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ABSTRACT
Multilevel regression mixtures involving both discrete latent classes and continuous random effects are an 
increasingly popular approach for accommodating nested data structures. However, their application has 
outpaced the development of effect size measures to aid model interpretation. In response, we provide 
a general framework of R-squared measures for multilevel regression mixtures with random effects as well as 
either classes only at level-1 (L1MIX), or classes only at level-2 (L2MIX), or classes at both levels (L1L2MIX). This 
work extends and unites a previous suite of R-squared measures for multilevel mixtures with latent classes but 
no random effects (Rights & Sterba, 2018) and a suite of R-squared measures for multilevel models with random 
effects but no latent classes (Rights & Sterba, 2019). The general framework provided here includes total and 
class-specific measures that each allow the researcher to distinguish among distinct sources of explained 
variance in the fitted model. We provide software for implementing these measures and provide two illustrative 
empirical examples.
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Multilevel regression mixture models (e.g., Muthén & 
Asparouhov, 2009; Vermunt, 2004, 2008) have been applied by 
social scientists for over a decade to diverse outcomes such as 
bullying (Cho & Lee, 2018), reading achievement (Van Horn et al., 
2016), foster care usage (Yampolskaya et al. (2011), support for 
democracy (Konte, 2016), time spent on homework (Flunger et al., 
2019), and binge drinking (Soloski & Durtschi, 2019). In 
a multilevel regression mixture model, the term “mixture” indi
cates that the model contains categorical latent (unobserved) 
classes, the term “multilevel” indicates that the model accommo
dates nested or clustered data structures (e.g., students nested 
within school or clients nested within clinician), and the term 
“regression” indicates that, within latent class, the observed depen
dent variable or outcome is specified to be a function of exogenous 
observed predictors (for details see Sterba, 2014), as in the familiar 
case of (non-mixture) multilevel regression models.

There are three general kinds of multilevel regression mixtures 
(see Muthén & Asparouhov, 2009 for a review). One kind, that we 
will refer to here as L1MIX, accounts for clustering of level-1 units 
using continuously distributed random effect(s), wherein all 
observations within the same cluster1 share the same value on 
the random effect. In the LIMIX there are also allowed to be 
K level-1 latent classes (where k = 1 . . . K) across which parameters 
(e.g., intercepts and slopes) can vary. In another kind of multilevel 
regression mixture that we refer to here as L2MIX, clustering of 
level-1 units is accounted for using mean differences of parameters 
(e.g., intercepts and slopes) across H level-2 latent classes (where 
h = 1 . . . H) and optionally also accounted for using continuously 
distributed random effects. In the third kind of multilevel 

regression mixture, here called L1L2MIX, continuously distribu
ted random effects are again optional and there are now latent 
classes at both levels. In other words, in the L1L2MIX there are 
K level-1 classes nested within each of H level-2 classes. Though 
continuous random effects are required to account for dependency 
of level-1 units within cluster only for the L1MIX model (but are 
optional for the L2MIX and L1L2MIX), random effects are none
theless regularly included in applications of all three kinds of 
multilevel regression mixtures for substantive reasons. For 
instance, researchers fitting L2MIX and L1L2MIX often find it 
substantively realistic to include random effects to account for 
quantitative differences within potentially qualitatively different 
latent classes (e.g., Muthén, 2001; Muthén, 2007; Sterba & Bauer, 
2010).

In applications of conventional (i.e., non-mixture) multi
level models, once a best-fitting model is selected, researchers 
commonly report R-squared measures to describe and quantify 
the effect size associated with specific term(s) in the model 
(LaHuis et al., 2014). Indeed ten different preexisting 
R-squared measures for conventional multilevel models 
(Aguinis & Culpepper, 2015; Hox, 2010; Johnson, 2014; Kreft 
& de Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders & 
Bosker, 2012; Vonesh & Chinchilli, 1997; Xu, 2003) were 
recently analytically related as special cases under a single 
umbrella framework (Rights & Sterba, 2019).

For multilevel regression mixtures, on the other hand, once 
a best-fitting model is selected, traditionally researchers have 
focused on reporting the results of significance tests of individual 
within-class parameters and providing accompanying qualitative 
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1In this paper we use the term “cluster” to refer to an observed hierarchical nesting unit at level-2. When level-1 units (e.g., students) share the same level-2 cluster (e.g., 
school), this typically induces dependency in their outcome scores. In this case, the cluster is the school. In contrast, in this paper we use the term level-1 or level-2 
“latent class” to refer to an unobserved group of level-1 or level-2 units.
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class labels. However, in response to widespread calls for also 
reporting effect sizes when presenting results from such models 
(e.g., American Psychological Association, 2009; Applebaum et al., 
2018; Harlow et al., 1997; Kelley & Preacher, 2012; Panter & Sterba, 
2011), a suite of R-squared measures were recently developed for 
multilevel regression mixtures; these measures can be used to 
communicate to what extent specific terms in the model are 
important in terms of accounting for outcome variance (Rights 
& Sterba, 2018). Though a useful first step toward ensuring effect 
sizes are more readily available for researchers, Rights and Sterba’s 
(2018) suite of R-squared measures for multilevel regression mix
tures is limited in the following ways:

(1) The previous suite of R-squared measures for multilevel 
regression mixtures is not applicable in the presence of 
continuous random effects. That is, the suite of measures 
from Rights and Sterba (2018) are applicable only to the 

cluster dependencies solely using between-class differ
ences in fixed effects, rather than using any continuous 
random effects. These “nonparametric” versions of multi
level regression mixtures would assume local indepen
dence of units within each class h for the L2MIX (Nagin, 
2005; Sterba, 2013; Vermunt & Van Dijk, 2001) and 
assume local independence of units within each kh-class- 
combination for the L1L2MIX (Rights & Sterba, 2016; 
Vermunt & Magidson, 2005).

(2) The previous suite of R-squared measures for multilevel 
regression mixtures did not distinguish the contribution of 
level-1 (within-cluster) versus level-2 (between-cluster) 
predictors toward explaining variance. Yet in many sub
stantive contexts (e.g., educational research on students 
nested within schools), it would be useful to separately 
assess and compare the variance accounted for by say, 
school-level predictors (e.g., principal experience or 
school-average delinquency) versus student-level predic
tors (e.g., how much a student’s own delinquency deviates 
from their school-average or how much a student’s time 
spent on homework deviates from their school average). 
Likewise it would be useful to be able to unconflate the 
between- versus within-school contributions of the stu
dent-level predictors (Cronbach, 1976; Curran & Bauer, 
2011; Enders & Tofighi, 2007; Hedeker & Gibbons, 2006; 
Hofmann & Gavin, 1998; Snijders & Bosker, 2012).

In light of these existing limitations, the contributions of the 
current paper are as follows. To overcome limitation (1) men
tioned above, here we provide a framework for constructing 
R-squared measures that is applicable to each kind of multilevel 
regression mixture with continuous random effects (i.e., L1MIX, 
L2MIX, and L1L2MIX).2 We later explain which subset of 
R-squared measures are available in the simplified special cases 

in which (a) there are no continuous random effects (this subset 
includes but is not limited to those measures previously provided 
in Rights & Sterba, 2018), and (b) there are no categorical latent 
classes (i.e., those measures previously provided in Rights & 
Sterba, 2019). Our framework of measures is to be used as 
a descriptive assessment tool to quantify effect sizes for the 
researcher’s final chosen multilevel mixture model. That is, the 
researcher should have already defined their set of predictors of 
substantive interest (typically based on substantive theory) and 
should have already identified the best-fitting number of classes 
in their multilevel regression mixture (e.g., using information 
criteria and interpretability) leading to a final model for which 
our R-squared measures can then be computed to aid in 
interpretation.3

To overcome limitation (2) mentioned above, here we pro
vide a novel decomposition of model-implied outcome var
iance that is used to create R-squared measures in our 
framework that separately distinguish the contribution toward 
explained variance of purely within-cluster predictors versus 
purely between-cluster predictors. To facilitate distinguishing 
variance explained that is within- versus between-cluster, here 
we assume researchers have cluster-mean-centered level-1 pre
dictors, following current recommendations (e.g., Hedeker & 
Gibbons, 2006; Kreft & de Leeuw, 1998; Preacher et al., 2010; 
Raudenbush & Bryk, 2002; Snijders & Bosker, 2012).

The next section begins with an overview of the framework for 
constructing R-squared measures for multilevel regression mix
tures with random effects. We then review the data model for 
multilevel regression mixtures with classes at only one level 
(L1MIX and L2MIX). Subsequently we derive, define, and inter
pret the suite of R-squared measures for these L1MIX and L2MIX 
models and explain how these measures are constructed from 
novel decompositions of model-implied total and class-specific 
outcome variance. Next we demonstrate the application of the 
suite of R-squared measures with an empirical example involving 
classes at only one level, for concrete illustration. We then present 
the data model, suite of R-squared measures, and empirical illus
tration for the more complex multilevel regression mixture with 
classes at both levels (L1L2MIX). We conclude with a description 
of software we freely provide for computing all of the R-squared 
measures developed here.

Overview of framework for constructing R-squared 
measures

We can generically define an R-squared measure in the popula
tion as 

R2 ¼
explained variance
outcome variance

(1) 

R-squared measures in our framework use model-implied var
iances from the fitted model for the numerator and denomi
nator (following Johnson, 2014; Nakagawa & Schielzth, 2013; 

2By way of clarification, note that the R-squared effect size measures developed in this paper are for assessing the correspondence between predicted and observed 
outcome scores, not for explaining class membership. Other entropy-based R-squareds are already available for quantifying how well class memberships are predicted 
from observed responses (e.g., Lukočienė et al., 2010; Wedel & Kamakura, 1998).

3If the predictors need to be determined in an atheoretical, data-driven manner, an iterative search algorithm could be employed that performs an automated search 
simultaneously across both alternative predictor variables and alternative numbers of classes (e.g., Khalili & Chen, 2012; Raftery & Dean, 2006). In this event, after such 
an algorithm is employed to identify a final model, our R-squared measures could still be used to aid in the description and interpretation of that final model.
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Rights & Sterba, 2018, 2019, 2021, Accepted; Snijders & Bosker, 
2012). The R-squared measures in our framework can be 
differentiated by what they consider outcome variance, which 
goes in the denominator of Eqn. (1), and what they consider 
explained variance, which goes in the numerator of Eqn. (1), as 
follows.

For the denominator of Equation (1), choices are: total out

level-2-class specific outcome variance, level-1 class-specific out
come variance, or level-1/level-2-class-combination-specific out
come variance. Total measures, which use model-implied total 
outcome variance in the measure’s denominator, can be com
puted for any multilevel mixture model considered here (i.e., 
L1MIX, L2MIX, or L1L2MIX) and allow explaining overall out
come variance pooling across latent classes. In contrast, level-2 
class-specific measures (which can be computed for L2MIX or 
L1L2MIX models) use model-implied level-2 class-specific out
come variance in the denominator and allow explaining outcome 
variance within a level-2 class. Similarly, level-1 class-specific mea
sures (which can be computed for the L1MIX model) use model- 
implied level-1 class-specific variance in the denominator and 
allow explaining outcome variance within a level-1 class. Finally, 
level-1/level-2 class-combination-specific measures (which can be 
computed for the L1L2MIX model) use model-implied class- 
combination outcome variance in the denominator and allow 
explaining outcome variance for each distinct level-1/level-2 (k, 
h) class combination.

The latter three kinds of class-specific R-squared measures are 
particularly useful when the researcher is making a “direct inter
pretation” of latent classes (in which latent classes are viewed as 
corresponding to actual unobserved population subgroups and 
are given class-specific substantive labels; McLachlan & Peel, 
2000; Titterington et al., 1985). Class-specific R-squared measures 
allow determining the proportion of variance explained for each 
unobserved subpopulation; moreover, comparing and contrasting 
class-specific measures across classes may aid in the description of 
substantively meaningful subpopulation differences. Total 
R-squared measures, on the other hand, may intuitively seem 
more relevant under an “indirect interpretation” of latent classes 
(in which latent classes are used together as a set to semi- 
parametrically approximate unknown and potentially complex 
underlying distributions of effects, but each latent class is not 
given a unique substantive interpretation; e.g., Nagin, 2005; 
Sterba et al., 2012; Vermunt & Van Dijk, 2001). However, we 
have elsewhere explained and demonstrated that it is most infor
mative to compute and inspect both total and class-specific 
R-squared measures – even when researchers desire a direct 
interpretation of latent classes (see Rights & Sterba, 2018). This 
is because substantively different patterns of class-specific 
R-squareds can occur in conjunction with the same total 
R-squared value, and because even if a model explains a large 
proportion of outcome variance within a particular latent class, 
that model may nonetheless explain a small proportion of the 
total outcome variance. Hence, juxtaposing class-specific and total 
measures yields a more complete understanding of explained 
variance.

Regarding the numerator of Equation (1), our novel decom
position of model-implied outcome variance allows distinguish
ing how variance is accounted for via different possible sources. 

These sources include: level-1 predictors via marginal (weighted 
across-class-average) fixed components of slopes, level-1 predic
tors via across-class variation, level-2 predictors via marginal 
(weighted across-class-average) fixed components of slopes, 
level-2 predictors via across-class variation, level-1 predictors via 
random slope variation, cluster-specific outcome means via ran
dom intercept variation, and class-specific outcome means via 
across-class variation (details provided subsequently). There is 
precedent in the conventional multilevel literature and multilevel 
mixture literature for considering each of these sources as poten
tial contributors to explained variance (see Vonesh & Chinchilli, 
1997; Rights & Sterba, 2018, 2019 for rationales). As such, the 
framework provided in the present paper enables researchers to 
visualize and understand how variance is accounted for via each 
source individually by constructing a set of single-source 
R-squared measures (wherein one single source of explained 
variance is used at a time in the numerator of Equation (1)). 
Furthermore, we enable researchers to visualize and understand 
how variance is accounted for via multiple substantively interest
ing sources taken together by providing the option of supplemen
tarily constructing combination-source measures (wherein 
a combination of sources of explained variance are used in the 
numerator of Equation (1)).

Put simply, it is not our goal to provide researchers with 
a particular omnibus “one-size-fits-all” R-squared measure that 
can represent the importance of every kind of term in the model 
at all once. Elsewhere the pursuit of such a “one-size-fits-all” 
measure for multilevel models/multilevel mixtures has been 
recognized to be futile (see explanations in, e.g., Edwards et al., 
2008; Rights & Sterba, 2018, 2019). Rather, our recommendation 
here is for researchers to instead inspect a set of single-source 
measures for their fitted model to get a comprehensive break
down of how variance is being accounted for in their model. 
Supplemental, optional construction of any particular combina
tion-source measure can be driven by particular substantive 
objectives, as we will illustrate. In particular, later we illustrate 
the application and interpretation of single-source and combina
tion-source R-squared measures using two empirical examples of 
multilevel regression mixtures.

Data model for a multilevel regression mixture with 
classes only at level 1 (L1MIX)

Here we begin with a review of the multilevel regression mix
ture model with classes only at level-1, L1MIX (e.g., Muthén & 
Asparouhov, 2009; Vermunt, 2008), in Equation (2): 

yijjcij¼k ¼ xw0
ij γwðkÞ þ xb0

j γbðkÞ þ w0ijuj þ εij

εij,Nð0; θkÞ

uj,Nð0;TÞ

pðcij ¼ kÞ ¼ πk ¼
expðωkÞ

PK

k¼1
expðωkÞ

(2) 

Let i index level-1 unit (e.g., student) and let j index cluster (e.g., 
school), where i = 1 . . . Nj and j = 1 . . . J. Our level-1 (e.g., student- 
level) categorical latent variable is denoted cij and can take on 
values k = 1 . . . K, where K is the total number of level-1 classes. 
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Here we are modeling outcome yij conditional on membership in 
level-1 class k, denoted yijjcij¼k. The P1 � 1 vector xw

ij – with P1 

denoting the number of level-1 predictors – contains all cluster- 
mean-centered level-1 predictors (including cross-level interaction 
product terms, which vary exclusively within-cluster and hence 
explain purely within-cluster variance, as derived in Rights & 
Sterba, 2019). The (P2 +1)� 1 vector xb

j – with P2 denoting the 
number of level-2 predictors – contains 1 (for the intercept) and all 
level-2 predictors (which could include cluster means of level-1 
predictors). The P1� 1 vector γwðkÞ contains the level-1 fixed 
component of coefficients associated with terms in xw

ij , and the 
(P2 +1)� 1 vector γbðkÞ contains the level-2 fixed coefficients 
associated with terms in xb

j . Coefficients in γw kð Þ and γb kð Þ may 
be allowed to vary across the K classes (Muthén & Asparouhov, 
2009). The (P1 +1)� 1 vector wij consists of 1 (for the intercept) 
and all level-1 predictors, whereas the (P1 +1)� 1 vector uj con
tains the corresponding level-2 residuals u0j and u1j . . . uP1j. ele
ments of uj are multivariate normally distributed with covariance 
matrix T (Muthén & Asparouhov, 2009). To obtain a fixed inter
cept or a fixed slope, the corresponding level-2 residual in uj would 
be set to 0, so the corresponding term in w0ijuj would also be 0, as 
would elements in T corresponding to its variance and covariance
(s). εij is a normally-distributed level-1 residual with potentially 
class-varying variance θk. The probability of individual i in cluster 
j being a member of class k, pðcij ¼ kÞ, is denoted πk and is 
obtained from a multinomial logistic parameterization such that 
ωk is a multinomial intercept and ωK = 0 for identification. Note 
that it would also be possible for these multinomial logistic coeffi
cients to randomly vary across clusters4 (and doing so would not 
change the formulas we provide for R-squared computation5). In 
sum, this L1MIX model captures heterogeneity of regression coef
ficients both qualitatively (across level-1 latent classes) and quan
titatively (across clusters).

Data model for a multilevel regression mixture with 
classes only at level-2 (L2MIX)

The multilevel regression mixture model with classes only at 
level-2, L2MIX (e.g., Muthén & Asparouhov, 2009; Vermunt, 
2008), is shown in Equation (3). 

yijjdj¼h ¼ xw0
ij γwðhÞ þ xb0

j γbðhÞ þ w0ijuj þ εij

εij,Nð0; θhÞ

uj,Nð0;ThÞ

pðdj ¼ hÞ ¼ πh ¼
expð$hÞ

PH

h¼1
expð$kÞ

(3) 

The L2MIX specification in Equation (3) differs in the following 
ways from the L1MIX model in Equation (2). First, we are now 
modeling the outcome yij conditional on membership in level-2 
class h, denoted yijjcj¼h, and our level-2 (i.e., cluster-level) catego
rical latent variable dj can take on values h =1 . . . H. Furthermore, 
in L2MIX not only θh and the elements of γwðhÞand γbðhÞ, but also 
the elements of Th may be allowed to vary across the H classes 
(see Muthén & Asparouhov, 2009). Lastly, the membership prob
ability for cluster j in class h, pðcj ¼ hÞ, given as πh, is again 
modeled with class-specific multinomial intercepts ω1 . . . ωH 

where, for identification, ωH= 0. Taken together, this L2MIX 
model also captures heterogeneity of regression coefficients both 
discretely (across level-2 latent classes) and continuously (across 
clusters).

Constructing R-squared measures for a multilevel 
regression mixture with classes only at one level 
(L1MIX or L2MIX models)

Constructing and interpreting Total R-squared measures 
for the L1MIX or L2MIX model

Using symbols defined in Appendix Table A1, we detail in 
Appendix Table A2 (Equations (A1)-(A8)) how to use the 
decomposition of total outcome variance we derived6 for 
the L1MIX or L2MIX models to construct total R-squared 
measures. Specifically, to construct a total R-squared mea
sure for L1MIX or L2MIX models, the expression for the 
total outcome variance (Equation A1) goes in the denomi
nator. Possible numerator terms (Equations (A2)-(A8)) 
consist of variance attributable to seven different possible 
sources:

● Source f1=L1 predictors via marginal7 fixed components 
of slopes

● Source f2=L2 predictors via marginal fixed components of 
slopes

● Source vr
1=L1 predictors via random slope variation/ 

covariation
● Source mr=cluster-specific outcome means via random 

intercept variation
● Source vh

1=L1 predictors via across-class slope variation/ 
covariation

● Source vh
2=L2 predictors via across-class slope variation/ 

covariation
● Source mh=class-specific outcome means via across-class 

variation

Note that this list of sources is written for L2MIX; for L1MIX, 
simply replace h with k. This list of sources maps onto how 
applied researchers often seek to characterize their mixture 

4If one were to specify a multinomial coefficient (e.g., the multinomial intercept) as a random coefficient, this adds K-1 dimensions of integration; Muthén and 
Asparouhov (2009) and Vermunt (2004) suggest some dimensionality reduction tricks in specification or estimation for managing this.

5If one were to include random effects for the multinomial portion of the model, in computing our subsequently defined R-squared measures, note that the T matrix in 
the R-squared formulas should contain only the variances/covariances of the level-2 residuals that reflect random intercepts/slopes in the regression of y on the 
predictors (i.e., the components in uj defined in Equation 1).

6A detailed derivation for this decomposition of total outcome variance for the L1MIX or L2MIX is provided in the Online Supplement.
7Here “marginal” refers to an across-class weighted average (weighted by the class probability).
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model results (e.g., Halliday-Boykins et al., 2004; Morin & 
Marsh, 2015; Sher et al., 2011; Sterba & Bauer, 2014), though 
in the past these characterizations have instead been done 
qualitatively and heuristically, using textual summaries, rather 
than quantitatively. The present R-squared framework allows 
researchers the opportunity to quantify the contributions of 
these seven features.

A single-source total R-squared measure is defined as 
having one single such source of explained variance in the 
numerator at a time. Hence, there are seven possible 
single-source total R-squared measures for the L1MIX 
or L2MIX. These measures are enumerated, defined, 
and interpreted in Manuscript Table 1 (Column 1). 
Notation in Table 1 identifies and labels each R-squared 
measure by its denominator as well as its numerator 
source. For example, Total R2_f1 is the proportion of 
total variance attributable to level-1 predictors via mar
ginal fixed components of slopes. As another example, 
Total R2_vh

2 is the proportion of total variance attributable 
to level-2 predictors via across-class slope variation/covar
iation. Our recommendation is to construct all of these 
single-source total R-squared measures for a complete 
understanding of variance accounted for.

If, as an optional accompaniment to the single-source 
measures, a researcher wanted to also construct combina
tion-source total R-squared measures to speak to particular 
research questions involving multiple sources, the 
researcher would simply sum two or more of the single- 
source measures. Here we give some examples of 

combination-source measures that might have substantive 
appeal in particular contexts. For instance, a researcher 
might be interested in the proportion of total variance 
attributed to level-1 predictors via both across-class and 
across-cluster variation (i.e., Total R2_vh

1+ Total R2_vr
1). 

Another researcher might be interested in the proportion 
of total variance attributable to outcome means via both 
across-class and across-cluster variation (i.e., Total R2_mh 

+ Total R2_mr). Other examples of combination-source 
R-squareds that could be meaningful in certain contexts 
are: the proportion of total variance attributed to both 
level-1 and level-2 predictors via marginal fixed components 
of slopes (i.e., Total R2_f1 + Total R2_f2) and the proportion 
of total variance attributable to both level-1 and level-2 
predictors via across-class slope variation/covariation (i.e., 
Total R2_vh

1+ Total R2_vh
2). Although these examples each 

feature the combination of two sources, it is possible to 
combine more than two sources in a R-squared measure, as 
long as this would be substantively meaningful.

Critically, it is not advisable to exclusively compute a 
combination-source without also reporting and interpreting 
its constituent single-source measures; computing only 
a combination-source measure would not yield insight into 
whether, for instance, one constituent source in the combi
nation was accounting for the vast majority of the outcome 
variance while the other constituent sources in the combina
tion were accounting for little,8 or whether all constituent 
sources were accounting for about equal proportions of out
come variance (see also Rights & Sterba, 2018, 2019).

Table 1. Summary of single-source measures in the R-squared framework for L1MIX or L2MIX models. (Shown for L2MIX; for L1MIX replace h with k).

Total 
measures Computation* Interpretation

Class-specific 
measures Computation* Interpretation

Total R2_f1 Eqn (A2)/(A1) Proportion of total variance attributable to 
source f1

Class-specific R2_f1 Eqn (A10)/(A9) Proportion of class-specific variance attributable 
to source f1

Total R2_f2 Eqn (A3)/(A1) Proportion of total variance attributable to 
source f2

Class-specific R2_f2 Eqn (A11)/(A9) Proportion of class-specific variance attributable 
to source f2

Total R2_vr
1 Eqn (A4)/(A1) Proportion of total variance attributable to 

source vr
1

Class-specific R2_vr
1 Eqn (A12)/(A9) Proportion of class-specific variance attributable 

to source vr
1

Total R2_mr Eqn (A5)/(A1) Proportion of total variance attributable to 
source mr

Class-specific R2_mr Eqn (A13)/A(9) Proportion of class-specific variance attributable 
to source mr

Total R2_vh
1 Eqn (A6)/(A1) Proportion of total variance attributable to 

source vh
1

Total R2_vh
2 Eqn (A7)/(A1) Proportion of total variance attributable to 

source vh
2

Total R2_mh Eqn (A8)/(A1) Proportion of total variance attributable to 
source mh

Summary of Source Definitions: 
Source f1=L1 predictors via marginal† fixed components of slopes 
Source f2=L2 predictors via marginal† fixed components of slopes 

Source vr
1=L1 predictors via random slope variation/covariation 

Source mr =cluster-specific outcome means via random intercept variation 
Source vh

1 =L1 predictors via across-class slope variation/covariation 
Source vh

2 =L2 predictors via across-class slope variation/covariation 
Source mh=class-specific outcome means via across-class variation

*Equations (A1)-(A8) are provided in Appendix Table A2 and Equations (A9)-(A13) are provided in Appendix Table A3. 
†marginal = across-class weighted average. For class-specific measure, marginal fixed component of slope is just the fixed component of slope for that 

class

8Our later empirical example 1 can be used to illustrate this phenomena; in that example, the combination-source measure Total R2_f1 + Total R2_f2 = .16, but this is very 
unevenly split in that f1 accounts for .159 and f2 accounts for .001. If only the combination-source measure were presented, without the constituent single-source 
measures, the imbalance of their contributions would not be recognized.
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Constructing and interpreting class-specific R-squared 
measures for the L1MIX and L2MIX models

Our Appendix Table A3 (Equations (A9)-(A13)) indicates 
how to use the decomposition of class-specific outcome 
variance we derived9 for the L1MIX or L2MIX models to 
construct class-specific R-squared measures. In particular, 
to construct a class-specific R-squared measure for L1MIX 
or L2MIX, the expression for the class-specific outcome 
variance (Equation A9) goes in the denominator of the 
measure. For the numerator of the class-specific R-squared 
measure, there are four potential sources to which class- 
specific variance can be attributable (corresponding to 
Equations (A10)-(A13)). These sources (f1,f2,vr

1,mr) com
prise four of the seven sources in the bulleted list above. 
The three sources from the bulleted list above that do not 
appear (i.e., are not potential sources of class-specific 
explained variance) each pertain to across-class 
variation, which is not relevant here because a class- 
specific measure isolates within-class variance for 
a particular class. We recommend obtaining all single- 
source class-specific measures by dividing Equation (A9) 
by each Equation (A10)-(A13) one source at a time. 
Manuscript Table 1 (Column 4) summarizes these single- 
source class-specific measures for the L1MIX or L2MIX. 
Obtaining class-specific R-squared measures allows 
researchers to compare these measures’ magnitudes 
among classes and also allows researchers to compare 
these measures’ magnitudes with the total R-squared hav
ing the same source of explained variance (in order to 
understand for whom that source is important). Obtaining 
combination-source class-specific measures (i.e., using 
multiple of Equations (A10)-(A13) in the numerator) is 
again optional and would need to be substantively 
motivated.

Empirical example: Multilevel regression mixture with 
classes only at one level

Our first empirical example is based on a H=2 L2MIX 
application from Heck and Thomas (2015) wherein 
13,189 workers are nested within 165 organizations. Here 
the goal is to predict workplace productivity from worker- 
level predictors cluster-mean-centered worker satisfaction 
(worksatij) and cluster-mean-centered worker experience 
(experij), as well as organization-level predictors organiza
tion-mean worker satisfaction (worksat.j) and organiza
tion-mean proportion female (female.j). Equation (4) 
indicates how regression coefficients were allowed to vary 
across classes and across clusters. Specification of πh, θh, 
Th was as described in Equation (3). 

productijjdj¼h ¼ γbðhÞ
00 þ worksatijγ

wðhÞ
10 þ experijγ

wðhÞ
20

þ worksat�jγ
bðhÞ
30 þ female�jγ

bðhÞ
40 þ u0j

þ experiju1j þ εij 

Where :

εij,Nð0; θhÞ

u0j
u1j

� �

,N 0
0

� �

;
τh

00
τh

01 τh
11

� �� �

pðdj ¼ hÞ ¼ πh ¼
expð$hÞ

PH

h¼1
expð$hÞ

(4) 

The H =2 L2MIX was fit in Mplus 8.4 (Muthén & Muthén, 1998- 
2020). Results indicated that an estimated 42% of organizations 
would fall into class 1 and 58% into class 2; these classes were 
primarily differentiated by mean level of productivity rather than 
slope differences. Parameter estimates and SEs are reported for this 
model in the Online Supplement,10 and accompanying single- 
source total and class-specific R-squared results (computed using 
our later-defined R function) are provided in Table 2, along with 
a river plot (computed using the riverplot R package of Weiner, 
2015 as in Barstead, 2019) that depicts the total R-squared results 
in Figure 1. Inspecting parameter estimates and SEs in the Online 
Supplement indicates that, in both classes of organizations, work
ers with higher satisfaction and more experience relative to their 
organization mean have significantly higher productivity. 
Although both level-1 predictors had significant effects on pro
ductivity in each class, neither level-2 predictor had significant 
effects on productivity in either class. This pattern of effects can be 
further visualized and quantified using the river plot of total 
R-squared results in Figure 1, which depicts the fact that 16% of 
total variance in worker productivity is attributable to predictors 
via across-class-average fixed components of slopes – with a trivial 
amount of that being due to level-2 predictors (total R2_f2 =.001)) 
and almost all of that being due to level-1 predictors (total R2_f1 
=.159). Although the estimated class-specific slope estimates were 
observed to differ somewhat across class, the R-squared results in 
Table 2 provide the useful perspective that the impact of predictors 
via across-class slope differences is of trivial importance in 
accounting for total variance in worker productivity (total 
R2_vh

1=.001, total R2_vh
2=.001).

Parameter estimates and SEs reported for this model in the 
Online Supplement also indicate that latent class 2 had a higher 
mean level of worker productivity whereas latent class 1 had 

Table 2. R-squared results for the H = 2 L2MIX 
empirical example model predicting productivity 
where workers are nested within organizations.

Total R-squared measures               

Total R2_f1 0.159
Total R2_f2 0.001
Total R2_vr

1 0.001
Total R2_mr 0.323
Total R2_vh

1 0.001
Total R2_vh

2 0.001
Total R2_mh 0.338

Level-2-class-specific R-squared measures

h = 1 h = 2

Level-2-class-specific R2_f1 0.219 0.258
Level-2-class-specific R2_f2 0.001 0.000
Level-2-class-specific R2_vr

1 0.001 0.000
Level-2-class-specific R2_mr 0.525 0.461

9A detailed derivation for this decomposition of class-specific outcome variance for the L1MIX and L2MIX is provided in the Online Supplement.
10The Online Supplement is available at https://my.vanderbilt.edu/sonyasterba/
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a lower mean level of worker productivity. This pattern of results 
is visualized and quantified in the river plot of total R-squared 
results in Figure 1 in the fact that total R2_mh =.338, meaning 
that 33.8% of total variance in productivity is attributable to 
class-specific outcome means via across-class variation 
(i.e., mh). Furthermore, the Online Supplement indicates that 
both classes showed random intercept but not random slope 
variation across organizations within-class in conditional mean 
productivity but not in slopes of level-1 predictor worker experi
ence. This finding is more precisely quantified using the total 
R-squareds in the river plot in Figure 1 in that about one third of 
total variance in productivity is attributable to cluster-specific 
outcome means via random intercept variation (total 
R2_mr =.323), but virtually none is attributable to level-1 pre
dictors via random slope variation (total R2_vr

1=.001). Table 2 
class-specific R-squared results further clarify that this amount of 
variability attributable to cluster-specific outcome means via 
random intercept variation is higher in class 1 (class-specific 
R2_mr =.525) than class 2 (R2_mr =.461).

Taken together, the Figure 1 river plot gives a parsimonious 
visual summary of the sources that are important in accounting 
for variance in worker productivity (f1;mh;mr) and the sources 
that are not important for doing so (f2; vh

1; vh
2; vr

1). In sum, the 
R-squared results numerically quantify the facts that: (a) classes 
are distinguished mainly by across-class variation in means (mh); 
(b) a sizable amount of across-cluster variation in intercepts 
remains within-class (mr); (c) trivial amounts of the total out
come variance are attributable to level-2 predictors via any 
source (f2; vh

2); and (d) most of the variance that is attributable 
to level-1 predictors is via their marginal fixed components of 
slopes (f1) rather than via their across-class variation (vh

1) or 
across-cluster variation (vr

1).

Data model for multilevel regression mixture with 
classes at both level-1 & −2 (L1L2MIX)

Next, we turn to the specification of the multilevel regression 
mixture model with classes at both levels, L1L2MIX (e.g., 
Muthén & Asparouhov, 2009; Vermunt, 2008), in Equation (5). 

Where :

yijjcij¼k;dj¼h ¼ xw0
ij γwðkhÞ þ xb0

j γbðkhÞ þ w0ijuj þ εij

εij,Nð0; θkhÞ

uj,Nð0;ThÞ

(5) 

p dj ¼ h
� �

¼ πh ¼
exp $hð Þ
PH

h¼1
exp $hð Þ

and  

p cij ¼ k dj ¼ h
�
�

� �
¼ πk hj ¼

exp ωkþδkhð Þ
PK

k¼1

exp ωkþδkhð Þ

The L1L2MIX model in Equation (5) combines elements of the 
L1MIX and L2MIX models from Equations (2) and (3). In 
particular, outcome yij is now conditional on class- 
combination kh membership, that is, membership in level-1 
class k nested within level-2 class h, denoted yijjcij¼k;dj¼h.

The level-2 (i.e., cluster-level) categorical latent variable dj can 
take on values h =1 . . . H for cluster j, and the level-1 categorical 
latent variable cij can take on values k =1 . . . K for observation i in 
cluster j. In turn this implies that level-1/level-2 class-combination 
memberships range from k,h = 1,1 to k,h = K,H. Now regression 
coefficients in γwðkhÞand γbðkhÞ and residual variance θkhcan be 
specific to class-combination kh (e.g., Muthén & Asparouhov, 
2009).11

The probability that cluster j is a member of level-2 class h, 
pðdj ¼ hÞ, is denoted πh and is modeled by level-2 class-specific 
multinomial intercept, $h. The conditional probability that 

Figure 1. River plot depicting single-source total R-squared measures for the H = 2 L2MIX model predicting productivity, with workers nested within organizations.

11In the most general specification of a L1L2MIX, a given level-1 class k need not be comparable across level-2 classes h = 1 . . . H. However, researchers may choose to 
place equality constraints on, for instance, regression coefficient estimates and residual variance estimates across h within k to make each k comparable across h. Then 
level-2 classes h = 1 . . . H in the L1L2MIX would differ only due to varying level-1 class proportions within h (e.g., Lukočienė et al., 2010). The R-squared computations 
we employ accommodate the general or more constrained specifications.
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observation i in cluster j is a member of level-1 class k, given 
their cluster belongs to level-2 class h, is denoted πkjh and is 
modeled by a multinomial intercept, ωk, and multinomial 
slope, δkh. For identification $H ¼ ωK = δkH = 0 for all k, 
and δKh = 0 for all h.

Constructing R-squared measures for a multilevel 
regression mixture with classes at both levels (i.e., 
L1L2MIX models)

Constructing and interpreting Total R-squared measures 
for the L1L2MIX model

Our decomposition of total outcome variance for the L1L2MIX 
model12 (provided in Appendix Table A5 using Equations [A14]- 
[A24] and using notation defined in Appendix Table A4) can be 
used to construct total R-squared measures for L1L2MIX. In 
particular, in the denominator of a total R-squared measure for 
L1L2MIX, we place the total outcome variance (Equation (A14)). 
Regarding the numerator of the measure, in the L1L2MIX total 
variance can be attributable to each of 10 possible sources defined 
in Equations (A15)-(A24) and also listed here:

● Source f1=L1 predictors via marginal13 fixed components 
of slopes

● Source f2=L2 predictors via marginal fixed components of 
slopes

● Source vr
1=L1 predictors via random slope variation/ 

covariation
● Source mr=cluster-specific outcome means via random 

intercept variation
● Source vk

1=L1 predictors via across-L1-class slope varia
tion/covariation within L2 class

● Source vk
2=L2 predictors via across-L1-class slope varia

tion/covariation within L2 class
● Source mk=class-specific outcome means via across-L1- 

class variation within L2 class
● Source vh

1=L1 predictors via across-L2-class slope varia
tion/covariation

● Source vh
2=L2 predictors via across-L2-class slope varia

tion/covariation
● Source mh=class-specific outcome means via across-L2- 

class variation

To construct each possible single-source total R-squared measure 
for the L1L2MIX, these Equations (A15)-(A24) are used, one at 
a time, in the numerator of the measure. See Manuscript Table 3 
(Column 1) for a summary list of definitions and interpretations 
for all single-source total R-squared measures for the L1L2MIX. In 
Table 3 notation, each R-squared measure is identified and labeled 
by its denominator and also its numerator source. For instance, 
Total R2_vr

1 measures the proportion of variance attributable to 
level-1 predictors via random slope variation/covariation.

In contrast to the ten potential numerator sources to which 
total variance can be attributable in the L1L2MIX model, recall 
that there were only seven such potential numerator sources for 
either the L1MIX or the L2MIX. There are a greater number of 
potential numerator sources in L1L2MIX because the existence of 
level-1 and level-2 classes in the L1L2MIX allows separately dis
tinguishing whether predictors and outcome means are varying 
across L1 class, or across L2 class, or both. If a researcher wanted to 
jointly consider contributions via variation across L1 class vs. L2 
class, the researcher could supplementarily create a combination- 
source measure, such as Total R2_vk

1+ Total R2_vh
1 or such as Total 

R2_vk
2 +Total R2_vh

2 or such as Total R2_mk + Total R2_mh. As an 
example of a combination-source measure involving more than 
two sources, a researcher might be broadly interested in the 
proportion of total variance attributed to all predictors via any 
kind of class/cluster variation; this could be assessed using Total 
R2_vk

1+ Total R2_vk
2+ Total R2_vh

1+ Total R2_vh
2 .

Constructing and interpreting level-2 class-specific 
R-squared measures and kh class-combination-specific 
R-squared measures for the L1L2MIX model

Whereas the multilevel mixtures with classes at only one level 
(L1MIX or L2MIX) each afforded only one kind of class-specific 
R-squared, the L1L2MIX affords two kinds of class-specific 
R-squareds. Specifically, we can examine how variance is 
accounted for within a level-2 class h (via a level-2 class-specific 
R-squared) and can examine how variance is accounted for within 
the kh class combination (via a kh class-combination R-squared). 
Our decomposition of level-2 class-specific outcome variance for 
the L1L2MIX model is given Appendix Table A6 (Equations 
(A25)-(A32)) and is derived in the Online Supplement. A single- 
source level-2 class-h-specific R-squared uses Equation (A25) in 
the denominator and uses one or more of Equation (A26)-(A32), 
in the numerator. That is, there are seven potential sources to 
which class-h-specific variance can be attributable; these sources 
mirror the seven sources listed earlier in Appendix Table A2, with 
the only modification being that they are now specific to level-2 
class h. Manuscript Table 3 (Column 4) provides a summary list 
defining these single-source level-2 class-specific measures for the 
L1L2MIX.

Our decomposition of kh class-combination-specific outcome 
variance for the L1L2MIX is provided in Appendix Table A7 
(Equations [A33]-[A37], with an accompanying derivation in the 
Online Supplement). The four single-source kh class-combination 
R-squared measures use Equation (A33) in the denominator and 
one or more of Equations (A34)-(A37) in the numerator. The latter 
four numerator sources mirror the four sources listed earlier in 
Appendix Table A3, with the only exception being that they are now 
specific to class-combination kh. See the manuscript Table 3 
(Column 7) for a list summarizing interpretations for the four 
single-source kh class-combination-specific measures for the 
L1L2MIX. We next turn to an empirical example to illustrate how 

12See Online Supplement for a detailed derivation of this decomposition of total variance for L1L2MIX.
13When constructing a total measure, marginal refers to an across-class weighted average. Later, when we construct a level-2-specific measure, marginal refers to an 

across-k weighted average for class h. Note also that when we later construct a kh-class-combination measure, the marginal fixed component of the slope is simply 
the fixed component of the slope for class-combination kh.
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to interpret as an integrated set the total, level-2 class-h-specific, and 
kh class-combination specific R-squared measures for the 
L1L2MIX.

Empirical example: Multilevel regression mixture 
model with classes at both level-1 and −2

This empirical example is based on a L1L2MIX application from 
Muthén and Asparouhov (2009, their Equations 26 & 29 on 
p. 652), which predicted mathematics achievement with a K =3, 
H =2 L1L2MIX model fit to the NELS 1988 eighth grade data 
(18,596 students nested within 767 schools in the public use data 
used here). Traditionally, interpretation of this L1L2MIX model 
would follow from inspecting point estimates and SEs of indivi
dual model parameters. However, because LIL2MIX models typi
cally have many parameters (characterizing two different kinds of 
classes together with random effects), it becomes difficult to 
exclusively rely on this traditional strategy when trying to obtain 
an integrative substantive interpretation of model results and 
inform qualitative class labeling. Hence, here we aid L1L2MIX 
interpretability by reporting R-squared effect sizes to indicate 
what modeled sources are most and least important in terms of 
accounting for total and class-specific outcome variation.

In the empirical example L1L2MIX model, level-1 predic
tors of math achievement are gender (fem) and socioeconomic 
status (ses), and level-2 predictors are percent of teachers with 
an advanced degree in the school (peradv), school-mean socio
economic status (meanses), and school-type (priv representing 
private vs. public and cath representing catholic vs. public). 
Below, Equation (6) shows how regression coefficients were 
allowed to vary across k and h. 

mathijjcij¼k;dj¼h ¼ γbðkhÞ
00 þ femijγ

wðkhÞ
10 þ sesijγ

wðkhÞ
20

þ peradvjγ
bðkhÞ
01 þ privjγ

bðkhÞ
02 þ cathjγ

bðkhÞ
03

þmeansesjγ
bðkhÞ
04 þ u0j þ femiju1j þ sesiju2j þ εij

εij,Nð0; θkÞ

uj,Nð0;TÞ

p dj ¼ h
� �

¼ πh ¼
exp $h� �

PH

h¼1
exp $hð Þ

and

p cij ¼ k dj ¼ h
�
�

� �
¼ πk hj ¼

exp ωk þ δkh
� �

PK

k¼1
exp ωk þ δkh
� �

(6) 

A K=3, H=2 L1L2MIX from Equation (6) was fit using Mplus 8.4; 
results indicated that an estimated 15% of schools fall into school- 
level class h=1 whereas an estimated 85% of schools fall into 
school-level class h=2. The kh class-combination probabilities 
were as follows: k=1,h=1 (11%), k=2,h=1 (4%), k=3,h=1 (1%), 
k=1,h=2 (25%), k=2,h=2 (57%), k=3,h=2 (2%). Parameter esti
mates and SEs for this L1L2MIX are provided in the Online 
Supplement. Inspecting these shows that (unsurprising given the 
large sample size) nearly all intercept and slope coefficients in each 
kh class-combination are significant, as are each variance 

component. These intercept and slope coefficients look to differ 
somewhat across classes, but it is unclear from eyeballing these 
results how to gauge the impact and importance of these across- 
class differences. Fortunately, the R-squared results for this 
L1L2MIX empirical example can help quantify this.

Total, level-2-class-specific, and kh-class-combination-specific 
R-squared results for this L1L2MIX are provided in the manu
script’s Table 4. Here, we use the Table 4 results to illustrate how it 
can be useful to juxtapose and compare total vs. level-2-specific vs. 
class-combination-specific R-squareds for the same source of 
explained variance (i.e., measures with different denominators 
but the same numerator). Such comparisons can illuminate 
a situation wherein the same source contribution is meaningful 
within a particular class but not overall. For instance, here the 
variance explained by level-2 predictors via fixed component of 
slopes was sizable for class-combination k=3,h=1 (class- 
combination-specific R2_f2 =.598), but was quite small overall 
(Total R2_f2 =.008). Such comparisons can also illuminate situa
tions wherein the same source contribution is meaningful (or not) 
for explaining all types of outcome variance. For instance, here the 
contribution of cluster-specific outcome means via random inter
cept variability, R2_mr, is meaningful for explaining all types of 
outcome variance (total, level-2-specific, and kh-class- 
combination-specific) in Table 4, whereas the contribution of 
predictors via across-cluster slope variability, R2_vr

1 is not mean
ingful for explaining any type of outcome variance in Table 4.

For this empirical example we chose to create a river plot of 
the level-2-class-specific R-squared results, shown in Figure 2, to 
help visualize and highlight instances in which source contribu
tions differed across level-2 class to, in turn, help qualitatively 
characterize the level-2 classes. Figure 2 illustrates that level-2 
class h=2 is distinguished from h=1 by having a greater contri
bution of level-1 predictors via marginal fixed component of 
slopes (for h=2 the level-2-class specific R2_f1 =.174 but for h=1 it 
is R2_f1 =.004). Furthermore, because class-combination 
R-squareds were nearly zero for all but one k within h=2, we 
can infer that the R2_f1 result for h=2 is mainly driven by class- 
combination k=2,h=2 (whose R2_f1=.366 in Table 4). Figure 2 
also illustrates the fact that h=2 is distinguished from h=1 by 
having a greater contribution of predictors via across-k slope 
variability (for h=2 the level-2-class specific R2_vk

1=.063 and 
R2_vk

2=.141, whereas for h=1 R2_vk
1=.003 and R2_vk

2=.037).
In sum, R-squared results for this empirical example indicated 

that: (a) overall, slope variability mainly occurred across k within 
h =2 (rather than across clusters, or across h, or across k within 
h =1); (b) across clusters, intercept variability occurred within all 
classes and class-combinations; (c) level-1 predictors explained 
more variance marginally than level-2 predictors; and (d) the 
former’s influence was greatest in h=2, and this influence in 
turn was dominated by class combination k =2,h=2.

Software implementation

We provide an R function reRegMixR2 that computes all possible 
single-source measures for the researcher’s fitted L1MIX, L2MIX, 
or L1L2MIX model and uses as input the fitted model’s parameter 
estimates (that could be previously obtained from any mixture 
modeling software program). The framework of single-source 
R-squared measures discussed here (Tables 1 and Tables 3) is 
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not currently available as an output option in existing multilevel 
mixture software programs.14 Our Online Supplement provides 
and describes the reRegMixR2 function, and it is also being 
incorporated into the r2mlm R package (Shaw, Rights, Sterba, & 
Flake, Revised & Resubmitted).

Discussion

Multilevel regression mixture models are an increasingly popu
lar approach for accommodating nested data structures in psy
chology and education when a combination of discretely- 
distributed and continuously-distributed variability in intercepts 
and slopes are posited. The complexity of multilevel regression 
mixture models necessitates moving beyond typical reliance on 
significance testing of individual parameter estimates together 
with informal qualitative characterization/labeling of classes. 
The R-squared framework presented here is an additional tool 
to aid in describing and interpreting important features of multi
level regression mixtures with random effects (i.e., L1MIX, 
L2MIX or L1L2MIX) in a cohesive, integrated manner.

Summary of contribution

One way in which the framework of R-squared measures devel
oped here (which is summarized in manuscript Tables 1 and 
Tables 3) extends previous work is that it is newly applicable to 
multilevel regression mixtures with random effects. In contrast, 
Rights and Sterba (2018) R-squared measures were for single- or 

multi-level regression mixtures with locally-independent classes, 
and thus cannot be used when random effects are specified within 
class. As such, Rights and Sterba (2018) did not include sources vr

1 
and mr in their variance decompositions, and did not include 
measures representing sources vr

1 and mr (i.e., they did not include 
total R2_vr

1 and R2_mr, level-2-class-specific R2_vr
1 and R2_mr, 

and kh-class-combination-specific R2_vr
1 and R2_mr).

Another way in which the framework developed here extends 
this previous work is by unconflating the contribution of between- 
versus within-cluster fixed components of level-1 predictor slopes. 
Previously, Rights and Sterba (2018) conflated the contribution of f1 
versus f2 sources in their variance decompositions and measures 
(i.e., their 2018 suite of measures did not distinguish total R2_f1 
versus R2_ f2, level-2 class-specific R2_f1 versus R2_ f2, or kh-class- 
combination-specific R2_f1 versus R2_ f2, as was newly done here). 
The present framework is advantageous because it allows separately 
assessing and comparing the variance accounted for by sources f1 
versus f2 – as recommended here – while still allowing the optional, 
supplemental creation of the earlier-used combination-source mea
sures that combine contributions of sources f1 and f2 .

How the present R2 framework simplifies if there are either 
no classes or no random effects

Though general enough to accommodate models with both 
classes and random effects, the present framework is none
theless applicable to simplified specifications that either 

Table 4. R-squared results for K = 3 H = 2 L1L2MIX empirical example model predicting math achievement, with students nested 
within schools.

Total R-squared measures                                                                     

Total R2_f1 0.124
Total R2_f2 0.008
Total R2_vr

1 0.004
Total R2_mr 0.331
Total R2_vk

1 0.040
Total R2_vk

2 0.031
Total R2_mk 0.223
Total R2_vh

1 0.034
Total R2_vh

2 0.005
Total R2_mh 0.139

Level-2-class specific R-squared measures                                                          

h = 1 h = 2

Level-2-class-specific R2_f1 0.004 0.174
Level-2-class-specific R2_f2 0.063 0.008
Level-2-class-specific R2_vr

1 0.007 0.004
Level-2-class-specific R2_mr 0.546 0.314
Level-2-class-specific R2_vk

1 0.003 0.063
Level-2-class-specific R2_vk

2 0.037 0.141
Level-2-class-specific R2_mk 0.205 0.163

kh-class-combination specific R-squared measures

k = 1, h = 1 k = 2, h = 1 k = 3, h = 1 k = 1, h = 2 k = 2, h = 2 k = 3, h = 2

kh-class-combination-specific R2_f1 0.008 0.112 0.009 0.030 0.366 0.001
kh-class-combination-specific R2_f2 0.111 0.054 0.598 0.162 0.023 0.596
kh-class-combination-specific R2_vr

1 0.010 0.006 0.005 0.009 0.005 0.005
kh-class-combination-specific R2_mr 0.804 0.528 0.388 0.737 0.386 0.398

14See software review in Rights and Sterba (2018); for select multilevel regression mixtures, Mplus and Latent GOLD (Vermunt & Magidson, 2013) provide a combination- 
source measure analogous to a class-specific R2_f, however, theirs is not able to be decomposed into R2_f1+ R2_f2 and is not accompanied by the other class-specific 
single-sources measures discussed here in Tables 1 and Tables 3. Latent GOLD also provides a total combination-source measure that is again not able to be 
decomposed into its constituent f, v, and m sources (which limits interpretability because these constituent sources f, v, and m substantively mean very different 
things).
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only include random effects (i.e., there is only one class) or 
only include classes (i.e., there are no random effects), as 
follows. If there is only one class (K =1 and H =1), then (a) 
the L1MIX, L2MIX, and L1L2MIX would simplify to 
a conventional (i.e., non-mixture) multilevel model, (b) 
the potential sources of explained total variance would 

simplify to no longer include vk
1; vk

2;mk,vh
1; vh

2;mh (therefore 
total R2 vk

1 ¼ R2 vk
2 ¼ R2 mk ¼ R2 vh

1 ¼ R2 vh
2 ¼ R2 mh ¼ 0), 

and (c) the total measures that can be constructed from 
remaining sources f1; f2; vr

1;mr in Table 1 (Column 4) and 
Table 3 (Column 7) would match those total measures in 
the existing R-squared framework for conventional (i.e., 

Figure 2. River plot depicting the single-source level-2 class-specific R-squared measures for the K = 3, H = 2 L1L2MIX model predicting mathematics achievement for 
students nested within schools .
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non-mixture) multilevel models from Rights and Sterba 
(2019). If, on the other hand, there are only classes and 
no random effects, then (a) the L1MIX, L2MIX, and 
L1L2MIX would simplify to locally-independent single- 
level (for L1MIX) or multilevel (for L2MIX, L1L2MIX) 
regression mixture models, and (b) the potential sources 
of explained variance would no longer include vr

1 and mr 
(and therefore Total R2_vr

1= R2_mr = 0 and level-2-class- 
specific R2_vr

1= R2_mr = 0 and kh-class-combination-specific 
R2_vr

1= R2_mr = 0).

Limitations and future directions

In the current paper we focus on within-class models that 
are linear and have normally distributed within-class resi
duals. Such normal mixtures are the most common kind of 
mixture applied in practice (see review in Sterba et al., 
2012). Future research could consider extensions of this 
framework of R-squared measures to accommodate alter
native within-class level-1 residual distributions for general
ized multilevel mixtures. The current framework also 
pertains to two levels of hierarchical nesting, and pertains 
to quantifying explained variance in a single outcome vari
able at a time. Future work could consider extensions to 
higher levels of nesting, to nonhierarchical nesting or par
tial nesting, and to multivariate outcomes.

Each R-squared measure in the framework presented 
here can, in theory, be estimated with a different degree 
of precision, which would be useful to report. In particu
lar, confidence intervals can be used to convey the preci
sion of effect size measures, such as R-squared measures 

suggested for constructing confidence intervals for 
R-squared measures in conventional multilevel models, 
there are multiple ways to bootstrap nested data 
(Goldstein, 2011) and an evaluation of the relative merit 
of each approach necessitates further methodological 
study. For instance, alternative possibilities include resam
pling level-1 units without regard to cluster membership, 
resampling clusters while keeping units within clusters 
intact, resampling level-1 units within each cluster for 
the original set of clusters, resampling clusters and then 
resampling units within each cluster, or resampling level-1 
and level-2 residuals. Utilizing bootstrapping for confi
dence interval construction in the context of mixture 
models (e.g., Cole & Bauer, 2016) holds promise, but 
even in the context of single-level mixture models with 
no random effects it poses inherent challenges from poorly 
separated classes (due to the label switching problem 
manifesting across bootstrap resamples; Taushanov & 
Berchtold, 2019) and from outlying cases (whose influence 
can be amplified in certain bootstrap resamples; Jaki et al., 
2018). Hence, the development and evaluation of boot
strap approaches for constructing confidence intervals for 

R-squared measures in the context of multilevel mixtures 
with random effects is an area recommended for future 
methodological work.

Recommendations and conclusions

For applied researchers interested in using R-squared measures 
to help describe and interpret their fitted multilevel mixture, we 
recommend constructing the set of single-source total and class- 
specific R-squareds in the present framework as illustrated 
empirically in Tables 2 and Tables 4. For the most complete 
understanding, we suggest considering these measures in juxta
position with each other, rather than pinpointing one single- 
source measure or combination-source measure to look at in 
isolation. In conclusion, we hope this paper, and its accompany
ing software, serves to increase access to and awareness of 
R-squared effect size measures relevant to popular multilevel 
mixtures with both classes and random effects.
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Appendix

Table A1. Definition of symbols in the model-implied total outcome variance expression (Eqn. A1 in Appx. Table 2) for a multilevel regression mixture model with classes 
at only one level (i.e., L1MIX or L2MIX).*

Symbol* Definition Computation*

γwð�Þ Marginalized within-cluster regression coefficients (weighted across-class avg) PH

h¼1
πhγwðhÞ

Φw Covariance matrix of all elements of xw
ij across all observations E xw

ij xw
ij
0

h i
� E xw

ij

h i
E xw

ij
0

h i

Zw Covariance matrix of within-cluster regression coefficients across class PH

h¼1
πhγwðhÞγwðhÞ0 �

PH

h¼1
πhγwðhÞ

� �
PH

h¼1
πhγwðhÞ0

� �

γbð�Þ Marginalized within-cluster regression coefficients (weighted across-class average) PH

h¼1
πhγbðhÞ

Φb Covariance matrix of all elements of xb
ij across all observations E xb

ij xb
ij
0

h i
� E xb

ij

h i
E xb

ij
0

h i

Zb Covariance matrix of between-cluster regression coefficients across class PH

h¼1
πhγbðhÞγbðhÞ0 �

PH

h¼1
πhγbðhÞ

� �
PH

h¼1
πhγbðhÞ0

� �

mb Vector of means of elements of xb
ij E xb

ij

h i

T • Marginalized random effect covariance matrix (weighted across-class average). PH

h¼1
πhTh

Φr Covariance matrix of all elements of wij across all observations E wij wij
0

� �
� E wij
� �

E wij
0

� �

τ00
• Marginalized random intercept variance (weighted across-class average). PH

h¼1
πhτh

00

θ • Marginalized level-1 residual variance (weighted across-class avg) PH

h¼1
πhθh

*Equations and symbols are shown for L2MIX. For L1MIX, replace h, H, T •, τ00
• , Z with k, K, T; τ00, Ω, respectively. Dot superscript means “averaged across class.”

Table A2. Constructing total R2 measures for multilevel regression mixtures with classes at only one level (i.e., L1MIX or L2MIX model) using the variance decomposition 
derived in the Online Supplement and using the symbols defined in Appendix Table A1.

Constituent parts to construct 
total R2s Definition‡ Eqn. # Equation*

Denominator of total R2 Total outcome variance Eqn (A1) varðyijjdj¼hÞ ¼ varðxw0
ij γ

wðhÞ þ xb0
j γ

bðhÞ þ w0 ij uj þ εijÞ

¼ γwð�Þ0Φwγwð�Þ þ γbð�Þ0Φbγbð�Þ þ trðT�ΦrÞ þ τ�00

þ trðZw ΦwÞ þ trðZbΦbÞ þ mb0 Zbmb þ θ�

Numerator of total R2: Each term 
is included one at a time in 
the numerator of single- 
source measures

Variance attributable to source f1 Eqn (A2) γwð�Þ0Φwγwð�Þ

Variance attributable to source f2 Eqn (A3) γbð�Þ0Φbγbð�Þ

Variance attributable to source vr
1 Eqn (A4) trðT�ΦrÞ

Variance attributable to source mr Eqn (A5) τ�00

Variance attributable to source vh
1 Eqn (A6) trðZw ΦwÞ

Variance attributable to source vh
2 Eqn (A7) trðZbΦbÞ

Variance attributable to source mh Eqn (A8) mb 0Zbmb

‡=Sources (f1, f2, vh
1 , vh

2 , mh , vr
1 mr ) are defined in the manuscript text and also in the manuscript’s Table 1. *Equations are shown for L2MIX; for L1MIX, replace h, H, dj, T

� , 
τ�00, and Z with k, K, cij, T; τ00, and, Ω, respectively.

Table A3. Constructing class-specific R2 measures for multilevel regression mixtures with classes at only one level (i.e., L1MIX or L2MIX) using the variance decomposition 
derived in the Online Supplement and using the symbols defined in Appendix Table A1.

Constituent parts to construct 
class-specific R2s Definition‡ Eqn. # Equation*

Denominator of class-specific R2 Class-specific outcome variance Eqn (A9) varijjhðyijjdj¼hÞ ¼ varijjhðx
w0
ij γ

wðhÞ þ xb0
j γ

bðhÞ þ w0 ij uj þ εijÞ

¼ γwðhÞ0ΦwγwðhÞ þ γbðhÞ0ΦbγbðhÞ þ trðThΦrÞ þ τh
00 þ θh

Numerator of class-specific R2: Each term is 
included one at a time in the numerator of 
single-source measures

Variance attributable to source f1 Eqn (A10) γwðhÞ0ΦwγwðhÞ

Variance attributable to source f2 Eqn (A11) γbðhÞ0ΦbγbðhÞ

Variance attributable to source vr
1 Eqn (A12) trðThΦrÞ

Variance attributable to source mr Eqn (A13) τh
00

‡= Sources (f1,f2,vr
1 mr ) are defined in the manuscript text and also in the manuscript’s Table 1. 

*Equations are shown for L2MIX; for L1MIX, replace h, H, dj, Th, and τh
00 with k, K, cij,, T, and τ00 respectively.
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Table A4. Definition of symbols in the population model-implied total outcome variance expression (Eqn A14 in Appx. Table A5) for the multilevel regression mixture 
with classes at both levels (L1L2MIX).

Symbol Definition Computation

γw (••) Marginalized within-cluster regression coefficients (weighted 
across-class-combination average)

PH

h¼1

PK

k¼1
πkhγwðkhÞ

Φw Covariance matrix of all elements of xw
ij across all observations E xw

ij xw
ij
0

h i
� E xw

ij

h i
E xw

ij
0

h i

Ωw Covariance matrix of within-cluster regression coefficients across 
L1 class within L2 class

XH

h¼1

XK

k¼1

πkhðγwðkhÞ �
XK

k¼1

πkhγwðkhÞÞðγwðkhÞ �
XK

k¼1

πkhγwðkhÞÞ0

�
XH

h¼1

XK

k¼1

πkhðγwðkhÞ �
XK

k¼1

πkhγwðkhÞÞ

 !
XH

h¼1

XK

k¼1

πkhðγwðkhÞ �
XK

k¼1

πkhγwðkhÞÞ0

 !

Zw Covariance matrix of within-cluster regression coefficients across 
L2 class

PH

h¼1
πh PK

k¼1
πkhγwðkhÞ

� �
PK

k¼1
πkhγwðkhÞ0

� �

�
PH

h¼1
πh P

K

k¼1
πkhγwðkhÞ

� �
PH

h¼1
πh P

K

k¼1
πkhγwðkhÞ0

� �

γb (••) Marginalized within-cluster regression coefficients (weighted 
across-class-combination average)

PH

h¼1

PK

k¼1
πkhγbðkhÞ

Φb Covariance matrix of all elements of xb
ij across all observations E xb

ij xb
ij
0

h i
� E xb

ij

h i
E xb

ij
0

h i

Ωb Covariance matrix of between-cluster regression coefficients 
across L1 class within L2 class

XH

h¼1

XK

k¼1

πkhðγbðkhÞ �
XK

k¼1

πkhγbðkhÞÞðγbðkhÞ �
XK

k¼1

πkhγbðkhÞÞ0

�
XH

h¼1

XK

k¼1

πkhðγbðkhÞ �
XK

k¼1

πkhγbðkhÞÞ

 !
XH

h¼1

XK

k¼1

πkhðγbðkhÞ �
XK

k¼1

πkhγbðkhÞÞ0

 !

Zb Covariance matrix of between-cluster regression coefficients 
across L2 class

PH

h¼1
πh PK

k¼1
πkhγwðkhÞ

� �
PK

k¼1
πkhγbðkhÞ0

� �

�
PH

h¼1
πh P

K

k¼1
πkhγbðkhÞ

� �
PH

h¼1
πh P

K

k¼1
πkhγbðkhÞ0

� �

mb Vector of means of elements of xb
ij E xb

ij

h i

T • Marginalized random effect covariance matrix (weighted across-L2 
-class average)

PH

h¼1
πhTh

Φr Covariance matrix of all elements of wij across all observations E wij wij
0

� �
� E wij
� �

E wij
0

� �

τ00
• Marginalized random intercept variance (weighted across-L2-class 

average)
PH

h¼1
πhτh

00

θ •• Marginalized L1 residual variance (weighted across-class- 
combination average)

PH

h¼1

PK

k¼1
πkhθkh

Table A5. Constructing total R2 measures for a multilevel regression mixture with classes at both levels (L1L2MIX) using the variance decomposition derived in the 
Online Supplement and using the symbols defined in Appendix Table A4.

Constituent parts to construct total R2s Definition‡ Eqn. # Equation

Denominator of total R2 Total outcome variance Eqn (A14) varðyijjcij¼k;dj¼hÞ ¼ varðxw0
ij
γwðkhÞ þ xb0

j γ
bðkhÞ þ w0ijuj þ εijÞ

¼ γwð��Þ0Φwγwð��Þ þ γbð��Þ0Φbγbð��Þ þ trðT�ΦrÞ þ τ��00

þ tr Ωw Φwð Þ þ tr ΩbΦb� �
þ mb0Ωbmb

þ tr Zw Φwð Þ þ tr ZbΦb� �
þ mb0 Zbmb þ θ��

Numerator of total R2: Each term is included 
one at a time in the numerator of single- 
source measures

Variance attributable to source f1 Eqn (A15) γwð��Þ0Φwγwð��Þ

Variance attributable to source f2 Eqn (A16) γbð��Þ0Φbγbð��Þ

Variance attributable to source vr
1 Eqn (A17) trðT�ΦrÞ

Variance attributable to source mr Eqn (A18) τ�00
Variance attributable to source vk

1 Eqn (A19) trðΩw ΦwÞ

Variance attributable to source vk
2 Eqn (A20) trðΩbΦbÞ

Variance attributable to source mk Eqn (A21) mb 0Ωbmb

Variance attributable to source vh
1 Eqn (A22) trðZw ΦwÞ

Variance attributable to source vh
2 Eqn (A23) trðZbΦbÞ

Variance attributable to source mh Eqn (A24) mb 0Zbmb

‡ = Sources (f1,f2,vk
1,vk

2,vh
1 ,vh

2 ,mk ,mh,vr
1,mr ) were defined in the manuscript text and in the manuscript’s Table 3.
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Table A6. Constructing level-2-class-specific R2 measures for a multilevel regression mixture with classes at both levels (L1L2MIX) using the variance decomposition 
derived in the Online Supplement and using the symbols defined in Appendix Table A4.

Constituent parts to construct level-2-class- 
specific R2s Definition‡ Eqn. # Equation

Denominator of level-2-class-specific R2 level-2 class-specific outcome variance Eqn (A25) varkjhðyijjcij¼k;dj¼hÞ

¼ varkjhðx
w0
ij
γwðkhÞ þ xb0

j γ
bðkhÞ þ w0ijuj þ εijÞ

¼ γwð�hÞ0Φwγwð�hÞ þ γbð�hÞ0Φbγbð�hÞ þ trðThΦrÞ þ τh
00

þ tr ΩwðhÞΦw
� �

þ tr ΩbðhÞΦb
� �

þ mb0ΩbðhÞmb þ θh

Numerator of level-2-class-specific R2: Each 
term is included one at a time in the 
numerator of single-source measures

Variance attributable to source: f1 Eqn (A26) γwð�hÞ0Φwγwð�hÞ

Variance attributable to source f2 Eqn (A27) γbð�hÞ0Φbγbð�hÞ

Variance attributable to source: vr
1 Eqn (A28) trðThΦrÞ

Variance attributable to source mr Eqn (A29) τh
00

Variance attributable to source vk
1 Eqn (A30) trðΩwðhÞΦwÞ

Variance attributable to source vk
2 Eqn (A31) trðΩbðhÞΦbÞ

Variance attributable to source mk Eqn (A32) mb 0ΩbðhÞmb

‡ = Sources (f1; f2; vk
1; vk

2;mk; vr
1;mr ) were defined in the manuscript text and in the manuscript’s Table 3.

Table A7. Constructing kh-class-combination-specific R2 measures for a multilevel regression mixture model with classes at both levels (L1L2MIX) using the variance 
decomposition derived in the Online Supplement and using the symbols defined in Appendix Table A4.

Constituent parts to construct R2s Definition‡ Eqn. # Equation

Denominator of class-combination-specific R2 class-combination (kh) specific 
outcome variance

Eqn (A33) varijjkh yijjcij¼k;dj¼h

� �

¼ varijjkhðx
w
0

ij γ
w khð Þ þ xb

0

j γb khð Þ þ w
0

ij uj þ εijÞ

¼ γw khð Þ0Φwγw khð Þ þ γb khð Þ0Φbγb khð Þ þ tr ThΦr� �

þ τh
00 þ θkh

Numerator of class-combination-specific R2:  
Each term is included one at a time in the 
numerator of single-source measures

Variance attributable to source f1 Eqn (A34) γwðkhÞ 0ΦwγwðkhÞ

Variance attributable to source f2 Eqn (A35) γbðkhÞ0ΦbγbðkhÞ

Variance attributable to source: vr
1 Eqn (A36) trðThΦrÞ

Variance attributable to source mr Eqn (A37) τh
00

‡ = Sources (mr ,vr
1,f1,f2) were defined in the manuscript text and in the manuscript’s Table 3
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