors via fixed components of slopes
(shorthand : variance attributable to “f;”)

(12)

tr(X1,:0T142) = variance attributable to level-1
predictors via slope variation across
level-2 units (shorthand : variance
attributable to “v1.,”)

(13)

tr(X1.3T143) = variance attributable to level-1
predictors via slope variation across
level-3 units (shorthand : variance
attributable to “v,;”)

(14)

tr(X5.3T243) = variance attributable to level-2
predictors via slope variation across
level-3 units (shorthand : variance
attributable to “v,.3”)

(15)

Pooo = Vvariance attributable to level-3-
cluster-specific outcome means via intercept
variation (shorthand : variance attributable
to ((m3)’)

(16)

Tooo = variance attributable to level-2-
cluster-specific outcome means via intercept
variation (shorthand : variance attributable
to ‘(mz)’)

(17)

o2 = variance attributable to level-1 residuals

(shorthand : variance attributable to “resid”)
(18)

«

Shorthand descriptors of each source (e.g., “f;”) are

listed in quotes alongside Equations (10)-(18).
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General framework of three-level R? measures

Measures in our framework can be computed by fit-
ting a single MLM and take the form:

, _ model-implied explained variance

model-implied outcome variance (19)
For two-level models, there are three options for what
to consider outcome variance in the denominator of
an R% total, level-1 (within-cluster) or level-2
(between-cluster) variance. Also, for two-level models,
there are four sources that could potentially contribute
to explained variance in the numerator of an R* (vari-
ance can be explained by predictors via fixed effects at
level-1 and/or level-2, by predictors via random slope
variation, and/or by cluster-specific outcome means
via intercept variation; Rights & Sterba, 2019). For
three-level models, there are not only more options
for what to consider outcome variance in the denom-
inator (total, level-1 [within-level-2-cluster], level-2
[between-level-2-within-level-3-cluster], or level-3
[between-level-3-cluster] variance) but also there are
more sources that could potentially contribute to
explained variance in the numerator (variance can be
explained by predictors via fixed effects at level-1,
level-2, and/or level-3, by predictors via random slope
variation across level-2 or level-3 units, and/or by
cluster-specific outcome means via intercept variation
across level-2 or level-3 units).

Having just defined Equations (10)-(17) each as
variance attributable to a single source, next we
describe total and level-specific R* s for three-level
MLMs that consider each of these separately as single
sources of explained variance; we term these the sin-
gle-source measures in our framework. Subsequently
we discuss combining them to form combination-
source measures using our framework.

R? measures utilizing a single source of
explained variance

Total R?> measures

Single-source total R* measures are created by divid-
ing Equations (10)-(17) each by Equation (9) to yield
the proportion of total variance attributable to a single
source. Table 1 defines total R* measures that each
contain a single source of explained variance in the
numerator; each measure is represented by one of the
shaded segments in the left-most column of Figure 1.
Each source is denoted in the Figure 1 legend by the
shorthand listed above in Equations (10)-(18). For
instance, in the hypothetical Figure 1 example, 9% of

the total variance is attributable to level-1 predictors
via fixed components of slopes (shorthand “f,”).

Level-specific R measures

We next partition the total model-implied outcome
variance from Equation (9) into three levels in the fol-
lowing manner (see derivations in Appendix A, , sup-
plementary material):

level-1 variance = var;(y;)
=9 0y, + tr(X1.2T12)
+ tr(Z1:3T13) + 07 (20)
level-2 variance = var;y (yik)

=7, @7, + tr(X2:3T23) + To00
(21)

level-3 variance = varg(y;i) = v3®375 + @0 (22)

Equation (20) denotes the level-1 outcome variance
(i.e., variance of yjj across i given j and k), Equation
(21) the level-2 outcome variance (i.e., variance of y;j
across j given k), and Equation (22) the level-3 out-
come variance (i.e., variance of y;x across k). Single-
source level-1, -2, and -3 R* s are listed in Table 1 and
are created using the relevant level-specific variance
(from Equations (20)-(22)) in the denominator, and
one source of explained variance at a time in the
numerator. The set of three level-1-specific measures
are represented by shaded segments of the second col-
umn in Figure 1; likewise, the set of three level-2-spe-
cific measures and the set of two level-3-specific
measures are represented by shaded segments in the
third and fourth columns of Figure 1, respectively.
For instance, in the Figure 1 example, 21% of level-1
variance is attributable to level-1 predictors via fixed
components of slopes (“f;”), as seen in the size of its
corresponding segment in the second column.
Similarly, inspecting the third and fourth columns
reveals that 50% of level-2 variance is attributable to
level-2 predictors via fixed components of slopes
(“,”) whereas 31% of level-3 variance is attributable
to level-3 predictors via fixed components of
slopes (“f3”).

Each of the measures in Table 1 can be used as a
quantitative effect size to help supplement qualitative
interpretation of results. As one example of how the
framework aids interpretation of MLM results, one
may have a model wherein slopes of level-1 predictors
vary across level-3 units, and the degree to which
these slopes vary might be meaningful. However, the
specific magnitude of this slope heterogeneity would



be difficult to quantify if one were examining only
parameter estimates and associated p-values. With
R and R*") however, we can easily quantify
this magnitude and report, respectively, the propor-
tion of total variance and the proportion of level-1
variance explained by level-1 predictors via random
slope variation across level-3 units. As another
example, the set of all single-source measures in Table
1 can be useful in determining which types of sources
(f, v, and/or m) and which levels (1, 2, and/or 3) are
most important in understanding the outcome. For
instance, if interest lies in assessing the relative
importance of fixed components of slopes for predic-
tors at each level, one could compute and compare
RV R and RZ%,

R* measures combining sources of
explained variance

One might also be interested in the cumulative impact
of multiple sources and thus desire a summary meas-
ure of explained variance that combines certain sin-
gle-source measures in Table 1. To this end, one
option is to substantively justify which sources should
contribute to “explained” variance and combine these
to form a relevant R>. Here we give three such exam-
ples of combination-source though
researchers  could develop their

measures,
others  for
OWN purposes.

A first option for creating a combination-source
measure is to quantify variance explained by any pre-
dictors via fixed components of slopes; the relevant
total R* measure can then be computed by summing
Rf(ﬂ)-i-Rf(fZ)—i—Rf(f}). As indicated in Table 2, this
combination yields a so-called marginal total R* which
is equivalent in the population to Nakagawa-
Schielzeth/Johnson’s Ri,S](m and Singer and Willett’s
RZg, (and to Snijders and Bosker’s R}, if slope vari-
ability were constrained to 0). See Table 2 and Online
Appendix A (supplementary material) for proofs of
these population equivalencies. The marginal level-
specific measures would not require any summation,
as there is only one “f’ measure within each. For
instance, a marginal level-3 R is equivalent in the
population to Raudenbush and Bryk’s Rygp; (see
Table 2 and see Online Appendix A for proof).

Another option for creating a combination-source
measure is to consider any potential source in
Equations (10)-(17) as explained variance. This
approach yields a so-called conditional total R* (sum-
ming all total measures in Table 1) which is equiva-

lent in the population to Ri]sﬂc) (see Table 2 and see
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Online Appendix A for proof). Likewise, at level-1,
this approach yields a conditional level-1 specific R*
measure (summing all level-1 measures in Table 1)
which is equivalent in the population to Raudenbush
and Bryk’s Rjgpz, (see Table 2 and see online
Appendix A for proof).”

A third option for creating a combination-source
measure is to quantify variance explained by predic-
tors via both fixed components of slopes and random
slope variation (but not by cluster- specific outcome
means via intercept variation). This new total measure
combines Rf(fl)+Rf(f2)+ R,z(’%)—l—Rf(V”Z)+Rf(v”3)+Rf(V2*3).
This approach was motivated by Rights and Sterba
(2018, 2019) as a hybrid measure that serves as a com-
promise  between  conditional and  marginal
approaches. The marginal vs. conditional R* distinc-
tion had previously been framed as all-or-nothing
(i.e., counting as explained all or none of the variance
attributable to predictors and cluster means via ran-
dom effects). However, researchers sometimes want to
simultaneously evaluate the importance of fixed and
random effects (e.g., Edwards et al., 2008; Jaeger et al.,
2017; Kramer, 2005) but are only interested in slope
not intercept heterogeneity (e.g., Aguinis &
Culpepper, 2015). The corresponding level-2 hybrid
measure combines Rf(fz)—ka(Vz*S) and is equivalent in
the population to Raudenbush and Bryk’s Ry , (see
Table 2 and see Online Appendix A for proof; hence,
our framework clarifies that the Raudenbush and Bryk
[2002] set of measures are composed of a conditional
measure at level-1 (Ryg;p 1), a hybrid measure at level-
2 (Rigp,)» and a marginal measure at level-
3 (Ri, )

We have now presented several example combin-
ation-source R’s that researchers could construct
using our framework. We emphasize that researchers
should use combination-source measures as a supple-
ment to, rather than instead of, single-source meas-
ures in Table 1. Otherwise, it is difficult to assess
which sources are most important and at which levels
variance is primarily explained.

Relationships between total and level-specific
R? measures

Our Table 1 framework includes level-specific and
total measures that have the same source(s) of
explained variance (i.e., the same numerator). An
example is R,z(m Vs. Rf(fl). As the number of levels

"This approach would not be useful for level-2 and -3 measures given
that combining all potential sources for higher-level R? yields a value
of 1.
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increases, there are increasing numbers of such paral-
lel measures, making it particularly important in
three-level (or higher-level) models to understand
how these measures are mathematically related when
interpreting them simultaneously. Because such ana-
Iytic relationships have not previously been shown for
three-level (nor two-level, nor higher-level) models,
we derive these relationships in Online Appendix B
while describing them, and their practical implica-
tions, here.

Total R* and level-specific R* measures with the
same source(s) of explained variance have a condi-
tionally linear, positive relationship; however, this
relationship is moderated by the amount of cluster
dependency. We operationalize the amount of cluster
dependency with the intraclass correlation (ICC),
defined as the proportion of total variance that is
across clusters (Hox, 2010). Specifically, the propor-
tion of outcome variance that is at level-2 is given as:

level-2 variance
ICCG=—F—7——
total variance

_ Y/Z(DZYZ + tr(22*3T2*3) + Tooo
YL@y, Y@1Y Pays + (o Tie)
+ tr(Z1aaTras) + 11(E23T243) + @goo + Tooo + 02
(23)

Similarly, the proportion of outcome variance that is
at level-3 is:

level-3 variance
ICC;=———————
’ total variance

_ Y3 @375 + Qoo
YDy +YL®07; + Y3 ®sys + (B0 Tie)
+ tr(E1sTis) + tr(X2e3T2:3) + Qo0 + Tooo + 07
(24)

And the proportion of outcome variance that is across
both level-2 and level-3 clusters is:

ICCy; = ICC, + ICG; (25)

With these formulas,® we can now establish the fol-
lowing relationships:

1. Consider a level-1 measure (generically denoted
Rf@) and total measure (generically denoted Rf<s))
with the same generic source “s” of explained vari-
ance at level-1. These total and level-1 measures

8Note that these ICC formulas in Equations (23), (24), and (25) apply for
any three-level model in which all level-1 and level-2 predictors are
cluster-mean-centered in the manner described earlier. For models in
which there is at least one level-1 or level-2 predictor that is not cluster-
mean-centered (regardless of the specific alternative centering method
employed), the formula for ICC, would be given as (Equation B24)/
(Equation B22), ICC; would be (Equation B25/Equation B22), and ICCy3
would be (Equation B24 + Equation B25)/(Equation B22); see Appendix B.

are related purely through ICCy;, as such:

RZ(S)

RO — 26
! 1 — ICCy (26)

Equation (26) implies that, as higher-level clustering
increases from ICC,;=0 to ICC,3=1, the level-1
measure R?(S) exponentially increases from its lower
bound gwhere it is exactly equal to the total measure,
ie., Rf(s :Rf(s) ) to its upper bound (where RT(S) =1).
This relationship is illustrated in Figure 2 Panel A.

2. Similarly, the total measure (Rf@) and level-2
2(5) . « »

measure (R;"’) for a generic source “s” of

explained variance at level-2 are related purely

through the degree of clustering at level-2 (ie.,
ICGC,):

2 _ th(s)

2 ICG

(27)

Equation (27) implies that as between-level-2 cluster
dependency increases from ICC,=0 to ICC,=1, the
level-2 measure will exponentially increase from its
lower bound (where Ri(s = R,2 S)) to its upper bound
(where Ri“’ =1). This relationship is illustrated in
Figure 2 Panel B.

3. Likewise, the total measure (R,Z(S)) and level-3
2(5) . « »

measure (R; ') for a generic source “s” of
explained variance at level-3 are related purely
through between-level-3 cluster dependency (i.e.,
ICCsy in the same manner as total and level-2 R*
s were (above) related through ICC, . This rela-
tionship is illustrated in Figure 2 Panel C.”

. RZ(S)
R = o (28)

As a concrete example of why these relationships
between level-specific and total measures are important
to understand in practice, suppose two studies report
estimates of .80 for a level-1 measure with a particular
source, s, of explained variance at level-1. Based on this
information, it is tempting to think that source s is
equally important in both studies. However, the total
measure for source s could be .70 in one study but

These same general relationships illustrated in Figure 2 hold for MLMs
involving more or fewer than three levels. Denoting the levels of a MLM
as I=1...L, relationship #1 from above would hold for an L-level model
when replacing mentions of “level-2 and level-3" with “all levels > 1."
Similarly, relationships #2 and #3 would hold for an L-level model when
replacing mentions of “level-2" or “level-3,” with “level-I” (where 1 < |
<L)
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Panel C: total vs. level-3 R?

Panel A: total vs. level-1 R?
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Figure 2. The mathematical relationships between total R? and level-specific R? for a generic source s of explained variance, where
in Panel A source s is at level-1, in Panel B source s is at level-2, and in Panel C, source s is at level-3.

only .05 in the other study (both possibilities are shown
in Figure 2 Panel A). Hence, it would be problematic
to solely report the level-specific measure, as readers
could be misled into thinking source s is highly import-
ant in understanding the outcome, when actually a
large level-specific R* could be more attributable to
high level-2 and/or level-3 cluster dependency rather
than the actual amount of total variance being
explained. Consequently, considering only a level-spe-
cific measure conveys little about how much variance is
explained by the source relative to the total variance,
and vice versa. We therefore recommend considering
level-specific and total measures simultaneously.

Empirical example

To illustrate our approach for a three-level model, we
analyzed data on first-grade students from the Study of
Instructional Improvement by Hill, Rowan, and Ball
(2005). These data consist of 1081 students nested in 285
teachers nested in 105 schools, and are given as an
example for three-level models in a popular MLM text-
book (Rabe-Hesketh & Skrondal, 2008). Here we show
how the use of our R* measures can aid in substantive
interpretation. The substantive focus of this application is
in predicting students’ math achievement difference
scores from kindergarten to first grade.'” Of primary
interest is whether or not teachers’ math preparation and

"For didactic purposes we slightly modified (including using cluster-
mean-centering and random slopes) the model described in Rabe-Hasketh
and Skrondal (2008) and Hill et al. (2005).

content knowledge has an effect on these difference
scores. The student-level predictors (centered both by
teacher-mean and by school-mean) are math achieve-
ment score from kindergarten, sex (coded 1 for girl), and
socioeconomic status (SES). The teacher-level predictors
(each school-mean-centered) are the first-grade teacher’s
math preparation (a score based on number of math
content and methods courses), the first-grade teacher’s
math content knowledge (based on a 30-item scale), and,
as a control variable, teacher’s years of experience.
School-level predictors are school means of each of the
aforementioned student-level and classroom-level predic-
tors, namely, school means of kindergarten math, sex,
SES, and teacher’s math preparation, math content know-
ledge, and years of experience. The fixed portion of the
model included a fixed component of the intercept and
fixed component of each predictor’s slope. For the ran-
dom portion of the model, the intercept and the slope of
kindergarten math achievement varied across both class-
rooms and schools (yielding two random intercept and
two random slope components). These random slope
components were included to account for the possibility
that kindergarten math score is less predictive of math
gains for certain classrooms and schools. For instance,
some teachers or schools may teach material at the same
level for all students, whereas others provide more per-
sonalized instruction to students commensurate with
individual math ability; in the latter case, kindergarten
math score would likely be less predictive of math gains.
The MLM was fit using the Imer function in the R
package Ime4 (Bates, Maechler, Bolker, & Walker,
2014) with restricted maximum likelihood (REML)
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Table 3. Empirical example parameter estimate results: Predicting gains in math scores from kindergarten to first grade.

Est SE t

Fixed effects
intercept 57.766 1.368 42.229%
kindergarten math score —0.431 0.033 —13.128*
sex (1 =girl; 0 =boy) —2.112 1.896 —1.114
socioeconomic status (SES) 5.804 1.451 4.000*
teacher math preparation 1.688 1.571 1.075
teacher math knowledge 5.935 1.722 3.447%
teacher years of experience —0.053 0.168 —0.313
school-mean kindergarten math score —0.325 0.067 —4.828%*
school-mean sex (proportion girls) 2.074 8.434 0.246
school-mean SES 5.025 4.024 1.249
school-mean teacher math preparation 2.460 2.281 1.078
school-mean teacher math knowledge —1.403 1.815 —0.773
school-mean teacher years of experience 0.406 0.208 1.957
Variance components (class-level)

Est Pt
Intercept 204.338 35.785*
kindergarten math score 0.044 8.380*
intercept-math-score covariance —0.661 0.895
Variance components (school-level)

Est Pt
intercept 36.227 1.619
kindergarten math score 0.005 0.269
intercept-math-score covariance —0.193 0.180
Residual (student-level)

Est
level-1 residual 674.940

Notes: *p < .001 t Each random intercept and slope variance was tested using a mixture chi-square LRT comparing a model without the random compo-
nent to a model with the random component, allowing all random effects to covary at the same level (Ke & Wang, 2015). The null reference distribu-
tion for each of these tests was a 50:50 mixture of y%_, and y%._, (Stram & Lee, 1994). Each random effect covariance was individually tested using an
LRT with null distribution x;,:r For an overview of alternative random effect testing approaches, see Rights and Sterba (2016).

estimation. MLM parameter estimates are presented
in Table 3 and R® results for each measure in Table 1
are presented in Figure 3, along with the correspond-
ing barchart.'" As seen in Table 3, fixed effects of stu-
dent-level kindergarten math and SES, teacher-level
math knowledge, and school-mean kindergarten math
score were all significant, as were the across-classroom
random intercept and slope variances. Here we give
three illustrations of how R* results from our frame-
work provide useful, supplemental indications of prac-
tical significance that would be difficult to ascertain
by simply examining the MLM parameter estimates
and associated p-values in Table 3, as typically done
in practice (e.g., Hill et al., 2005).

As a first illustration, recall that one primary sub-
stantive research question was whether teacher-level

"As an example calculation, in Figure 3, the estimate of Rfm (i.e., the
proportion of level-1 variance explained by level-1 predictors via fixed
components of slopes) is computed as the ratio of the estimate of
Equation 10, [—0.431 —2.112 5.804 |var(xyy)[—0.431 —2.112
5.804]/, to the estimate of Equation 20, —0.431 —-2.112
5.804]var (xi) [ —0.431 —2.112 5.804]" + Var(mathkind) 0.044 +
var (mathkind)0.005 + 674.940, which equals .144 (where Var (x) is the
estimated covariance matrix of the three level-1 predictors, and
var(mathkind) the estimated variance of school-and-teacher-mean-
centered kindergarten math).

characteristics were predictive of student math gains on
average. From the estimated MLM fixed coefficients,
there is evidence that this is the case, particularly in
that teacher math knowledge has a positive relationship
with math gains (p < .05), consistent with results from
Hill et al. (2005). Furthermore, as discussed by Hill
et al. (2005), it is also consistent with earlier research
suggesting that more knowledgeable teachers have a
better understanding of connections among underlying
elementary math concepts and also provide better math
explanations to their students (e.g., Borko et al., 1992;
Carpenter et al., 1989; Leinhardt & Smith, 1985; Ma,
1999; Thompson & Thompson, 1994). However, despite
this statistically significant finding, examining the R>
results in Table 3 reveals the supplementary informa-
tion that the teacher-level predictors explain only 1% of
the total variance (IAQf(f2> = .015), which is reflected by
the small solid [blue] section in the leftmost stacked
bar of Figure 3. Even when isolating variance to
teacher-level variance, only 8% is explained by level-2
predictors via fixed effects (ﬁ;(ﬁ) = .082), leaving 92%
to be explained by teacher-level characteristics not
included as predictors in the model (R;WZ) = .918).
Though this does not preclude the possibility that
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Notes. These R* estimates supplement empirical example multilevel model (MLM) parameter
estimate results in Table 3. Shorthand labels for each source of explained variance are given in
the legend; corresponding full definitions of each source were in manuscript Equations 10-18.

Figure 3. Empirical example three-level model R? results.

future interventions serving to increase teachers’ math
knowledge could benefit student scores, results here
suggest that the observed variation in teacher know-
ledge accounts for little of the variation in math scores.
This result would have been missed had we relied
exclusively on preexisting three-level R*> measures that
combine variance explained by predictors at every level;
doing so would have indicated a sizable portion of vari-
ance explained (driven primarily by student-level and
school-level predictors).

As a second illustration, another useful way to con-
sider MLM parameter estimates together with R’s
from our framework regards understanding the
impact of the random slopes. Examining random
slope variance component estimates and associated p-
values might lead one to think that the slope hetero-
geneity is unimportant, given the small point esti-
mates (0.044 and 0.005). In the example, however,
slope heterogeneity across teachers explains much
more of the total variance than do the teacher-level
predictors via fixed effects (ﬁfmﬂ) = .035), which
were of primary interest. Thus, across-teacher variabil-
ity in the degree to which kindergarten math scores
explain math gains might be important to consider.
Even if a researcher is not interested in slope hetero-
geneity in and of itself, its presence elucidates poten-
tial cross-level interactions that can be included in
future modeling. Had we solely relied on preexisting

three-level R’s that combine variance attributable to
both fixed and random effects, the contribution of
these random slopes would not have been clear.

As a final illustration, to supplement the suite of
single-source measures, suppose the researcher also
wants to compute a combination-source measure to
get a sense of how much total variance can be
explained jointly by all sources considered substan-
tively meaningful (as desired in Johnson, 2014;
Nakagawa & Schielzeth, 2013; Peugh & Heck, 2017;
Singer & Willett, 2003; Snijders & Bosker, 2012). To
do so, we simply combine single-source measures (i.e.,
individual segments from the first barchart in Figure
3). For instance, if a researcher were interested in total
variance explained by all predictors via fixed effects

(as in Nakagawa & Schielzeth/Johnson’s and Singer &

2

Willett’s “marginal” measures Rys7(m

combining (Rf(m + Rf(ﬁ)

, and Rgg,y) then

+f2f(f3)) from Figure 3 indi-
cates that 20% of total variance is meaningfully
explained (of which we know from earlier that
teacher-level predictors contribute little). If a
researcher were interested in specifically quantifying
the impact of terms at a subset of levels they could,
for instance, instead quantify the proportion of vari-
ance explained by just teacher-level and school-level

predictors via fixed effects as f(f(m%—fifw = .159.
Rather than focusing solely on the fixed effects,
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Table 4. R?> measures for L-level cluster-mean-centered models*: Interpret as a set of single-source-of-explained-variance meas-
ures or sum measures with the same denominator to quantify variance explained by a combination of sources.

Measure Definition (Interpretation)
Total MLM R? measures
/
D,
Rf(f’) = H Proportion of total outcome variance explained by level-/ predictors via fixed components of slopes
tr(Xpg T,
Rf(v’”’) = % Proportion of total outcome variance explained by level-/ predictors via random slope variation across level-g units
an. A9 (where g > 1)
T
f(m’) = Eqn ! A9 Proportion of total outcome variance explained by level-/ (where / > 1) cluster-specific outcome means via random

intercept variation

Level-1 MLM R? measures

/
[}
Rf(f‘) = % Proportion of level-1 outcome variance explained by level-1 predictors via fixed components of slopes
(Visq) tr(E1iqTraq) . . . . . . .
R =— = Proportion of level-1 outcome variance explained by level-1 predictors via random slope variation across level-g units

Ean. AT0 (where g > 1)

Level-M (intermediate level in which 1 <M < L) MLM R? measures

]
[}
RAZAUW = % Proportion of level-M outcome variance explained by level-M predictors via fixed components of slopes
tr(Zmseg T . . . . ) L .
RAZ,,(VM’”) = M Proportion of level-M outcome variance explained by level-M predictors via random slope variation across level-g units
Eqn. AT1 (where g > M)
T
RAZ,,(’"M) = ﬁ Proportion of level-M outcome variance explained by level-M cluster-specific outcome means via random

intercept variation

Level-L MLM R? measures

!
@
f(f‘) = ﬁ Proportion of level-L outcome variance explained by level-L predictors via fixed components of slopes
T
Rf("“) = Eqn—LA12 Proportion of level-L outcome variance explained by level-L cluster-specific outcome means via random

intercept variation

Notes. Terms in this table are defined in Appendix A. *Cluster-mean-centered model

=model in which all lower-level (i.e., below level-L) predictors are

cluster-mean-centered. See Table 6 for corresponding table of measures for L-level non-cluster-mean-centered models (i.e., models in which at least one
lower-level predictor is not cluster-mean-centered). Also note that L is the integer denoting the highest level, M is > 1 and < L, | can be an integer

from 1 to L, and g can be an integer from 2 to L.

another researcher might be interested in all potential
sources of explained variance at all levels (as in
Nakagawa & Schielzeth/Johnson’s “conditional” meas-

ure  R¥g)) '+ ﬁf(fz) + isz

+R (VM) + R +R + R + f(f(ms)) from

F1gure 3 1nd1cates that 44% of the total variance is
explained. Finally, if instead a researcher were inter-
ested in total variance explained by predictors via
fixed effects and random slope variation (a comprom-
ise we offer between “marginal” and “conditional”

perspectives) they could combine (R, 24) +R2(f2

20(3) +R, 2m) R, 20n) +R, to report that 24%
of total variance is explained. This number may be
useful in succinctly summarizing the overall impact of
all predictors, without including the impact of random
intercept variation (which may not be of substan-
tive interest).

combining (ﬁz(ﬂ
2(m2)

2(v13) 2(v2:3)

(Vz*s)
)

Generalizing the framework of MLM R? to any
number of levels

Until now we have restricted focus to three-level mod-
els for simplicity of illustration. However, noting that
models with more than three levels may become more
common in the future, we additionally provide meas-
ures that can quantify variance explained for multi-
level models with any number of levels. In Appendix
A we first generalize the three-level model expression
in Equation (1) to L-levels (in which L is any integer
> 1). We then derive the model-implied total out-
come variance for a L-level cluster-mean-centered
model—defined as a model in which all predictors
below level-L are cluster-mean-centered—providing a
decomposition involving the following possible sources
of explained variance at a generic level-I (in which [ is
any integer from 1 to L):

e level-l predictors via fixed components of slopes
(shorthand: variance attributable to “f;”)



o level-] predictors via random slope variation across
level-q units (in which g is an integer from [ + 1
to L) (shorthand: variance attributable to “vi.;”)

e level- cluster-specific outcome means via random
intercept variation (for each /> 1) (shorthand: vari-
ance attributable to “m;”)

From the decomposition of total outcome variance for
L-level models provided in Appendix A researchers
can quantify total variance explalned by fi (with R )
vl*q (with R2 Visa) ), and m; (with R2 ™)) A full list of
R® measure definitions for cluster-mean-centered L-
level models are provided in Table 4.

Additionally in Appendix A we derive model-
implied level-specific outcome variances for L-level
cluster-mean-centered models, and in Table 4, we
define the available level-specific R> measures for L-
level cluster-mean-centered models. At level-1,
researchers can quantify varlance explained by f;
(with R ") ) and vy, (with R2 1) )- At any intermedi-
ate level M (i.e., where M is > 1 and < L), research-
ers can quantify variance explained by fy (with

z(fw )s VMxq (with RNEVM*’I ), and my; (with RZ(mM ). At
the highest level, researchers can quantify variance
explained by f; (with R ") ) and m; (with R (mL)
Next we derive and descrrbe all corresponding total
and level-specific R* measures for non-cluster-mean-
centered L-level models (in Appendix B, and Table 6).

Impact of centering choice on R*> measures

We thus far have focused on R’s for MLMs that use
cluster-mean-centering for all lower-level predictors
(i.e., all predictors below the highest level), which
ensures that each of these predictors varies only at a
single level. However, in some contexts, researchers
might prefer to fit MLMs that do not utilize cluster-
mean-centering for at least some lower-level predic-
tors. The typical alternative to cluster-mean-centering
is centering-at-a-constant (which subsumes centering
lower-level predictors by the grand-mean or the ori-
gin, or even leaving them uncentered). For instance,
sometimes researchers include a non-cluster-mean-
centered level-1 predictor even though it has between-
level-2-cluster and/or between-level-3-cluster variance,
because they are comfortable assuming that its within-
cluster effect is equivalent to the between-cluster
effect(s) (Snijders & Bosker, 2012). As another
example, for a three-level longitudinal growth model
(e.g., repeated measures nested within students nested
within schools), sometimes researchers want to center
the level-1 predictor time at a constant such that
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0 =baseline, so that they can interpret the intercept as
reflecting baseline levels of the outcome (e.g., Biesanz
et al., 2004; Hoffman, 2015).

For such researcher interests, we here derive a full
decomposition'? of variance for L-level non-cluster-
mean-centered MLMs in Appendix B. We define a
non-cluster-mean-centered model as one in which at
least one lower-level (i.e., below level-L) predictor is
not cluster-mean-centered. Hence, if a researcher
specified a model that included some cluster-mean-
centered lower-level predictors and some non-cluster-
mean-centered lower-level predictors, they would use
the decomposition for non-cluster-mean-centered
MLMs. In Table 5, we provide the formulas and defi-
nitions for the full set of total and level-specific R
measures specifically for three-level non-cluster-mean-
centered MLMs. The Table 5 R*> measures for three-
level non-cluster-mean-centered MLMs are the coun-
terpart to the Table 1 R* measures for three-level clus-
ter-mean-centered MLMs. Similarly, in Table 6 we
provide general R* formulas and definitions for L-level
non-cluster-mean-centered models, which are the
counterpart of Table 4’s general R* formulas and defi-
nitions for L-level cluster-mean-centered models. Note
that level-specific measures for non-cluster-mean-cen-
tered MLMs had not previously been derived or
incorporated into the framework, even for two-level
MLMs in Rights and Sterba (2019).

Having provided one set of R> measures assuming
cluster-mean-centering and another set of R*> meas-
ures not assuming cluster-mean-centering, researchers
may wonder how R’ interpretations would differ
across alternative centering options. The first inter-
pretational difference to note is that, in non-cluster-
mean-centered models, if lower-level predictors have
any across-cluster variance, they can explain variance
at multiple levels (whereas in cluster-mean-centered
models each individual predictor can only explain
variance at a single level). For instance, in a three-
level non-cluster-mean-centered model, if a level-1
predictor has mean variation across level-2 units
within level-3 units, it can explain level-2 outcome
variance, and if it has mean variation across level-3

2Note that when researchers do not utilize cluster-mean-centering and
have predictors with random slopes that do not have a mean of 0 (e.g.,
centering-at the origin for time with a random slope of time), the
variance attributable to source m (i.e., the between-cluster variance not
attributable to f or v) necessarily has a different expression than under
cluster-mean-centering (see Equations 16-17 vs. Equation B17) in order
for the decomposition of variance to add up to the model-implied
outcome variance. However, if all predictors with random slopes have a
mean of 0 in a non-cluster-mean-centered model, the expression for the
variance attributable to source m (Equation B17) is equivalent to (i.e.,
simplifies to) the expression for cluster-mean-centered models (Equation
16/17).
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Table 5. Definitions of three-level MLM R® measures in framework for non-cluster-mean-centered models*: Interpret as a set of
single-source-of-explained-variance measures or sum measures with the same denominator to quantify variance explained by a
combination of sources.

Measure Definition (Interpretation)

Total MLM R? measures: Can be used as a set or in combination

/
[}
RHM) = Y2y Proportion of total outcome variance explained by the level-1-varying portion of predictors via fixed

2 - T
Eqn. B22 components of slopes
/
[
Rth) = Eqﬂ{nigz Proportion of total outcome variance explained by the level-2-varying portion of predictors via fixed

components of slopes

/
[}
R¥®) = Lt | Proportion of total outcome variance explained by the level-3-varying portion of predictors via fixed

) - L 51
Eqn. B22 components of slopes
tr(Xq.0T ) . . . ] . )
Rf(v‘”) = % Proportion of total outcome variance explained by the level-1-varying portion of predictors via
an. random slope variation/covariation across level-2 units
tr(Xq.sT ) . . ) . . )
Rtuv“z) = % Proportion of total outcome variance explained by the level-1-varying portion of predictors via
an. random slope variation/covariation across level-3 units
tr(Xy, T . . . ) . . .
Rtw“) = % Proportion of total outcome variance explained by the level-2-varying portion of predictors via
an. random slope variation/covariation across level-2 units
tr(X.3T ) . . . ] . )
Rf(V“) = % Proportion of total outcome variance explained by the level-2-varying portion of predictors via
an. random slope variation/covariation across level-3 units
tr(X3.0T ) . . ) . . )
Rtu"“) = % Proportion of total outcome variance explained by the level-3-varying portion of predictors via
an. random slope variation/covariation across level-2 units
tr(Xs3T . . . ) . . .
Rtwm) = % Proportion of total outcome variance explained by the level-3-varying portion of predictors via
(;]n. random slope variation/covariation across level-3 units
2(m;) Zq:l m' g2 Tamg,o ) . . e )
R == tan B Proportion of total outcome variance explained by level-2 cluster-specific outcome means via
R an. intercept variation at the mean of all predictors with random slopes
2ms) _ Dago1 M g3 T3mg.s . . . . .
R; == tan B Proportion of total outcome variance explained by level-3 cluster-specific outcome means via
qn.

intercept variation at the mean of all predictors with random slopes

Level-1 MLM R? measures: Can be used as a set or in combination

/
[}
R — T Proportion of level-1 outcome variance explained by the level-1-varying portion of predictors via fixed

=
Eqn. B23 components of slopes
tr(X1,, T . ) ) ) ) . .
Rf“‘*” = % Proportion of level-1 outcome variance explained by the level-1-varying portion of predictors via
an. random slope variation/covariation across level-2 units
tr(Xq.3T ) . ) . . . .
Rf“‘“) = ﬁ Proportion of level-1 outcome variance explained by the level-1-varying portion of predictors via

random slope variation/covariation across level-3 units

Level-2 MLM R? measures: Can be used as a set or in combination

/
[
RI®) = Lot} Proportion of level-2 outcome variance explained by the level-2-varying portion of predictors via fixed

) - T 2L
Eqn. B24 components of slopes
tr(Xp, T
Ri("“) = % Proportion of level-2 outcome variance explained by the level-2-varying portion of predictors via
an. random slope variation/covariation across level-2 units
tr(Xp3T ) - . . . . -
Ri‘”*” = % Proportion of level-2 outcome variance explained by the level-2-varying portion of predictors via
an. random slope variation/covariation across level-3 units
2(m,) Zz:l m' g, Tymg. ) ] ) . )
Ry = ~ fon B4 Proportion of level-2 outcome variance explained by level-2 cluster-specific outcome means via
qn.

intercept variation at the mean of all predictors with random slopes

Level-3 MLM R? measures: Can be used as a set or in combination

/
[}
RIB) — Y23 Proportion of level-3 outcome variance explained by the level-3-varying portion of predictors via fixed

) - L5
Eqn. B25 components of slopes
tr(X3.. T
R§<V“> = ;34*2822) Proportion of level-3 outcome variance explained by the level-3-varying portion of predictors via
gn. B2 random slope variation/covariation across level-2 units
tr(Xs.3T
R§<V3‘3> = % Proportion of level-3 outcome variance explained by the level-3-varying portion of predictors via
an. random slope variation/covariation across level-3 units
2m) Dot M g3 Tsmgus . . . . .
Ry = W Proportion of level-3 outcome variance explained by level-3 cluster-specific outcome means via

intercept variation at the mean of all predictors with random slopes

Notes. Terms in this table are defined in Appendix B. *Non-cluster-mean-centered models =models in which at least one lower-level (here, level-1 or
level-2) predictor is not cluster-mean-centered. See Table 1 for corresponding table of measures for three-level cluster-mean-centered models (i.e., mod-
els in which all lower-level predictors are cluster-mean-centered). tFor these measures, there is no analogous quantity for cluster-mean-cen-
tered models.
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Table 6. R measures for L-level non-cluster-mean-centered* models: Interpret as a set of single-source-of-explained-variance
measures or sum measures with the same denominator to quantify variance explained by a combination of sources.

Measure

Total MLM R? measures

Definition (Interpretation)

J/
D,
R[w’) = % Proportion of total outcome variance explained by the level-l-varying portion of predictors via fixed
?rn(Z T,) components of slopes
Rf“"“ = E’% Proportion of total outcome variance explained by the level-l-varying portion of predictors via random
Z‘En' 1/4 - slope variation across level-g units
—1 Mgy Lymgy
Rf<m’) = % Proportion of total outcome variance explained by level-/ (where / > 1) cluster-specific outcome
an. means via random intercept variation at the mean of all predictors with random slopes
Level-1 MLM R? measures
/
(0
Rfm = % Proportion of level-1 outcome variance explained by the level-1-varying portion of predictors via fixed
?rn(E T,) components of slopes
Rf(v‘“’) =" q) Proportion of level-1 outcome variance explained by the level-1-varying portion of predictors via
Eqn. B19

random slope variation across level-g units
Level-M (intermediate level in which 1 <M < L) MLM R?> measures

/
@,
Rf,,(f””) = % Proportion of level-M outcome variance explained by the level-M-varying portion of predictors via
qu(Z T,) fixed components of slopes
Rf,,(VM’”) = EMiﬂézg Proportion of level-M outcome variance explained by the level-M-varying portion of predictors via
an. : random slope variation across level-g units
2my) g1 M quu Ty ) ] ) o B
R == B0 Proportion of level-M outcome variance explained by level-M cluster-specific outcome means via
an. random intercept variation at the mean of all predictors with random slopes
Level-L MLM R? measures
g _ Yy Proportion of level-L i lained by the level-L-varyi ion of predi ia fixed
L = Ean B21 roportion of level-L outcome variance explained by the level-L-varying portion of predictors via fixe
?r(i T,) components of slopes
Rfm“’) = ELi*quq Proportion of level-L outcome variance explained by the level-L-varying portion of predictors via
(ﬂn‘ /1 random slope variation across level-g units
gem) _ 2amt Mo Timg Proportion of level-L i lained by level-L cl ifi i
f = Eqn B21 roportion of level-L outcome variance explained by level-L cluster-specific outcome means via

random intercept variation at the mean of all predictors with random slopes

Notes. Terms in this table are defined in Appendix B. *Non-cluster-mean-centered models =models in which at least one lower-level (i.e., below level-L)
predictor is not cluster-mean-centered. See Table 4 for corresponding table of measures for L-level cluster-mean-centered models (i.e., models in which
all lower-level predictors are cluster-mean-centered). Also note that L is the integer denoting the highest level, M is > 1 and < L, | can be an integer

from 1 to L, and g can be an integer from 2 to L.

units, it can explain level-3 outcome variance.
Similarly, if a level-2 predictor has mean variation
across level-3 units, it can explain level-3 outcome
variance. Hence, the single-source measures for three-
level non-cluster-mean-centered models separately
quantify variance explained by the level-1-varying por-
tion of predictors (e.g., through varjj(xjx)) vs. the
level-2-varying portion of predictors (e.g., through
varj(xix)) vs. the level-3-varying portion of predictors
(e.g., through varg(x;i)); for associated derivations, see
Appendix B. A second interpretational difference to
note is that the definition of source m differs
between the measures for cluster-mean-centered vs.
non-cluster-mean-centered models. In the former,
variance attributable to source m reflects the impact
of cluster-specific outcome means via random inter-
cept variation, whereas in the latter, variance attrib-
utable to source m reflects the impact of cluster-
specific outcome means via random intercept vari-
ation at the mean of all predictors with random
slopes, that is, the intercept variation that would be
observed if all predictors with random slopes were

centered by their grand mean (see Rights & Sterba,
2021, for supporting derivations and further detail).
However, for either cluster-mean-centered or non-
cluster-mean-centered models, variance attributable
to source m can also be interpreted as the variance
attributable to cluster-specific outcomes means above
and beyond that accounted for by predictors (Rights
& Sterba, 2019).

Researchers may also wonder how the obtained R
values would differ across alternative centering
options. Researchers may be familiar with the fact
that, in random slope models, the intercept mean and
intercept variances (at level-2 and at any higher levels)
and associated covariances will have different interpre-
tations and will take on different values when chang-
ing how the predictors are centered, as the meaning
of 0 for the predictors (and hence the meaning of the
intercept) changes across alternative centering options
(e.g., Biesanz et al., 2004). Nonetheless, when raw pre-
dictors have variance at only one level (which can
occur, for instance, in longitudinal settings where time
is balanced and thus does not differ across clusters),



358 J. D. RIGHTS, S. K. STERBA

Table 7. R? difference measures (AR?) to compute effect sizes for individual terms in cluster-mean-centered and non-cluster-

mean-centered* three-level models.

For cluster-mean-centered models, compute R%s using For non-cluster-mean-centered models*, compute R%s
Table 1 formulas and then: using Table 5 formulas and then:

To obtain the unique Interpret this total Interpret this Interpret these total Interpret these
proportion of variance difference measure: level-specific difference measures: level-specific
accounted for by difference measure: difference measures:
this term ...

Fixed component of level-1 ARE(M ARf(fW) ARfM) ARf(fl)
predictor (including cross- ARl(fz) ARZ(fz)
level interaction product ; . % ]
term involving level-1 and ARt( ) AR3< )
level-2/level-3 predictor t)

Fixed component of level-2 ARZ(&) ARg(fz) ARf(fz) ARg(fz)
predictor (including cross- 2(f3) 2(f5)
level interaction product AR; AR;
term involving level-2 and
level-3 predictor 1)

Fixed component of level- ARE(&) ARi(&) AR?“3> ARg(&)

3 predictor

Random component (across ARE(V“Z) AR?O’”) ARf(V“Z) AR?WM)
level-2 units) of level- 5 5
1 predictor ARr(VM) ARz(Vm)

AR?("M) AR§<V3*2)
2(v1:3) 2(v1:3) 2(v13) 2(v143)

Random component (across AR; AR; ARV ARV
level-3 units) of level- ;(VM) ;(VM)

1 predictor ARr ARz
ARf(VL}) ARg(VM)
2(V2i3) 2(v2:3) 2(v2.3) 2(V2:3)

Random component (across AR; AR, ARV ARZV2s
level-3 units) of level- ;(VM) g(Vsn)

2 predictor ARz AR3

Notes: Here we are assuming that the AR? is computed by subtracting the R of a reduced model that excludes the term of interest from the R from a
full model that includes the term of interest (see Rights & Sterba, 2020, for more details).

*In cluster-mean-centered models (i.e, models in which all lower-level [here, level-1 and level-2] predictors are cluster-mean-centered), there is only one total and
one level-specific AR? relevant for each individual term. For non-cluster-mean-centered models (i.e, models in which at least one lower-level predictor is not
cluster-mean-centered), more AR? can be relevant for a given individual term because individual predictors can potentially explain variance at multiple levels.

tWhen adding cross-level interactions, these can lead to a decrease in Rf
(Hoffman, 2015; Rights & Sterba, 2020).

the values of the R® in Table 4 computed from a
cluster-mean-centered model will be equal to the val-
ues of the corresponding R’s in Table 6 computed
from a non-cluster-mean-centered model in which
predictors are centered by any constant (see analytic
proof in online Appendix C; additionally, for further
detail and empirical demonstrations, see Rights &
Sterba, 2021). Indeed, under this situation, cluster-mean-
centered MLMs vs. centering-by-a-constant MLMs are
likelihood-equivalent and yield the same model-implied
total and level-specific outcome variances, as well as the
same proportion of total and level-specific variance
attributable to each individual source (f;, f,, vi, and
m). Even when raw predictors do have variance at
multiple levels, so long as their level-specific effects
do not differ, equivalent R* results in the population
will be obtained when either computing the Table 4
measures from a fitted cluster-mean-centered model
(assuming all cluster means of predictors are also
included) or when computing Table 6 measures from

’), as the cross-level interaction can help explain across-cluster slope variability

a fitted non-cluster-mean-centered model using cen-
tering-at-a-constant. On the other hand, when raw
predictors do have variance at multiple levels and
their level-specific effects differ, results of Table 6
measures computed from a fitted non-cluster-mean-
centered model will be distorted as compared to
results of Table 4 measures computed from a (prop-
erly disaggregated) cluster-mean-centered model (for
demonstrations and further detail see Rights, 2021).

Software implementation

To facilitate implementation of R* measures for three-
level MLMs, we developed an R function, r2mima3,
that reads in three-level MLM parameter estimates
and raw data and automatically outputs measures
from Table 1 for cluster-mean-centered three-level
MLMs (i.e., models in which all lower-level—here,
level-1 or level-2—predictors are cluster-mean-cen-
tered), or measures from Table 5 for non-cluster-



mean-centered three-level MLMs (i.e., models in
which at least one lower-level predictor is not cluster-
mean-centered). Additionally, this r2mlm3 function
produces barcharts that provide a visual representa-
tion of each measure, e.g., as shown in Figure 1. Note
that this function can also accommodate two-level
models,"” wherein each measure quantifying variance
explained via level-3 sources would, by definition, be
0. See online Appendix D for the R function syntax
and descriptions of each input. This function has add-
itionally be added to the r2mlm package (Shaw,
Rights, Sterba, & Flake, 2020), which can be installed
from CRAN, and also contains functions from Rights
and Sterba (2019) and Rights and Sterba (2020). Also
see online Appendix E for a step-by-step walkthrough
for how one can obtain our empirical example dataset,
read it into R, cluster-mean-center variables (if
desired) in R, fit our empirical example model using
R (with the Imer function), and use our r2mlm3 R
function to read in Imer output and obtain all R®
measures. online Appendix E also displays the [mer
output from model fitting and the R* measures and
plot output from r2milm3. A future direction involves
extending this R function to handle L-level MLMs;
until then, researchers with models having more than
three levels can always compute measures manually
using the formulas we provide in Tables 4 and 6.

Discussion

Although researchers increasingly need to model hier-
archical data structures beyond two levels, options for
R measures of effect size for MLMs beyond two levels
have been limited. Hence, here we generalized a frame-
work of total and level-specific MLM R’s (Rights &
Sterba, 2019) to three or more levels for both cluster-
mean-centered MLMs (Table 4) and non-cluster-mean-
centered MLMs (Table 6), and clarified the impact of
centering strategy on R’ interpretation and computation.
Measures in our framework are obtained from fitting a
single MLM that can include random slopes. By employ-
ing a more general decomposition of model-implied
variance, our framework provides a more comprehensive
and flexible set of measures—subsuming previous three-
level measures as special cases (see Table 2 and Online
Appendix A) and yielding substantively relevant results
not afforded by previous measures (see Tables 1 and 4).

BFurthermore, this function accommodates two-level models more
generally than did software provided in Rights & Sterba (2019), as now all
total and level-specific measures are provided for both cluster-mean-
centered and non-cluster-mean centered models, whereas two-level
software provided in Rights & Sterba (2019) included total and level-
specific measures for cluster-mean-centered models but only total
measures for non-cluster-mean-centered models.
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We also newly derived and illustrated analytic relations
between total and level-specific R* for given source(s) of
explained variance (see Eqn. 26-28 and Online
Appendix B). Last, we provided software to compute
and graphically portray the framework of measures (see,
e.g., r2mlm R package or r2mim3 R function).

Recommendations for practice

In practice, we encourage researchers to report the set
of single-source measures (e.g., Table 1 for three levels
or Table 4 for L levels), visualize them in juxtapos-
ition using a barchart (e.g., Figure 1), and interpret
each as an effect size. This allows assessing the relative
importance of each individual source of explained
variance and the relative importance of each level of
the hierarchical data structure. As an optional, supple-
mental summary, combination-source measures can
be computed by combining total measures of substan-
tive focus and/or by combining level-I specific meas-
ures of substantive focus (where [ < L).

Utility of framework for model comparison

In the current paper, we focused on computing R
measures for one fitted model. This framework can
additionally be implemented when comparing/building
models and computing R* differences (AR*). However,
there had been persistent confusion about which AR* to
compute and interpret when comparing MLMs to
assess the unique impact of a particular term(s) (see
historical review and illustrations in Rights & Sterba,
2020). To address these misunderstandings, for two-
level MLMs, Rights and Sterba (2020) defined which
target single-source AR® to use to detect the unique
contribution of each kind of term that could be added
to the reduced MLM to form the full MLM. Extending
these definitions for three-level MLMs, Table 7 provides
the set of single-source target AR appropriate to quan-
tify the effect size for individual terms in both three-
level cluster-mean-centered MLMs—in which a single
added term can explain variance at only one level—and
non-cluster-mean-centered MLMs—in which a single
added term can explain variance at multiple levels (for
cautions on using combination-source AR® measures,
see Rights & Sterba, 2020). These single-source target
AR® can be implemented either with a hierarchical
model-building approach—starting with a baseline
model, adding terms sequentially, and computing AR®
at each step—or a simultaneous approach—always com-
paring each reduced model to the most complex model
when computing AR* (Rights & Sterba, 2020).
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Generally speaking, a primary reason to compute
AR? using model comparisons is to isolate the unique
contribution of a term when there are multiple terms
with its same source of explained variance in the fitted
model. Visually, this corresponds to subdividing a par-
ticular shaded segment in Figure 1 barchart to identify
term-specific contributions. Several examples follow. As
a first example, suppose a researcher were interested in
an expanded version of our empirical model that also
included as control variables teacher-means of each
level-1 predictor (kindergarten math score, sex, and
SES). All five teacher-level variables taken together
account for a sizable portion of outcome variance
(R *’=.18). However, suppose the researcher wanted
to use a simultaneous approach to isolate variance
uniquely attributable to each of the two new and three
original teacher-level predictors via their fixed compo-
nents. Computing wunique contributions of each
teacher-level predictor with the target measure AR, 202)
(see Table 7) using a simultaneous approach indicates
that, consistent with our original R? results, the
teacher-level predictors of substantive interest uniquely
explaln little outcome variance (for math pre aration,
AR 2(2) < .01, and for math knowledge, AR =.01),
whereas the control Varlables prov1de domlnant contri-
butions (in particular AR .16 for teacher-mean
kindergarten math score; other teacher-level variables
each individually yielding AR; 2R .01).

As another illustration, model comparison could be
used to evaluate the unique contribution of a cross-level
interaction to our empirical example model. For
instance, suppose we wanted to add a cross-level inter-
action of teacher math knowledge x student kindergar-
ten math score to our original empirical example MLM
and evaluate its impact using a hierarchical model-build-
ing approach. This product term itself is a level-1 pre-
dictor (as it varies exclusively within-cluster given the
cluster-mean-centering of original variables described
above; Rights & Sterba, 2020). Thus, as shown in Table
7, we could quantify the total variance explamed by the
product term using the target measure AR, 200) (and
quantify the level- spec1ﬁc variance explained using the
target measure AR2 )). In this particular empirical
example, the estimated fixed component of the product
term was nearly zero, was non-significant, and did not
lead to changes in either target AR* measure.'

If the addltlon of this product term did in fact lead to an increase in target
measures AR Y and AR ", we would also expect to see a decrease in the
variance attrlbutable to random slope variability (i.e., RZ(V1 2 and R; 2(12)y g
the random slope variance in the reduced model would be instead
accounted for by the fixed component of the cross-level product term in the
full model (Hoffman, 2015; Raudenbush & Bryk, 2002; Rights & Sterba, 2020).

Model comparisons can also be useful for illumi-
nating the unique contribution of each random slope
in MLMs that contain multiple random slopes. In
three-level contexts, adding a random slope of a level-
1 predictor varying across level-2 units (when this
term is indeed present in the generating population)
would lead to an expected increase in variance attrib-
utable to source v+, (detected with target measures
AR 2) and ARZ(V“) from Table 7), which is neces-
sarily accompanled by a decrease in variance attrib-
utable to level-1 residuals. Similarly, correctly adding
a random slope of a level-1 predictor varying across
level-3 units would lead to an expected increase in
variance attributable to source v,+; (detected with
target measures ARf(V“) and ARf(V”})), again neces-
sarily accompanied by a decrease in variance attrib-
utable to level-1 residuals. Lastly, correctly adding a
random slope of a level-2 predictor (varying across
level-3 units) leads to an expected increase in vari-
ance attributable to source v2*3 (detected using target
measures AR (23) and AR 1/2*3) which would be
accompanied by a decrease in the variance attributable
to source m,.

Limitations and future directions

One avenue for future work involves investigating
the finite sample performance of these R* measures
under a variety of generating conditions mirroring
applied practice in different disciplines in which
MLMs are applied. These measures are computed as
a function of (a) the model parameter estimates
(which, for instance, can be obtained as maximum
likelihood estimates or as Bayesian posterior means/
medians) as well as (b) the estimated variances and
covariances of the predictors (which can be obtained
using the sample variances and covariances, regard-
less of the distribution of the predictors, as done in
the r2mim3 R function and the r2mlm R package).
Hence, estimation of both model parameters and
predictor variances/covariances should be accurate to
ensure accurate estimation of R* measures. It would
be useful to investigate, for instance, the impact of
the number of clusters and cluster size, at level-2 and
level-3, as well as the impact of the number
of predictors.

Though here we addressed computation of R? for
models with any number of levels, there are still
additional modeling options in MLM that can fur-
ther complicate computation of R*> measures. For
instance, in cross-classified MLMs, students can be
simultaneously nested within both schools and



neighborhoods, but with neither schools nested
within neighborhood nor vice versa. In such a
model, variance can be attributable to student-level,
school-level, and neighborhood-level sources. R*
measures can be developed to quantify variance
explained by these different sources, but the compu-
tation done in the current paper (e.g., Appendix A
would need to be modified to account for the non-
hierarchically nested nature of the clustering.
Though an R* has been developed specifically for
cross-classified MLM (Luo & Kwok, 2010), this
measure (an expanded version of R, but for two-
level cross-classified models) shares some of the
same limitations noted earlier for three-level meas-
ures (e.g., only assesses variance explained by pre-
dictors via fixed effects and does not separately
consider contribution of predictors at each level,
etc.). Another example of an MLM specification
that would necessitate further work to extend our
framework would be multiple membership models
(e.g., Goldstein, 2011), wherein observations can be
nested within multiple clusters simultaneously. A
third example would be partially nested MLMs,
where observations are clustered for some study
arms, but not other study arms (e.g., Sterba, 2017).
A final example would be generalized linear mixed
effects models (GLMMs). Our framework could be
adapted for GLMMs (with, e.g., binary or count
outcomes) using procedures similar to Nakagawa &
Schielzeth (2013) and Johnson (2014) in which the
residual variance in the model-implied variance
expression (see Equation (9)) is modified to accom-
modate the particular error distribution and link
function used.

Conclusions

In providing this extended framework of R* measures
to accommodate any number of levels, it is our hope
that R* effect sizes will more routinely be reported
when fitting MLMs beyond two levels. A suite of
interpretable measures can now easily be computed
and graphically visualized with formulae and freely
available software provided here, and researchers can
reference our framework to help decide which meas-
ures are most important to consider given substantive
research questions. These measures facilitate consider-
ing practical significance, rather than just statistical
significance, in complex designs with multiple levels
and many potential sources of explained variance to
consider simultaneously.
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Appendix A:

Derivation of model-implied outcome variance
for cluster-mean-centered models with any
number of levels

Here we compute the model-implied total and level-specific
outcome variance of a cluster-mean-centered multilevel
model (i.e., a model in which all lower-level [i.e., below
level-L] predictors are cluster-mean-centered) with any
number of levels. A generic L-level model with cluster-
mean-centered predictors can be written as:

L L-1 L
Yic = Yo + Zx/lich + Z Z W/l*qicul*qc + eic (Al)
=1 I=1 q=I+1

with 7y, denoting the fixed intercept, I denoting level
(I=1,..., L), i denoting observation within level-2 unit, and
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c denoting the set of observation i’s cluster memberships
for all levels greater than 1 (e.g., level-2, -3, and -4 cluster
membership for a four-level model). Each x'ji denotes a
vector of level-I predictors with y; denoting a vector of the
level-I fixed components of slopes. Each W/jgc denotes a
vector containing level-l predictors with random effects
varying across level-q units (1 < g < L); u,qc denotes a vec-
tor of corresponding residuals. For all combinations of [
and g such that [=1, the first element of W'y, is 1 and the
corresponding element of wuy, is the intercept residual for
level-q (to ensure each level of clustering has a single corre-
sponding intercept residual). The last term, e;, denotes the
level-1 residual.
The variance of this expression is given as

Var(}’zc) - Val‘( );0 ZX licY| + Z Z W l*qzcul*qc + ezc)

I=1g= l+1
L-1
= var(Zx’licy,) + var Z Z W lgicWsge) + var(ec)
1=1 1_1 a=lt1
= Zvar(x licYi) + Z Z var(w igicligic) + var(eic)
=1 g=111

(A2)

These steps in Equation (A2) hold because the following
pairs of terms are uncorrelated with each other: 1) any pair
of predictors across different levels (e.g., a level-1 predictor
and a level-2 predictor) given the centering described in the
manuscript; 2) the fixed effects and random effect residuals;
and 3) any pair of residuals across different levels (e.g., a
level-2 intercept residual and a level-3 intercept residual).
The first part of Equation (A2) is:

L
Zvar X lic¥1) ZY var(X'sic)y,

(A3)

I
M“ M

Y @y,

1

For the second part of Equation (A2), we need to consider
what it equals under two cases: =1 and /> 1 (because,
for reasons explained above, Wygc contains 1 as the first
element when /=1 and contains only predictors when
I>1). Using the law of total variance, when [ = I:

Var(wll*qicul*qc) = E[Var(wjl*qicul*qc‘ul*qc)]
+Va1‘(E [‘”Il*qicul*qc|ul*qc] ) (A4)
=E [u/l*qczl*qul*qc] + Var(E [w,l*qic] ul*qc)
For cluster-mean-centered models, all predictors with ran-
dom slopes have means of 0, and hence var(E[W',, ;;c|uqc)
simplifies to var(uy), with u, denoting the intercept ran-
dom effect residual for level-q. Thus,
Var(w,l*qicul*qc) = E[u,l*qczl*qul*qc] + Var(uqc)
= E[tr(ull*qczl*qul*qc)] + Tq
= E[tr(Zl*qul*qcu’l*qc)] + 14 (A5)
= tr(BpgE [UgeW inge]) + 74
= tr(ZZ*qu*q) + 14
Again using the law of total variance, when [ > 1 (and thus

w ligic contains only predictors):

Var(wlhqicul*qc [V w IxgicWixqe ‘ul*qc)] + Var(E [W/l*qicul*qc|ul*qc} )

ll*qczl*qul*qc} + Val’(E [Wllxq,c] ul*qc)

!

[w
[ l*qczl‘qul*qc]

[t u I*qczl*qulxqc)]
[t Zl*qul*qcu/l*qc)]

=E
E|u
Elu
E
E

r(zlxq [ul*qcull*qc])
= 1r(Z1egTieg)

(A6)

When computing 37"} L1 Var (Wi gicUlsge), we sum the
tr(XpqThq) across all COl‘Iﬁ)ll’lathl’lS of | and g (such that
I<L, as we assume predictors at the highest level do not
have random slopes, and such that g>1[) because the
tr(EpqT1q) term is included for all such combinations of [
and q (see Equations A5 and A6). However, with L levels
there are only L - 1 combinations of /=1 and q > I, start-
ing with g=2 up to q = L. Thus, when computing
IL:_II Z;:l 41 Var(wWigicyg)  we  additionally sum g,
(included in Equation A5 but not A6) from g=2to q =1L
(or equivalently, sum all 7; from [=2to ]l = L), ie.,

L-1 L
Z Z var "Vll*qzcul*qc = (Z Z tr(zl*qu*q)>

=1 g=I+1 I=1 g=I+1
L
+(Q ) (A7)
1=2
The third part in Equation (A2) is
var(e;) = o° (A8)

Thus the model-implied outcome variance for the MLM
data model with any number of levels is:

L L
:(Z Y 1®ry) + ( Z tr(XieqTig) )
.

=1 g=I+1

L-1

var(yic)

(A9)

This model-implied total outcome variance, which serves
as the denominator for the total R* measures, can be broken
down into level-specific parts to form the denominators for
level-specific R* measures. With ¢ denoting the set of obser-
vation #’s cluster memberships for all levels greater than 1
(e.g., level-2, -3, and -4 cluster membership for a four-level
model), var;(.) then represents the strictly level-1 variance,
and hence we can compute the level—l outcome variance as

Vari\c(}’ic) = var,‘c Yo + § X licY1 + E Z W IxqicWlkgc + ezc)

I=1g=I+1
-1 L

= vari‘c(Zx'licyl) + vari‘c(z Z W pigicUige) + varc(eic)

I=1 =1 q=I+1
L

vare(x'1icy;) + Val‘:‘k(z“’ll*qicul*qc) + varji(eic)
q=2

L
= varc(x'1iey,) + Zvari‘c(vﬁ*qicul*qc) + var;c(eic)
q=2

L
=v @y, + Ztr(zl*qu*q) +o?
q=2

(A10)



The steps in this derivation are identical to those shown
above in Equations A2-A9, with the exception that certain
terms are dropped if they are constant across level-1 units
within level-2 units (i.e., have no variance at level-1).

Next, letting j denote level-M cluster membership, with
M denoting an intermediate level (i.e., 1 < M < L), and let-
ting c-y denote the set of cluster j’s higher-level cluster
memberships (i.e., cluster membership at levels greater than
M), we can compute the level-M outcome variance as

= varj \cw, Yo + ZX licY) + Z Z w IgicUlxqe 1 exc)

lq I+1

= varjc_, Zx licYy) + varje. w(z Z Whgiclluge) + varjc_, (eic)

=1 g=I+1

Vatjie. ()’ic)

L

= Valjlc.y (X chYM) + var; jlesm (W 1MicU1Me + E w quxcuM*qc)
q=M+1

/ /
= Varj\c,w (X MicYar) + Vatjic., (W LamicUine)

E varj \c\ M

q=M+1

M*qicuM*qc)

L

= 'Y/M(DM'YM + v+ Z tr(EM*qTM*q)
q=M+1

(A11)

The steps again follow those in Equation A2-A9, with the
exception that terms are dropped if they have no variance
at level-M.

Lastly, letting k denote level-L cluster membership, we
can compute the level-L outcome variance as

Vark()’ic) = Vark Yo + ZX Y + Z Z w IxqicWlxqe + ezc)

lq Z+1

= varg ZX lrcyl) + Vark(z Z w l*qzcul*qc + Vark(elc)

I=1 g=I+1
= Vark(x Licn) + vark (W 1aicUis3c)
=y Dy + 1
(A12)

These steps again follow those in Equation A2-A9, exclud-
ing terms with no variance at level-L.

Appendix B:

Derivation of model-implied outcome variance
for non-cluster-mean-centered models with
any number of levels

In this appendix, we derive the model-implied total and

level-specific outcome variance for non-cluster-mean-cen-
tered models, that is, models in which at least one lower-
level (i.e., below level-L) predictor is not cluster-mean-cen-
tered (e.g., models that utilize grand-mean-centered or
uncentered lower-level predictors). We first express generic-
ally an L-level MLM that does not assume cluster-mean-
centering as L
Yic = Yo t+ X/ic'Y + Zw/ic*lucl + eic

=2

eic ~ N(0,0%)
e ~ MVN(O, Tl) (B1)
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with 7, denoting the fixed component of the intercept, I
denoting the level of a given vector of terms (I=2,..., L), i
denoting observation within level-2 cluster, and ¢ denoting
the set of observation ’s cluster memberships for all levels
greater than 1 (e.g., level-2, -3, and -4 cluster membership
for a four-level model). Here x;. denotes the vector of all
predictors (which need not be cluster-mean-centered) with
fixed components of slopes, y the vector of all fixed compo-
nents of slopes, wic, the vector of 1 (for the intercept) and
all predictors with slopes that vary across level-I units, ug
the vector of all level-I random slope residuals (multivariate
normally distributed with covariance matrix T;), and e the
level-1 residual (normally distributed with variance ¢?).

To allow for a decomposition of variance into level-spe-
cific components, we will first reexpress this model by
decomposing the vectors of predictors into level-specific
portions (i.e., portions that have variance at only one level).
For instance, for all of the predictors in the x;. vector, we
can express their purely level-1 portion as their level-2 clus-
ter-mean-centered versions, expressed in vector form as
Xic—Xic2, With Xjc, denoting the level-2 cluster means (note
that, for predictors at level-2 or higher, their corresponding
element in X;.—X;., will be guaranteed to be 0, as they have
no variance at level-1). At an intermediate level I (ie., 1 < I
< L), we can express the purely level-I portion of the pre-
dictors in Xjc as Xjc.~Xjc.(4+1)» Where X;.; denotes the level-/
cluster means of the predictors and X;c.(1+1) denotes the clus-
ter means at the subsequent level. The purely level-L (ie.,
the highest level) portion is simply the level-L cluster
means, or X;... We can hence fully decompose the x;. vec-
tor into L level-specific portions as such:

L-1

Xic = Xic—Xic2 + Z (xic~l_xic-(l+1)) +XicL (B2)
=2

We can do the same computation for each of the L - 1 wjcy
vectors, noting that their level-1 portion is Wicq—Wic.24
(where wic.,. denotes the level-2 cluster means), their inter-
mediate level-q (1 < g < L) portion is Wic kx~Wic.(k+1)«> and
their level-L portion is wj..;. Hence we can fully decom-
pose the wi,; vector into L level-specific portions as

L L L-1
§ Wickl = E (wic*l_wic-Z*l =+ § (wic~q*l_wic»(q+l)*l)
=2 =2 q=2

+ WioL*l)
(B3)
Replacing the vectors in the Equation Bl expression with
their (equivalent) decomposed versions, we can write the
level-L non-cluster-mean-centered model as
L
Yic = %o + x,icy + Zl=2 W,*liculc + eic
L-1
=70 + (XieX'ic2 + lez (Xic1=Xic.411)) +Xier)Y B4
L
2w

L-1
Zqzz (“/ioq*l_wlio(ﬁl)*l) + wlic-L*l)ulc) + eic

/ /
icx =W ic2x1

We can then compute the model-implied total outcome
variance as
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L-1 L L-1
Var()’ic) = Var(")’() + (X/ic_xlic-Z + Zl z(x/icll_xlic-(brl)) + X/ic-L)y + 21:2((w/ic*l_wlic-2*l + Zqzz(w/ic-q*l_wlic»(qul)*I) + Wlic-L*l)ulc) + eic)

= var( x,C X,,;2+Z
)+, var(

(a) (b) (9)

zcl X ic:( l+1)) + X,ic«L)

= var((X'ic—Xic2)Y

L-1
+zl ZZ var (W icqxl™ ch (g+1) *l)ulc +Z, Zvar( ch*lulc) +V3.1‘(ezc)
_

) var(S ) ((w

L
Xlic-l_x/ic-(l-#l))y) + Var(x,ic-LY) + § =2 Var(w/ic*l_w/icl*l)ulc
————— =

L-1
/ / /
icxl—W ic.24l T § q:2(

w ic-q*l_w/ic~(q+l)*l) + w,ic-L*l)ulC)) + Var(eic)

(d)

()

The outcome variance is separable into parts (a)-(g) given
that the following pairs are uncorrelated with each other: 1)
fixed components and random components, 2) the level-
specific portion of predictors at a given level and the level-
specific portion of predictors at a different level, and 3) the
level-1 residuals and all other terms.
Part (a) in Equation B5 is computed as
Var((xlic—xlic«z)“Y) =Y @y (B6)
where ®; denotes the covariance matrix of all terms in
Xic—Xic2, 1.€., the purely level-1 covariance matrix of all pre-
dictors with fixed components. Similarly, part (b) in
Equation B5 is computed as

Zvar((xzcl X:c l+1) ) Z'Y/(DI'Y

where ®; denotes the covariance matrix of all terms in
Xic1=Xjc.(1+1)> and part (c) is computed as

(B7)

var(x'iey) = Y ®ry (B8)

where ®; denotes the covariance matrix of all terms in X;..z.
Part (d) in Equation B5, using the law of total variance
as in Appendix A Equations A4-A6, is computed as

L
/
Zvar W ick=W ic2)We = ZE Var( Wic =W i"z*l)uk‘ulc)}
=2
L
+Zvar (E[(w/ic*l_wlicl*l)uk ‘“lco
=2

L
Z 2"lxlTl + Zvar E[Vlecxl ‘Vlm 2*I}ulc)

1=2

Il
Mh T

tr(XyaTr) + Zvar(m’l*zuzc)

=2

[l
~

- 2

L
tr(ET)) + Y _m' i var(we)my,
=

L
(Zl*lTl) + Zm/l*lTlml*l
=2

Il
[N}

(B9)

Where X,,; denotes the covariance matrix of terms in
Wicsi—Wica« (L., the purely level-1 covariance of all predic-
tors with random components) and m;,; denotes the vec-
tors of means of the elements of Wicy—Wic.. Using the
same operations, part (e) is computed as

B5
) ©
L L-1
Z Var( Wth*l wzc (q+1)*l)ulc)
1=2 gq=1
L L-1
= Z E[Var((w',-c.q*l—w/ic.(qﬂ)*l)uk|uzc)]
1=2 q=1
L L-1
+ Z Var(E[(w/ic-q*l_w/io(q+1)*l)ulc‘ulc])
=2 g=1
L L-1 L L-1
= Z tr q*lTl +Z m/q*lTlmq*l
1=2 q=1 =2 q=1
(B10)
Where X, and mg, denote, respectively, the covariance

matrix and the mean vector of terms in Wi u—Wic.(g+1)40>
and part (f) is computed as

L L L
Zvar(V\/,-c.L*lulc) = ZE [Var(Wic. Lot uie) ] + Zvar(E[w','c.L*lulc\ulJ)
1= 1= 1=
L L
= Ztr(zL*lTl) + Zm/L*lTlmL*l
(BI1)

Where X;,; and my,; denote, respectively, the covariance
matrix and the mean vector of terms in Wwij.r,. The final
part (g) in Equation B5 is simply

(B12)

Putting Equations B6-B12 together, the total model-

implied total outcome variance is
L-1
var(yc) = Y ®17 + Zy(l)y+y<DLy+ Ztr (21aTy)
=2 =2
-1

var(e;c) = 0°

L

L
+ Z m', Timy, + Z

=2 =2
L

+ Z Z m' g Ty, + Z r(EpaTi)

12q2 1=2

=

M

tr q*[T]

=

=
©

(B13)

' 2
+ g m'p, Timp, + o

L L L
=D YOy + )Y tr(EgT)

To facilitate discussion of decomposing this expression into
level-specific portions (by ensuring that each term with an I



subscript reflects variance specifically at level-) we will
(equivalently) express this variance as such

L L1
var(yic) = Z Y@y + Z Z tr(ZiqTy)
=1

q=2 I=1

(B14)

L L
+) 0wy Timg, + o

=2 q=1

Where X denotes the purely level-1 covariance of all pre-
dictors with random components across level-k units.

Each set of terms in the variance decomposition in
Equation Bl4 reflects variance attributable to a specific
source. Namely:

o Y@y represents the variance explained by the level-]
varying portion of predictors via fixed components of
slopes ... (B15)

o 1r(X;,T,) represents the variance explained by the level-
I varying portion of predictors via random slope vari-
ation across level-q units .................. (B16)

. 25:1 m’q*lTlmq*l represents the variance explained by
the level-l outcome means via random intercept vari-
ation at the mean of all predictors with random

slopes ... (B17)
e o2 represents the variance attributable to level-1
EITOLS o v vt et e e et e e (B18)

Hence, from the model-implied outcome variance in
Equation B14 and the individual variance components in
Equations B15-B18, we can form the total R-squared meas-
ures provided in Table 6.

From this decomposition in Equation B14, we can simi-
larly compute the outcome variance specific to each level.
Specifically, the level-1 outcome variance is given as

L
var(yell = 1) = Y@y + Z tr(E1.Tx) + o?
k=2

(B19)

Here in Equation B19, we are simply including only the
terms from the total outcome variance in Equation B14 that
reflect purely level-1 variance. Similarly, at an intermediate
level-M (ie., 1 < M < L), the level-specific outcome vari-
ance is
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L
Var()/ic“ = M) = ’Y/(DM'Y + Z tT(EM*ka)
k=2
L
+ Z m e Tarmye
k=1

(B20)

Lastly, at the highest level (L), the level-specific outcome
variance is

L L
var(yiell = L) = Y@y + > tr(EpaTe) + > m' Trmy,
k=2 k=1
(B21)
From the level-specific decomposition in Equations B19-
B21, and from the sources listed in Equations B15-B18, we
can form each of the level-specific measures defined in
Table 6.

As special cases of the above formulas, we can consider
the model-implied total and level-specific variance from a
three-level model, which can be used to form the three-level
measures defined in Table 5. The total outcome variance
for a three-level model is given as

var(yiik) = ¥ @1y + ¥ Ooy + ¥ @3y + tr(E12T) + tr(E1aTs) + tr(EpnT2)
+ tr(X0.3Ts) + tr(Es:2T2) + tr(Es.3T3) + m' 1, Tomy,p + m'50Tomy,,
+ m'3,,Tomy,; + m'1,3Tsmy,s + m',3Tsmys + m'3,3Tyma,g + o2

(B22)

The level-1, level-2, and level-3 outcome variances in a
three-level model are, respectively, given as

vari(yik) = ¥ @1y + tr(EaTy) + tr(E1sTs) + o’ (B23)

Vafj\k()/ijk) =Y Oy + tr(X2.2T2) + tr(X2:3T3) + m' 1,2 Tomy o
+m'5,Tomy,, + m'3,Toms,,

(B24)

vark (yik) = 7' @37 + tr(E3.2T2) + tr(E3:3T3) + m'1,3Tsmys

+m'5,;3Tamy,s + m'3,3Tsm;y.;
(B25)
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