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ABSTRACT

When comparing multilevel models (MLMs) differing in fixed and/or random effects, research-
ers have had continuing interest in using R-squared differences to communicate effect size
and importance of included terms. However, there has been longstanding confusion regarding
which R-squared difference measures should be used for which kind of MLM comparisons.
Furthermore, several limitations of recent studies on R-squared differences in MLM have led to
misleading or incomplete recommendations for practice. These limitations include computing
measures that are by definition incapable of detecting a particular type of added term, consid-
ering only a subset of the broader class of available R-squared difference measures, and incor-
rectly defining what a given R-squared difference measure quantifies. The purpose of this
paper is to elucidate and resolve these issues. To do so, we define a more general set of total,
within-cluster, and between-cluster R-squared difference measures than previously considered
in MLM comparisons and give researchers concrete step-by-step procedures for identifying
which measure is relevant to which model comparison. We supply simulated and analytic
demonstrations of limitations of previous MLM studies on R-squared differences and show
how application of our step-by-step procedures and general set of measures overcomes each.
Additionally, we provide and illustrate graphical tools and software allowing researchers to
automatically compute and visualize our set of measures in an integrated manner. We con-
clude with recommendations, as well as extensions involving (a) how our framework relates to
and can be used to obtain pseudo-R-squareds, and (b) how our framework can accommodate
both simultaneous and hierarchical model-building approaches.
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Social science researchers often compare multilevel
models (MLMs) differing in fixed and/or random
effects using, for instance, information criteria
(Hamaker et al., 2011; Pu & Niu, 2006) or likelihood
ratio tests (Stram & Lee, 1994; Vong et al, 2012).
In this MLM comparison context, researchers have
also had continuing interest in using differences in
R-squared (AR®) measures as a way to communicate
effect size and importance of included terms (e.g.,
American Psychological Association, 2008; Bickel,
2007; Dedrick et al., 2009; Edwards et al, 2008;
LaHuis et al, 2014; Nakagawa & Schielzeth, 2013;
Peugh, 2010; Xu, 2003). However, there has been con-
fusion regarding which of the available MLM R®
measures should be used in comparing different types
of MLMs. Methodologists have sought to inform this
practice with several recent simulation studies on the
use of R? in MLM comparisons (Jaeger, Edwards, Das,

& Sen, 2017; Jaeger, Edwards, & Gurka, 2019; LaHuis
et al, 2014; Orelien & Edwards, 2008; Wang &
Schaalje, 2009). However, the procedures used in these
studies had one or more of the following three limita-
tions (listed here but explained later):

1. Using a measure that, by definition, cannot reflect
the model manipulation because the term(s)
added to the model do not affect the components
considered to be explained variance.

2. Using a measure that, by definition, cannot reflect
the model manipulation because the term(s)
added to the model do not affect the components
considered to be unexplained variance.

3. Using only measures reflecting differences in total
variance explained, while neglecting or incorrectly
characterizing measures reflecting differences in
level-specific variance explained.
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These limitations led recent simulation studies to
provide some misleading and incomplete recommen-
dations for practice, such as the recommendation to
avoid altogether a measure that should not be used
for certain purposes but could instead be used for
other purposes (as we will show). Here we make the
following changes to previous procedures. First, rather
than the common (but, as we explain later, unfruitful)
previous practice of seeking a single, one-size-fits-all
R* measure relevant to all kinds of MLM compari-
sons, we define a cohesive set of measures for model
comparison; this set is sufficiently general to allow
researchers to convey effect size for any MLM
comparison that has been investigated in previous
simulations on AR® for MLM. Only 4 out of the 12
AR?> measure(s) in this set have been used in
previous MLM comparisons. Furthermore, we provide
researchers with a clear, step-by-step procedure
for identifying which AR> measure(s) within our set
reflect differences in explained variance relevant to
which specific term(s) that could be included/excluded
in a given model comparison. Additionally, we explain
and concretely demonstrate how the three limitations
(listed above) of previous simulation studies on MLM
AR? arose from not using our step-by-step procedures
and from not having access to and information about
certain measures within our set.

The remainder of this paper proceeds as follows.
First, we review the multilevel data model. Second,
we briefly review a general framework of MLM R’
measures that was originally developed for evaluating
a single hypothesized model in isolation. Third,
we show how this framework can be adapted to,
and interpreted in, the context of model comparison.
Fourth, we describe step-by-step procedures for
identifying AR® measures that by definition reflect
specific kinds of explained variance differences
between models. Fifth, we demonstrate each of the
three limitations (listed above) of prior MLM AR’
simulation studies, and show how they can be avoided
by using our framework and procedures. Sixth, we
demonstrate our recommended procedure for using
AR® in an illustrative application comparing six fitted
MLMs using software newly developed for this
purpose. We conclude with discussion of implications
and recommendations for practice and note several
extensions and avenues for future research.

Review of the multilevel data model

To begin, we review the multilevel data model. The
observation-level (level-1) model is:
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P
Vi = Boj + D Byvei + €5 (1)
p=1
e;j~N(0,0%)

Here, we are modeling some continuous outcome y;
for observation i nested within cluster j. The level-1
residual e; is normally distributed with variance ¢
The intercept and slopes may vary by cluster, where
Bo; is cluster j’s intercept and f,; is cluster j's slope
for the pth level-1 predictor vy; (p=1,...,P). The
cluster-level (level-2) model is given as:

Q
Boj = Y00 + ZVOqij + U
=)
! (2)

Q
B = Tpo + ZVPquJ T Uy
q=1
u; ~ MVN(0,T)

The cluster-specific intercept (f;) is composed of
a fixed component (yy,), plus the sum of all Q level-2
predictors (z4’s; =1, ...,Q) multiplied by their slopes
(704's) plus the cluster-specific intercept residual (u).
Similarly, the pth cluster-specific slope (f,) is
composed of a fixed component (7,), plus the sum of
all Q level-2 predictors (z;’s) multiplied by their
slopes  (y,,'s), plus the pth cluster-specific slope
residual (up;). Each Vg thus denotes a cross-level
interaction between z; and vy;. Certain terms in the
level-2 model may be set to 0; for instance, if a level-2
predictor z; is not used to model a cluster-specific
intercept or slope, the corresponding 7, or 7,,
be 0. Level-2 residuals in w;, a (P+1)x1 vector
containing ug; and P uy’s, are multivariate normally
distributed with covariance matrix T. For a fixed
intercept model, the ug;’s are all set to 0; similarly,
a fixed slope for the pth level-1 predictor is obtained
by setting the u,’s to 0.

For simplicity of presentation and to facilitate later
computation, the above level-1 and level-2 models can
be combined into a single reduced-form expression,
separating out the fixed components, the y’s, and the
random components, the u’s, like so:

Q P P Q
Yij = | Yoo T Z%quii + ZyPOVPiJ' T ZVP"fZVPqZ‘li
q=1 p=1 p=1 =1

would

P
+ | o+ Y upvp | ey
p=1

3)

which can be further simplified into vector form as:
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yij = x;jy + w;juj + ejj. (4)

The first part of the Equation (4) model reflects the
fixed portion, with x;j denoting a row vector of 1 (for
the intercept) and all (level-1 or level-2) predictors, and
y denoting a column vector of corresponding fixed
effects (ie, fixed components of the intercept and
slopes). Cross-level interaction terms would also go into
x;j, with their corresponding fixed component going
into y. The second part of the Equation (4) model
denotes the random portion, with wj; denoting a row
vector of 1 (for the intercept) and all (level-1) predictors
and uw; denoting a column vector of corresponding
random effect residuals (some of which would be set to
0 if a given slope or the intercept is fixed).

Hereafter, we assume that all level-1 predictors in the
model are cluster-mean-centered for the following two
reasons.' First, this allows researchers to substantively
interpret slopes as reflecting purely within-cluster effects
or between-cluster effects rather than an “uninterpretable
blend” of the two (Cronbach, 1976), as has been widely
recommended (e.g., Algina & Swaminathan, 2011;
Curran et al. 2012; Enders & Tofighi, 2007; Hofmann &
Gavin, 1998; Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012). Second, this facilitates the decomposition
of proportions of outcome variance explained into
separate within-cluster and between-cluster portions
(Rights & Sterba, 2019). The cluster-mean-centered
model can be given as:

yij =x; 7" + x]l?'yb + Wit + ej. (5)

In this re-expression, the fixed portion is broken
down into within-cluster and between-cluster parts,
with x}!" denoting a vector of level-1 predictors (also
including any cross-level interactions), x]l»” denoting a
vector of 1 (for the intercept) and level-2 predictors,
and y" and Yy’ denoting the corresponding within-

cluster and between-cluster fixed effects, respectively.

Review of a general framework of MLM
R* measures

Rights and Sterba (2019) developed a general framework
of MLM R’ measures that subsumed previous
commonly used MLM R*> measures (from: Aguinis &
Culpepper, 2015; Hox, 2010; Johnson, 2014; Kreft & de
Leeuw, 1998; Raudenbush & Bryk, 2002; Snijders &
Bosker, 2012; Vonesh & Chinchilli, 1997; Xu, 2003) as
special cases, identified redundancies among previous
measures, and provided new measures to fill particular

"Nonetheless we address AR* computation for non-cluster-mean-centered
MLMs in the discussion.

substantive needs. First, we briefly review this frame-
work. Then we describe how to adapt it to the context
of model comparison.

Full partitioning of variance

The general MLM R’ framework employed the
following partitioning of model-implied total outcome
variance.

model-implied total outcome variance
biyb
= var(xj'y" +x"7" + wiu; + e;) . (6)
= DYy + Y @YY 4 tr(TE) + 190 + 02

This is a more complete partitioning than used
previously for developing MLM R?> measures (e.g., by
Snijders & Bosker, 2012; Nakagawa & Schielzeth,
2013; or Johnson, 2014), and hence it provided
more possibilities and flexibility in defining measures.
Here, ®" denotes the covariance matrix of lejV, and
@ denotes the covariance matrix of x]l?. Also, X is
the covariance matrix of w;] The level-2 random inter-
cept variance is given as too. Equation (6) represents the
sum of five distinct variances, given in Equations
(7)-(11), each of which reflect variance attributable to

one of five sources. Below we supply shorthand symbols
2

» WMo« N«

for the first four sources (“f;,” “f,” “V°, “m”).

YW ®"y¥ = variance attributable to level-1 predictors
via fixed components of slopes
shorthand : variance attributable to “f;”

(7)
YP'®°y? = variance attributable to level-2 predictors
via fixed components of slopes
shorthand : variance attributable to “f,”

(8)
tr(TX) = variance attributable to level-1 predictors
via random slope variation/covariation
shorthand : variance attributable to “v”
(9)

Top = variance attributable to cluster-specific outcome
means via random intercept variation
shorthand : variance attributable to “m”

(10)

0% = variance attributable to level-1 residuals (11)

The model-implied within-cluster outcome variance
is given as:

Note that the level-2 random intercept-slope covariances drop out of the
model-implied total outcome variance expression when level-1 predictors
are cluster-mean-centered (see Rights & Sterba [2019] Appendix A
Equation (A7). For non-cluster-mean-centered models (discussed later),
the intercept-slope covariances are involved in the computation of
variance attributable to source m (see Rights & Sterba [2019] Table 5).



model-implied within-cluster outcome variance

12
=y ®"y" + tr(TE) + o> (12)

Note that this expression includes variance attribut-
able to sources “f;” and “v.”

Finally, the model-implied between-cluster variance
is given as:

model-implied between-cluster outcome variance

(13)
= 7Y@ y" + 1o

Note that this expression includes variance attributable to
sources “f,” and “m.”

Throughout this paper, we make a general
distinction between outcome variance versus residual
variance. Level-1, or within-cluster, outcome variance
refers to variance in the outcome (y;) across level-1
units within level-2 units (i.e., VariUQ/ij)), which can
include variance attributable to each of f;, v, and
level-1 residuals, as shown in Equation (12). Level-1

»

residual variance, in contrast, solely refers to variance
in the level-1 residuals, ie., ¢. Similarly, level-2, or
between-cluster, outcome variance refers to variance in
the outcome across level-2 units (i.e., var;(y;;)), which
can include variance attributable to each of f, and m,
as shown in Equation (13). Level-2 residual variance,
in contrast, refers to either variance in the random
intercept and/or variance in a random slope (i.e.,
diagonal elements of T).?

Defining total and level-specific MLM R*> measures

An R’ measure can be generically defined in the
population as

R explained variance
outcome variance

(14)

Hence, defining an R®> for MLM involves two
considerations: 1) what outcome variance is of interest
(i.e., “what goes into the denominator?”), and 2) what
sources contribute to explained variance (i.e., “what
goes into the numerator?”). Rights and Sterba’s (2019)
framework of R* measures for MLM is reviewed
in Appendix A, wherein each measure’s subscript
refers to what it considers outcome variance (in the
denominator) and each measure’s superscript refers to

*This implies, perhaps counterintuitively, that one type of level-2 residual
variance (the random slope variance) only contributes to level-1 outcome
variance, not level-2 outcome variance. While one might expect that the
level-2 residual variance would be a subset of the level-2 outcome
variance, in fact it is not because, although a random slope residual
varies only between cluster, the product of a cluster-mean-centered level-
1 variable and a random slope residual varies only within-cluster and thus
contributes only to level-1 outcome variance (as explained in Rights &
Sterba, 2019).
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what it considers sources of explained variance (in
the numerator).

Regarding “what goes into the denominator?” of an
MLM R?, there are three possibilities: total vs. within-
cluster. vs. between-cluster outcome variance
(Equations (6) vs. (12) vs. (13)). Hence, the frame-
work in Appendix A distinguishes among: total R?
measures, (having total variance in the denominator
as denoted with an “t” subscript), within-cluster R*
measures
denominator as denoted with a “w” subscript), and
between-cluster R> measures (having between-cluster
variance in the denominator as denoted with a
“b” subscript).

Regarding “what goes into the numerator?” of a
total MLM R* measure, Rights and Sterba’s (2019)
framework reviewed in Appendix A shows that vari-

«wro» o« »

ance attributable to the superscripted sources “f;” “f,,

v” and/or “m” (from Equations (7)-(10)) can be used
singly to create a single-source measure (quantifying

«

variance explained by a single source, i.e., either “f;”,

(having within-cluster variance in the

“f7, V7, or “m”) or in combination to create a com-
(quantifying
explained by some combination of “f;”, “f,”, “v”, and
“m”). In the numerator of a within-cluster MLM R?
measure, superscripted relevant sources “f;” or “v” can
be used singly or in combination, and in the numer-
ator of a between-cluster MLM R? measure, super-
scripted relevant sources “f,” or “m” are used singly.*
To facilitate interpreting all measures in the
framework together in an integrated manner, Figure 1
graphically depicts all of these MLM R’s for a hypo-
thetical example. The left bar contains total R’s, the
middle bar contains within-cluster R%s, and the right
bar contains between-cluster R’s. FEach shaded
segment in a bar represents a single-source R* meas-
ure with the corresponding symbol from Appendix A
superimposed on each segment. The legend also
indicates which specific source is represented by each
segment. Combination-source R®> measures from
Appendix A are visualized by combining shaded seg-
ments in a given bar chart. Note that the blank
(white) portion in a bar chart represents the propor-
tion of scaled level-1 residual variance, which is not

bination-source measure variance

included as a source of explained variance in

any measure.

“Note that it is unnecessary to compute a combined-source between-
cluster measure, since the two sources “f,” and “m” together account for
all of the between-cluster variance. That is, by definition, f, reflects
between-cluster variance accounted for by level-2 predictors and m
reflects between-cluster variance that is not accounted for by level-
2 predictors.
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Figure 1. Review: Graphical depiction of multilevel model R measures in Rights and Sterba’s (2019) R? framework for a single fit-
ted multilevel model. Here hypothetical model results are shown (see Appendix A for more details).
Notes. The left, middle, and right bar charts depict the decomposition of proportions of scaled total, within-cluster, or between-
cluster variance, respectively. As such, the left bar chart contains total R? measures. The middle bar chart contains within-cluster R?
measures. The right bar chart contains between-cluster R%. Each shaded segment in a given bar represents a single-source R>
measure and the corresponding symbol from Appendix A is superimposed on each segment. The legend also indicates which spe-
cific source is represented by each segment; shorthand symbols for sources “f;", “f," “v”, and “m” were defined in the manuscript.
Combination-source measures from Appendix A are visualized by combining shaded segments within a given bar. Total single-
source measures are: R, RA™ R and  RX™. Total combination-source measures are: RAT = gAM) 4 gAR)
Cohm) () p2B) L p200) L p2(m) appier: ) ) bw'
Rf(fv) = Rf(f‘) + Rf(m + Rf(v)t, and Rt(fvm) =R+ R + R + R:™. Within-cluster single-source measures are: R, and R
Within-cluster combination-source measures are: R,

total within

fv(f‘v) = Rfv(f{) + Rﬁ,(v). Between-cluster single-source measures are: Rim) and Rg?lm).
Note that the blank (white) portion in a bar chart represents the scaled level-1 residual variance, which is not included as a source

of explained variance in any measure.

Applying the MLM R? framework to the
context of model comparison

Many methods with various strengths and weaknesses
exist for helping researchers compare and rank com-
peting MLMs to aid in model building, such as infor-
mation criteria or likelihood ratio tests (for reviews,
see Dimova, Markatou, & Talal, 2011; Dunson, 2008;
Fan & Li, 2012; Miiller, Scealy, & Welsh, 2013; Ryoo,
2011). MLM AR’s can complement these methods by
communicating the effect size—on a familiar propor-
tion metric ranging from 0 to 1—associated with add-
ing terms to the MLM.

In recent methodological simulation studies (Jaeger
et al.,, 2017; LaHuis et al.,, 2014; Orelien & Edwards,
2008; Wang & Schaalje, 2009), several R> measures
were used in the context of MLM comparisons. In
these simulation studies, each R* measure was com-
puted for two candidate models, with their difference
here denoted AR’. For a given pair of candidate
MLMs, these simulations evaluated each such AR?

measure’s ability to reflect term(s) present in the
population model (by seeing whether each R* measure
increases when these term(s) were added to the fitted
model). Typically, these simulation studies’ ultimate
goal was explicitly or implicitly to find a single one-
size-fits-all MLM AR’ measure that could be inter-
preted on its own and would be sensitive to both
fixed effects and random effects misspecification.
However, no measure was found to fulfill the omnibus
goal of serving as a one-size-fits-all MLM AR® meas-
ure of effect size.” Generalizing these results, this led

*We do not consider either Edwards et al’s (2008) R-squared-beta
measure (also implemented by Jaeger et al., 2017) or Jaeger et al.s
(2019) R-squared-Sigma measure as an omnibus effect size measure for
MLM comparisons that include differences in both fixed and random
effects, and these measures’ authors agree with us (see Edwards et al.,
[2008, p. 6138, 6154] and Jaeger et al. [2019, p. 169]). In particular, R-
squared-beta was defined for “comparing nested mean models with the
same covariance structure” and recommended “for assessing fixed effects
in the linear mixed model” (Edwards et al., [2008] p. 6138, 6154).
Subsequently, R-squared-Sigma was defined specifically to “conduct
covariance model selection” and recommended for use in comparing
models “differing only by covariance specification” (Jaeger et al., 2019, p.



some to wonder whether AR®> measures simply have
limited use in MLM comparisons altogether (e.g.,
Orelien & Edwards, 2008) and also led to a variety of
specific points of confusion addressed later in our sec-
tion on Limitations of procedures previously used for
comparing MLM R*.

Our goal here is fundamentally different in that
we are not seeking a one-size-fits-all AR® measure
for MLM comparisons that is sensitive to inclu-
sion/exclusion of any kind of fixed effect (including
a fixed intercept or fixed slopes of level-1 predic-
tors, level-2 predictors, and cross-level interactions)
or any kind of random effect (including random
intercepts and random slopes). Instead, we are
seeking a match between a given kind of manipula-
tion (e.g., a kind of term omitted from a more-par-
simonious Model A but included
complex Model B) and a single-source AR® measure
from our framework that is sensitive to this
manipulation, with the understanding that no
measure will be sensitive to all kinds of manipula-
tions. Rather, the single-source AR> measures can
be used as an integrative set which, taken together,
is sensitive to each kind of manipulation. Our
approach was foreshadowed by Kramer (2005) and
Edwards et al. (2008, p. 6138) who concluded that
“Different problems necessarily emphasize the
importance of different parts of a model—this is a
fundamental component to modeling a process and
cannot be resolved mathematically. Thus, there can
be no general definition of R*> for mixed models
that will cover every model.” Our role here is to
provide a clear, straightforward decision-making
procedure that leads researchers step-by-step to
identify which MLM AR’ measure can be used to
which kind of meaningful
between models. Before describing this procedure,
we begin by identifying and filling in some gaps in
critical background information that were left by
prior methodological studies of AR* for MLM.

in a more-

reflect difference

164, 178). However, neither R-squared-beta nor R-squared-Sigma
correspond  (even approximately) with the population-generating
proportion of variance attributable to any source (f, f,, f, v, m) or
combination of sources. (To see this, compare Jaeger et al's [2017]
simulation results in their Table 1 column 1 cell 4, and the difference
between cell 4 and cell 5, each to their corresponding population
generating quantities, which are listed in our Limitation #1 section. Also
compare Jaeger et al.’s [2019] simulation results in their Figure 1 [panel
labeled “Model”] with the population generating values of RZ™ =57,
RX®P =0, RZV =01, and R ™ =.10; these generating values were
computed using formulae outlined in Rights & Sterba, 2019). In contrast,
in the present paper, the AR* we discuss are tools to measure effect size,
interpretable as estimates of these meaningful population quantities
(following Kelley & Preacher, 2012).
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Full delineation of a set of AR?> measures

Prior simulation studies on AR* in MLM acknowledged
only a few of the possible AR® that could be used as
effect sizes for MLM comparisons. The first gap we fill
is to broaden these possibilities by delineating and
defining, in Table 1 Columns 1 and 2, AR? measures
that could be used in comparing MLMs; these are
organized into total vs. within-cluster vs. between-clus-
ter measures. The Table 1 AR* measures are obtained
by computing R*> measures in the Appendix A frame-
work (see Rights & Sterba, 2019) for both candidate
models (A and B), and then taking their difference.®
We clarify in Table 1 Column 3 that prior methodo-
logical studies evaluating AR*> for MLM comparisons
used measures equivalent in the population to 4 out of
the 12 AR?> measures listed (i.e, measures from
Johnson’s [2014] extension of Nakagawa and Schielzeth
[2013], from Snijders & Bosker [2012], from Xu
[2003], from Vonesh and Chinchilli [1997], and from
Raudenbush and Bryk [2002]). As such, 8 out of 12
AR* measures in Table 1 have not been recognized in
the methodological literature for the purposes of
MLM comparison.

Note that we exclude from Table 1 two existing AR
measures for the following reasons. First, though we
include in Table 1 measures equivalent in the popula-
tion to Raudenbush and BryK’s (2002, p. 79) propor-
tion reduction in residual variance at level-1 computed
using a random-intercept-only null model for each

candidate model A and B (here termed ARfv(flV)) and
Raudenbush and Bryk’s (2002, p. 74) proportion reduc-
tion in random intercept variance at level-2 computed
using a random-intercept-only null model for each

candidate model A and B (here termed ARi(fZ)), we do
not include a measure corresponding to Raudenbush
and Bryk’s (2002, p. 85) proportion reduction in ran-
dom slope variance at level-2 because it is not interpret-
able as either a total, within-cluster, or between-cluster
AR?. Raudenbush & Bryk’s (2002) measures have been
called “pseudo-R’s” that each assess the proportion
reduction in residual variance (ie., the proportion
reduction in each of level-1 residual variance, level-2
random intercept variance, or level-2 random slope

%In Table 1 computations, the denominator of the R? for Model A uses a
model-implied expression for the outcome variance obtained from Model
A and the denominator of the R* for Model B uses a model-implied
expression for the same outcome variance, obtained from Model B. This
same approach has been used in prior methodological studies when
computing AR? (ie., studies employing measures from Johnson, 2014;
Nakagawa & Schielzeth, 2013; Snijders & Bosker, 2012 in the context of
model selection). Furthermore, in simulated checks, this model-implied
outcome variance was virtually identical regardless of the fitted model
(i.e., A or B).
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Our recommendation for usage:
Orelien and Edwards (2008); c=Wang and

supplement when including level-2 predictors.
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Use this single-source measure only for quantifying

This combination-source measure is an optional
Use this single-source measure as an optional

r, 2012; Vonesh & Chinchilli, 1997), for AR
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fixed component
ske|

of level-1
predictor’s slope
random slope
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By definition, this AR?
is designed only to
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Yes? (but prior usage was
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® (from Johnson, 2014; Raudenbush & Bryk, 2002; Snijders & Bo

(from Raudenbush & Bryk, 2002 using a random-intercept-only null model), and for AR
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model). Derivations underlying the population equivalencies of these expressions can be obtained from Rights and Sterba (2019, Appendix B).
*Here we assume Model A has a fixed intercept and Model B has a random intercept. In the other rows we assume Models A and B both contain a random intercept; this is conventional when fitted models are

Definition (Interpretation):
1%

w

2(

Difference in the proportion of within-cluster outcome
variance explained by level-1 predictors via fixed
components of slopes and random slope (co)variation
outcome variance explained by level-2 predictors via
fixed components of slopes
outcome variance explained by cluster-specific
outcome means via random intercept variation

Difference in the proportion of between-cluster
Difference in the proportion of between-cluster

Jaeger et al. (2017).
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fiv) —R
(some combination of f;, f,, v, and m). See Appendix A for a review of definitions of each R?> measure when fitting a single model. a =LaHuis et al. (2014); b

Schaalje (2009); d
"Prior simulation studies used population-equivalent expressions for AR

called MLMs and it also facilitates computation of the between-cluster variance.
*We include this measure for completeness of the decomposition (see, e.g., Figure 2) though it isn't used to detect new terms.

Vonesh & Chinchilli, 1997; Xu, 2003), for AR,

T
w
b
2(m)
b

Notes: Single-source measure =a measure that quantifies variance explained by only one source (f;, f,, v, or m); combination-source measure =a measure that quantifies variance explained by multiple source

Table 1. Continued.
Between-cluster MLM AR? measures

AR? Measure:
A 2(f)

AR
AR
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variance) after adding term(s) to a MLM (see, e.g.,
Hoffman, 2015; Hox, 2010; Kreft & de Leeuw, 1998).
These pseudo-R’s differ from our framework of
measures in that the pseudo-Rs consider how much of
one model’s residual variance (the level-1 residual
variance, the level-2 random intercept variance, or
the level-2 random slope variance) is explained by add-
ing terms, whereas our framework of measures considers
how much of the overall outcome wvariance (total,
within-cluster, or between-cluster outcome variance)
is explained by adding terms. Nonetheless, in the
Discussion we demonstrate how our framework of
measures can be used to obtain these pseudo-R* (includ-
ing that for the level-2 random slope variance) for any
conceivable null/reduced model. Additionally, in Table 1
we do not include Edwards et al’s (2008) R-squared-
beta measure, nor Jaeger et al’s (2019) R-squared-Sigma
measure, because differences in these measures between
models’ have been shown in simulations (Jaeger et al,
2017, 2019) to not correspond with the population-gen-
erating proportion of variance attributable to any source
(fi fo» f, v» m) or combination of sources (see our
Footnote 4). Though such correspondence is not critical
if the measure is simply to be used as a selection index
for ranking, it is critical for the kind of meaningful
interpretability of effect size indices sought in this paper.

Systematic explanation of which AR®> measures
can be used for what purpose

The second piece of background information we
supply is a systematic explanation of which AR®
can be used to reflect (i.e., quantify the contribution
of) which terms that are added to yield Model B.
Specifically, Column 4 in Table 1 lists the kinds
of terms that, when present in the population, will
increase Model B’s R? relative to Model A’s R?, thus
corresponding to a positive AR®. Previous usage of
these measures has not been consistent with Table 1
Column 4, which led to the problems described
in a subsequent section: Limitations of procedures
previously used for comparing MLM R*.

Clarification on the use of single-source versus
combination-source AR?

Inspection of the total measures and within-cluster
measures in Table 1 reveals that the addition of any

"Note that Edwards et al.'s (2008) and Jaeger et al.’s (2019) measures can
be computed for Models A and B and their difference taken, or a squared
semi-partial version of Edwards et al.'s (2008) and Jaeger et al.'s (2019)
measures using an approximate F statistic for a Wald test of the relevant
model coefficient can be used.
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given kind of term to Model B can be reflected in
either a single-source measure or combination-source
measure (defined previously). For instance, the add-
ition to Model B of a fixed component of a level-1
predictor’s slope can be reflected by a single-source

total measure Ath(fl) as well as by combination-source

total measures (AR?U), ARf(ﬁ/), and/or ARf(fvm>).
Table 1 Column 3 shows that prior methodological
studies utilizing AR® measures typically relied only on
combination-source measures, without simultaneously
considering their constituent single-source measures.
Our recommendation is the opposite (as shown in
Table 1 Column 5 and detailed in next section)—
single-source AR® are required to be computed and
interpreted, whereas combination-source measures are
an optional supplement. Single-source AR> measures
have straightforward and clear interpretations; in
contrast, combination-source AR measures can be
unclear and subject to misinterpretation in MLM
comparison when used without consideration of the
constituent single-source measures (as illustrated in
the later section Limitations of procedures previously
used for comparing MLM R?).

Step-by-step procedure for using AR?
measures in MLM model comparison

Having supplied the relevant background information
in the previous section, we move on to provide
a concrete step-by-step decision procedure for using
AR® measures in MLM model comparisons. This
procedure is presented in Table 2 and is explained
here. In a subsequent section, this procedure is
demonstrated with an illustrative example.

Step 1

Suppose we have two MLMs to compare, denoted
Model A and Model B. Step 1 is for the researcher to
determine the kind of term(s) that will be included in
Model B but excluded from Model A. In Table 2 Row
1, this choice is among five columns; a random
intercept, fixed component(s) of level-1 predictor(s)’
slopes, fixed component(s) of cross-level interac-
tion(s), random slope(s) of level 1 predictor(s), and/or
fixed slope(s) of level-2 predictor(s). For instance,
a researcher analyzing students nested within schools
might add to some Model A a fixed slope of a school-
level predictor (e.g., school size) to form Model B; in
this case, the researcher would choose “fixed slope(s)
of level-2 predictor(s)” at Step 1.

Several details are important to note regarding Step
1. First, if more than two models are to be compared
(as in our upcoming illustrative example), these
MLMs can be compared in pairs. Also note that,
although in practice a pair of MLMs to be compared
is commonly nested (meaning that Model A can be
obtained by placing constraints on Model B), the pair
of MLMs need not be nested when computing our
AR? measures. For instance, one might wish to com-
pare different sets of predictors to assess which
explains the most variance. Nonetheless, in this paper
our illustrative examples focus on nested model
comparisons, as is most typical of practice.

Another detail to note regarding Step 1 is that
adding a cross-level (level-1 x level-2) interaction term
(e.g., school size x student delinquency) to Model B
falls into the same column as adding a “fixed compo-
nent of a level-1 predictor’s slope” to Model B in
Table 2. This is because, under our earlier-stated
assumption that the level-1 predictor is cluster-mean-
centered, this cross-level interaction term can only
explain level-1 outcome variance (see derivation in
Rights & Sterba, 2019).® Such cross-level interactions
have often previously been understood as explaining
level-2 variance in the sense that they reduce the level-
2 random slope variance of the level-1 predictor (e.g.,
Hoffman, 2015; Raudenbush & Bryk, 2002). Though
this understanding may initially appear inconsistent
with our description, in fact it is entirely consistent
for the following Adding a cross-level
interaction involving a cluster-mean-centered level-1
predictor leads to a reduction in the level-2 residual
variance (specifically, level-2 random slope variance),
but does not account for level-2 outcome variance
because the product of a level-2 predictor with
a cluster-mean-centered level-1 predictor varies only
within-cluster, and hence can only explain outcome
variance at level-1. Similarly, as mentioned earlier,
random slope variability contributes only to within-
cluster outcome variance because the product of
a cluster-mean-centered level-1 variable and a random
slope residual also varies only within-cluster.

An additional detail to note is that, in our examples
and description below, all MLMs under consideration
are assumed to have at least a random intercept unless
an initial comparison is being made between a fixed
intercept and random intercept null model. Also
observe that Table 2 Row 1 has no separate column
for the addition of random effect covariances to
Model B because we simply assume researchers will

reason.

8See the Discussion section for details regarding non-cluster-mean-
centered level-1 predictors.
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estimate all covariance terms associated with each
added random effect.

A final detail to note regarding Step 1 concerns
whether to add a single term at a time to the MLM,
or multiple terms at a time. Often researchers prefer
to add a single term at a time during model building.
This is simplest, but it is not necessary here. Because
the single-source measures provided in our framework
distinguish among the contributions of the level-1
predictors via the fixed components of slopes, the
level-1 predictors via random components of slopes,
and the level-2 predictors, terms of these three differ-
ent kinds could be added simultaneously to yield
Model B and the single-source AR® results for these
terms would isolate their respective unique contribu-
tions to explained variance. For instance, if a level-1
predictor and a level-2 predictor (e.g., student delin-
quency and school size) were added simultaneously to
yield Model B, their respective unique contributions
to explained variance via fixed slope components
would nonetheless still be quantified because the
decomposition of variance used in creating the meas-
ures will separate their contributions into orthogonal
components. On the other hand, if multiple terms of
the same kind (i.e., from the same column of Table 2)
are added simultaneously to yield Model B—for
instance, adding three level-2 predictors at once—then
only their joint contribution to explained variance
could be quantified using the AR’s; identifying each
of their unique contributions would require entering
these terms one at a time, in separate model compari-
sons. In any case, researchers adding term(s) of only
one kind to yield Model B would choose the corre-
sponding column of Table 2 in Step 1 and proceed to
Step 2. In contrast, researchers simultaneously adding
terms of multiple kinds to yield Model B would
choose the multiple corresponding columns of Table 2
in Step 1 and proceed to Step 2.

Step 2

In the second step we proceed to Row 2 of Table 2.
Specifically, within the chosen column(s) from Step 1,
researchers must in Step 2 decide whether they are
interested in quantifying the impact of an added term
overall (if so, use a total AR* measure) or at a particu-
lar level (if so, use a level-specific AR? measure), or
both (if so, use both total and level-specific AR> meas-
ures). Depending on the column, the appropriate
level-specific measure in Step 2 of Table 2 is either
level-1 specific (within-cluster measure) or level-2 spe-
cific (between-cluster measure). Note that, for any

type of model comparison, a total AR* for a generic
single-source s will, by definition, be smaller than its
counterpart level-specific AR* for the same generic sin-
gle-source s. This is simply because the total variance
is larger than the level-specific variance at any one
level. As such, a given source can potentially explain
little of the total outcome variance, but a large portion
of level-specific variance.

Step 3

The third step is to determine which single-source
AR? measure(s) reflect the type of differences deemed
of importance in Step 2. This is done in Row 3 of
Table 2. Once appropriate target single-source meas-
ure(s) are identified, they can be interpreted using the
detailed definitions supplied in Table 1. Recall that
each target single-source measure provides a quantita-
tive effect size difference between two models on the
easily interpretable metric of the proportion of vari-
ance explained, and allows assessment of the degree to
which the two models differ as a result of the particu-
lar kind of term added to yield Model B.

Step 4

As a fourth step, it is helpful to next consider one’s
target single-source AR measure(s) from Step 3 in
the broader context of the set of all other single-
source AR> measures. Doing so provides the advan-
tage of having a complete summary of the differences
in explained variance between Models A and B, allow-
ing juxtaposition of the results from all measures, not
just target measures that are responsive to the terms
added to yield Model B. This can be particularly use-
ful in seeing how an increase in variance attributable
to one’s target source can lead to a decrease in vari-
ance attributable to another source; a common
example of this is a cross-level interaction term lead-
ing to an increase in variance attributable to predic-
tors via fixed effects (the target source) and a decrease
in variance attributable to predictors via random
slope variation.

Step 4 can be done using graphical visualization, by
creating bar charts like in Figure 1 for each model
under consideration (our software will do this auto-
matically, as described later). Figure 2 provides an
example of how to visualize changes in the suite of
MLM R’s across a series of five fitted models taken
from our subsequent illustrative example. Figure 2
will be substantively interpreted and described in the
subsequent illustrative example section, however, a
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Figure 2. Graphical comparison of multilevel model R* measures as they change across the six fitted Models A-F from the illustra-
tive example analysis (using a hierarchical model-building approach).
Note. R?s computed from Model A are printed below each bar labeled Model A. AR%*s between each consecutive pair of models

are printed below each bar labeled B-F.

brief overview of the layout of Figure 2 is provided  example involves comparing six models. For a given
here. Each column of Figure 2 corresponds with a  model (ie., a given column), the top bar chart depicts
particular model under comparison. Hence, there are  single-source total R* measures, the middle bar chart
six columns in Figure 2 because the illustrative  (second row) depicts single-source within-cluster R*
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measures, and the bottom bar chart (third row) depicts
single-source between-cluster R* measures. A researcher
can succinctly visually assess change in a single-source
R* measure of explained variance by viewing how the
size of its shaded segment changes across models.

Step 5 (Optional)

Although previous researchers have typically focused
on interpreting combination-source AR® measures to
the exclusion of single-source AR> measures (see Table
1 Column 3), we show later that this can be misleading
because it obscures how and which component single-
source measures are changing in response to the term(s)
added to yield Model B. In contrast, our approach in
Steps 1-4 provides researchers with all the information
needed to assess changes in variance explained across
fitted MLMs without these risks. After assessing
changes in target single-source measures in Step 3 and
considering these in the context of other single-source
AR? in Step 4, an optional supplemental Step 5 would
be to create combination-source AR> measures listed in
Table 1. For a given bar chart in Figure 2, combination-
source R* measures are created by summing two or
more shaded segments. To assess combination-source
AR® measures, simply observe how the sum of the
shaded segments changes across models (i.e., across col-
umns of Figure 2).

Software implementation

To aid researchers in computing and visualizing the
suite of AR> measures, we developed an R function,
r2MLMcomp. This function is given in the Online
Supplementary Material, along with a user guide and
example input. To use this R function, researchers
input raw data and parameter estimates for two
MLMs under comparison at a time. The function then
outputs the suite of R measures in Appendix A for
each model along with the suite of AR* measures in
Table 1 for comparing the pair of models. A graphical
representation of these measures (similar to Figure 2)
is also automatically provided.

Limitations of previous procedures for using
AR? measures in MLM comparisons

Our recommended step-by-step procedure (described
in the previous section) for comparing an integrated
suite. of MLM AR’s across fitted models was not
implemented in previous methodological simulation
studies on this topic. Instead, simulation studies on

using MLM AR? in model comparisons used proce-
dures with some of the following three limitations.
Here we describe each limitation and demonstrate
how it affected previous authors’ results and conclu-
sions. Then we demonstrate how to overcome each
limitation by applying procedures from the previ-
ous section.

Limitation 1: Using a measure that, by definition,
cannot reflect the model manipulation because

the term(s) added to the model do not affect the
components considered to be explained variance

Recall that certain R® measures are not suited to
detect certain types of differences between models, as
shown in column 4 of Table 1. When a given addition
to Model A can affect portions of unexplained vari-
ance but cannot affect portions of explained variance,
the AR® is incapable of detecting differences between
Models A and B. In this instance, there is a mismatch
between the model manipulation done and the AR®
used. This general concept can be formalized mathem-
atically in the population as follows. First, recall that
the outcome variance is equal to the explained vari-
ance plus the unexplained variance. In the context of
model comparison, wherein A and B subscripts denote
variance obtained from Model A and B, respectively:

outcome variance = explained , + unexplained ,

= explainedy + unexplained, (15)

Note that changing the model does not change the
variance in the outcome. When an addition to Model
A does not affect portions of variance considered
explained, this implies that explained, = explainedy.
Consequently the AR* measure will be 0:

2 _ p2 2
AR = RmodelB _RmodelA

_ explained, explained
" outcome var. outcome var. (16)
_ explained, explained,
~ outcome var. outcome var.
=0
Such an addition could still change portions

of variance that the AR> measure counts as unex-
plained, but does so in compensatory ways such that
unexplained, = unexplainedy,.

Nonetheless, methodological simulation studies
have used AR®> measures in model comparisons
wherein the explained variance would not be capable
of changing in the population (e.g., Jaeger et al., 2017,
2019), and these studies subsequently critiqued the
AR? measure’s inability to detect the term(s) added to



Model A to create Model B. For example,9 Jaeger,
Edwards, Das, & Sen (2017) compared a random slope
model (Model B, their generating model) to a random
intercept model (Model A, an underspecified model) with
the same fixed effects. They found that a measure'® of
AR, 20) was unable to detect any difference between Models
B and A and then criticized the use of this measure on the
grounds that it “cannot dlstmgmsh the correct covariance
structure” (p. 1096). However, AR is not designed to
distinguish the correct covariance structure and should
not be used for this purpose in the first place. Adding a
random component of a slope does not affect the compo—
nents considered to be explained variance in AR
Rather, adding a random component of a slope affects
variance attributable to “v,” and “v” contributes only to
unexplained variance in ARM); in this case an increase in
“v” from Model A to B will be accompanied by an
equlvalent decrease in unexplained variance attribut-
able to level-1 residuals, to render outcome variance
the same from Model A to B. As shown in Table 1,
AR?(’() is instead able to assess differences in the pro-
portion of variance explained by predictors via fixed
components of slopes (i.e., it is designed to reflect the
addition of fixed components only). For instance,
suppose one were analyzing repeated measures nested
within individuals and wanted to compare a Model A
with a fixed slope of age to a Model B with a random
slope of age (see footnote 10) For this comparison,
AR, 0 would be 0, although AR; ™) could be quite large
if there were a great deal of across-person differences
in the effect of age.

To illustrate how our step-by-step decision-making
procedure in Table 2 would avoid the pitfall of picking
a measure that is by definition insensitive to the model
manipulation, we re-simulated and then reanalyzed the
data from Jaeger, Edwards, Das, & Sen (2017).1

*What follows is just one example of how Limitation 1 could manifest.
Another example occurs anytime a researcher seeks to quantify the
contribution of a level-1 predictor added to Model A by erroneously
using an AR’ quantifying between-cluster outcome variance explained.
Similarly, Limitation 1 would also manifest if a researcher seeks to
quantify the contribution of a level-2 predictor added to Model A by
erroneously using a AR* quantifying  within-cluster  outcome
variance explained.

9pecifically, Jaeger et al. (2017) used Johnson’s (2014) marginal AR? (an
extension of Nakagawa and Schielzeth [2013]) that is equivalent to our
ARfm (see Appendix A and Table 2 of the current paper and see
Appendix B of Rights & Sterba, 2019).

11FoIIowing their procedure, we first fit a MLM with a random intercept,
random slope of age, and fixed effects for age, gender, and age x gender
using restricted maximum likelihood (REML) to the data from Potthoff and
Roy (1964). The Potthoff and Roy (1964) data contain repeated measures on
27 children over four time points, ages 8, 10, 12, and 14. Using the obtained
parameter estimates as generating values, we then simulated 10,000 datasets
of the original sample size and fit to each a random intercept model with
fixed effects of age, gender, and age x gender (Model A) as well as a Model B
that added a random slope of age.

MULTIVARIATE BEHAVIORAL RESEARCH 581

Po ulatlon R® values for the full Model B are

=26, B =15, Y = 41, BB = .02, and
Rt< ) = .38. Po ulatlon AR values are ARZ(f1 =0,
ARZVZ =0, AR =0, AR?" = .02, and AR?™ = 0.2
Using their procedure of seeing how R 24/ changes
between Models A and B, we can replicate Jaeger et al.’s
(2017) findin, 5 of no apparent difference between the
models (AR = 42 42 = 0). Yet when Jaeger et al.
(2017) consider AR ) in isolation, any model differences
pertaining to “v” are masked. Next, we reanalyze these
data by instead employing our Table 2 step-by-step proce-
dures. As Step 1, we note that the manipulation being
done involves adding a random slope to Model A to form
Model B. As Step 2, we identify our interest in quantifying
the impact of the added term overall (implying we should
target a total measure). As Step 3, we use Table 2 to iden-
tify the target single-source measure, ARt , that indicates
correctly that Models A and B do in fact differ in variance
explained by predictors via random slo e variation, as the
across-sample average estimate of AR ") s .02, matching
its population value. Though AR is fairly small here
due simply to the generating conditions, if it were more
pronounced, it would still be unrecognized using AR; 20
in isolation. In Step 4 we Vlsuahze and interpret the results
from target measure ARt in the context of other single-
source measures; the associated graph is provided in
Figure 3. Rather than letting both the explained and unex-
plained variance be uninterpretable blends of multiple
components (as with Jaeger et al.’s [2017] use of a com-
bination-source measure), here we show each component
individually so we can confirm that the components the-
oretically ex?ected 1210t to chan%e 1)n fact do not change
(each of AR,” ", AR, ", and AR, are roughly 0).

Limitation 2: Using a measure that, by definition,
cannot reflect the model manipulation because the
term(s) added to the model do not affect the
components considered to be unexplained variance

Limitation 2 is similar to Limitation 1 in that it
describes a mismatch between the terms added to
Model A to create Model B and the AR® measure
used to quantify the importance of these terms. Under
Limitation 1, added terms affected only portions
of the unexplained variance, but not the portions of
the explained variance; Limitation 2 is, in a sense, the
opposite in that the mismatch is caused by adding
terms affecting only portions of the explained vari-
ance, but not portion(s) of the unexplained variance

>We also computed the across-sample averaged estimates for these
measures and confirmed that our results correspond with the
population values.
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ARf(V) =.02—-0=.02 (our recommended measure in Table 2)
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AR™ = 37-37=.00

Figure 3. Demonstration of Limitation #1 of previous studies
on AR? for MLM: Use of a measure (here, ARf(f ) that, by defin-
ition, cannot reflect the model manipulation (here, adding a
random component of a slope to Model A) because the addition
does not affect the components considered to be explained
variance in that measure. In contrast, our recommended meas-
ure from Table 2 for this model comparison, ARf(V), is capable
of detecting the addition of the random slope.

Note. Results reported and graphed here are across-sample average
results from our replication of the simulation design from Jaeger
et al. (2017). Corresponding population values were listed in the text.

(as done in, e.g., Orelien & Edwards, 2008; Jaeger
et al,, 2017). IHlustrating this concept in the popula-
tion, when a manipulation will not change the unex-
plained variance (i.e., unexplained, = unexplainedy),
this implies that the AR* will necessarily be 0:

AR? = R? R?

modelB ™~ “modelA

explained explained ,

outcome var.

unexplained A> 17)
outcome var.

outcome var.

_ <1 B unexplainedB> B <1

outcome var.

0

_ unexplained A) B (1

unexplained ,
outcome var.

outcome var.

Nonetheless, simulations have used AR? in model
comparisons wherein the unexplained variance would
not be capable of changing in the population, and have
subsequently critiqued these measures’ inability to
detect the term(s) added to Model A to create Model B
(Orelien & Edwards, 2008; Jaeger, Edwards, Das, & Sen,
2017). For instance, Orelien and Edwards (2008) com-
pared a model with just a random intercept and a ran-
dom slope of a level-1 predictor (Model A) to a model
that added two fixed slopes for each of two level-2 pre-
dictors (Model B). They found that a measure'> of
AR%UW") was unable to detect differences between the
models. Based on this result, Orelien and Edwards
(2008) concluded that “the inadequacy of these R* sta-
tistics revealed by our simulations put into question
their usefulness as a goodness-of-fit (GOF) tool for any
mixed model” and then globally recommended that
“they should not be used in assessing GOF in the linear
mixed model” (p. 1906) because they are “unable to dis-
criminate when important covariates are missing from
the model” (p. 1905). Furthermore, this conclusion and
global recommendation to avoid the ARf(fvm) measure
was then restated and reinforced by subsequent authors
of other simulations with similar designs (Jaeger,
Edwards, Das, & Sen, 2017; Wang & Schaalje, 2009).
However, this conclusion and recommendation to avoid
using ARf(fvm) for all model comparisons is misleading
because AR?UW) can reflect the addition of important
level-1 predictors, as shown in column 4 of Table 1.
AR,ZO(W" is simply not suited to detect the specific
manipulation done in prior simulations, i.e., the
addition of level-2 predictors, as indicated in column 4
of Table 1. For instance, with repeated observations
nested within persons, ARme) could detect the
addition of observation-level age, but could not detect
the addition of person-level gender; see footnote 13).
Rf(fvm) counts variance attributable to both f, and m as
explained, i.e., all between-cluster variance is explained.
Thus, if a fixed slope of a level-2 predictor is added to
an MLM, given the orthogonality of within-cluster and
between-cluster components, only variance attributable
to f, and m could change. Consequently, the unex-
plained variance would be equivalent between the two
models and, regardless of the magnitude of the effect of
the level-2 predictor, ARf(fvm) would necessarily be 0. In
particular, the amount by which variance explained by
f> would increase would be accompanied by a decrease
of equal magnitude in the variance explained by m.

3Specifically, Orelien and Edwards (2008) used Vonesh and Chinchilli’s
(1997) conditional AR? that is equivalent in the population to our

AREW”) (see Appendix A and Table 1 of the current paper and see
Appendix B of Rights & Sterba, 2019).



To illustrate how our step-by-step decision-making
procedure in Table 2 would avoid the pitfall of
picking a measure that is by definition insensitive
to the model manipulation, we re-simulated and
reanalyzed the data used in Orelien and Edwards
(2008)."* Population R* values of the full Model B were:

W = 16, R = 30, R*™ = .005, R*™ = 31,
Rf(fvm) = .78. Population AR® values comparing the full

Model B and the reduced Model A excluding the level-2
predictors were: AR?W =0, AR?UZ) = .30, AR?M =0,
and ARf(m) = —.30, yielding AR?OCW) =0." Using
Orelien & Edwards’ (2008) procedure of examining the

combination-source measure AR?OW) in isolation, we
replicate their finding of no apparent difference between

Models A and B, as the average estimate of AR?UV’") is
0. Instead using our Table 2 step-by-step procedure,
however, we first note that the manipulation being done
involves the addition of level-2 predictors (Step 1). Then
we identify our interest in quantifying the impact of
the added term overall (implying we should use a total
measure) (Step 2). Next, we use Table 2 to identify the

target single-source measure, AR?UZ), that can reflect
the importance of the added terms (Step 3). This target

measure ARf(fZ) correctly indicates that the two added
level-2 predictors explain a sizable portion of the vari-
ance (specifically .30, which matches the population
value). In Step 4 we visualize and interpret results from

our target measure ARf(fZ) in the context of other sin-
gle-source measures, as shown in Figure 4. Then in
Step 5 we have the option to compute combination-
source measures like ARf(fvm), if desired. However,
rather than letting the explained variance in this com-
bination-source measure be an uninterpretable blend of
four different sources—f;, f,, v, and m—as in Orelien

and Edwards’ (2008) procedure, in Figure 4 we show
each single-source component of ARf(fvm) individually
(e, AR AR ARYY) | AR™), which clarifies that

"Each of 10,000 generated datasets consisted of 64 persons (level-2
units) each with six observations (level-1 units) at ages 5, 6, 7, 7.25, 7.5,
and 7.75 years. The level-2 predictors were treatment and gender,
uncorrelated. The level-1 predictor, age, had a random slope. Fixed effects
for the intercept, level-1 slope, and two level-2 slopes were 10, 6, 11, and
11, respectively. The random intercept variance was 4, random slope
variance was 1, intercept-slope covariance was 1, and level-1 residual
variance was 45. Orelien and Edwards (2008) had three separate
conditions corresponding with level-1 residual variance of 12, 45, and
250. Here we present the middle value for simplicity. However, we ran
the simulation for each condition and our results matched theirs in each
case and the same general patterns were found.

'>0ur across-sample average estimates, seen in Figure 4, matched these
population values.
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AR = 16-.16=0

ARIZ(fZ) =.30—0=.30 (our recommended measure in Table 2)

AR = 01-.01=0
AR*™ = 31-.61=-30
AR — 78— 78 = 0 (used in Orelien & Edwards, 2008)

Figure 4. Demonstration of Limitation #2 of previous studies on AR

for MLM: Use of a measure (here, AR,ZW”)) that cannot reflect the
model manipulation (here, adding fixed slopes of level-2 predictors to
Model A) because this addition does not affect the components con-
sidered to be unexplained variance in that measure. In contrast, our
recommended measure from Table 2 for this model comparison,

ARf(fZ), is capable of detecting the addition of the level-2 predictors.
Note. Results reported and graphed here are across-sample
average results from our replication of the simulation design
of Orelien & Edwards (2008). These results match the
population values listed in the text.

ARfW") = 0 simply because the increase in Rf(fz) is accom-

(m)

panied by an equal decrease in Rf , as explained above.

Limitation 3: Using only measures reflecting differences
in total variance explained, while neglecting or
incorrectly characterizing measures reflecting
differences in level-specific variance explained

Most simulations addressing AR® for MLMs have not
addressed level-specific AR* measures. Instead of men-
tioning that researchers have the option to consider
level-specific measures, these studies instead exclusively
computed AR® measures to explain total variance
(Jaeger et al, 2017, 2019; Orelien & Edwards, 2008;
Wang & Schaalje, 2009). A researcher who is explicitly
interested in either the within- or between-cluster vari-
ance as a distinct entity would not find changes in total
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variance as informative. Although researchers may
often wish to focus on changes in total variance
explained, the option of considering level-specific changes
can be appealing to researchers in specific applications
(see Discussion section), and thus the step-by-step proce-
dures in Table 2 allow researchers the option of consider-
ing level-specific measures as well. In particular, Step 2 of
Table 2 asks researchers to consider what type of variance
they are most interested in explaining: within-cluster vari-
ance, between-cluster variance, and/or total variance. Step
3 allows them to choose appropriate level-specific and/or
total measures accordingly, and Step 4 additionally allows
them to easily visually assess changes in total and level-
specific measures simultaneously while focusing interpret-
ation on whichever is of greatest substantive interest.

Though rare, when level-specific measures have
been included in simulations on MLM AR? these
level-specific measures have been incorrectly charac-
terized and there have been errors in computing their
population values. In particular, LaHuis et al. (2014)
stated that they computed one within-cluster measure
in their simulation—that of Raudenbush and Bryk
(2002, p. 79)—and compared its value for each of
two competing random slope models, A and B. The
population quantity for the difference between these
measures is denoted ARi,(f‘v) in Table 1, as evidenced
in the derivation provided below in Equation (18):

2 2 2 2
ORinull 98 ORInull —9A

O-}ZZInull O-Izllnull
_ (R0t —08) — (O —4)
G%Unull
_ 04—
O-IzUnull

L)
04— 0p

within-cluster outcome variance

2
OA

random slope variation as explained variance, and then
erroneously computed its population value as ARZW(f‘) even
though in each sample they computed an estimate of

Aﬁi,(flv), which rendered their simulation results pertain-
ing to this measure uninterpretable. Researchers will be
able to avoid such misunderstandings in the future by
using the definitions of each measure provided in Table 1.
In Equation (18), 0%j,,; is—as in Raudenbush and
Bryk (2002)—the level-1 residual variance from a ran-
dom-intercept-only null model, i.e., the within-cluster
outcome variance. Equation (18) shows that computing
the difference between Models A and B in Raudenbush
and BryK’s (2002, p. 79) measure reflects differences in
the proportion of within-cluster variance explained by
level-1 predictors by not only fixed components of
slopes (f;) but also random components of slopes (v)."

Illustrative example

In this section, we illustrate our step-by-step proced-
ure for using AR® measures in MLM comparisons.
Our illustration is based on a didactic example from a
popular MLM textbook (Hox, 2010). Although the
traditional presentation of results focuses on point
estimates and standard errors for the final (full)
MLM, here we show that inspecting the suite of AR?

& (18)

within-cluster outcome variance within-cluster outcome variance

y&)’fbwy&) + tr(TX) (4)

- < B within-cluster outcome variance
_ _p2(fm)\ (4 _ p2hv)
- (1 RW(A)) (1 RW(B)>

2 2()
= R,3) ~Ry()
= AR

But LaHuis et al. (2014, p. 443, 447) incorrectly char-

acterized this difference measure as if it were AR%V 1),

failing to recognize (as did Hox, 2010, p. 77) that it counts

i

y&)’(l)w'y&) + tr(TE)(B) >

within-cluster outcome variance

'%Similarly, as noted in Appendix A, the Raudenbush and Bryk (2002, p.
79) within-cluster measure computed for a single model (compared to a
random-intercept-only null) is equivalent in the population to RW“’)
(Rights & Sterba [2019]).



measures during model building affords more specific
information about the importance of individual terms
in the model by providing information on effect size
associated with each added term. In this example,
wherein 2000 students were nested within 100 class-
rooms, there was substantive interest in how much
variance in student popularity is explained by student
sex and extraversion and by teacher years of experi-
ence, as well by the cross-level interaction of student
extraversion and teacher experience. Although in
model building, we could add a single term at a time
to the MLM starting with the simplest model, for
pedagogical purposes, in two instances we add mul-
tiple terms of different kinds simultaneously (from
Model A to B and from B to C) in order to illustrate
how our measures can nonetheless still identify these
terms’ unique contributions to explained variance.

We consider six nested models, denoted A, B, C,
D, E, and F. Here we implement a hierarchical model-
building approach, meaning terms are added sequen-
tially, going from the simplest model to the most
complex model; this can be contrasted with a simul-
taneous approach described later in the Extensions
section. In accordance with Step 1 of Table 2 we first
clarify what terms are added to each model. Model A
is a random-intercept-only model. Model B adds to
Model A a fixed component for both the within-class
and between-class parts of sex, namely the slope of
the level-1 predictor class-mean-centered sex and the
level-2 predictor class-mean sex. Model C similarly
adds to Model B a fixed component of class-mean-
centered extraversion and class-mean extraversion.
Model D adds to Model C a fixed slope of level-2 pre-
dictor teacher years of experience. Model E adds to
Model D a random component of the slope of class-
mean-centered extraversion (as well as a covariance
between the random intercept and random slope of
class-mean-centered extraversion). Lastly, Model F
adds a fixed component for the cross-level interaction
of class-mean-centered extraversion and teacher
experience. In Appendix B, we provide level-specific
scalar equation expressions for these Models A-F. All
models were fit with restricted maximum likelihood
(REML) using SAS Proc MIXED. In accordance with
Step 2 of Table 2, we next clarify that we are inter-
ested in quantifying the impact of added terms both
overall and at a particular level; hence for each model
comparison we are interested in both total and level-
specific AR* measures. In accordance with Step 3 of
Table 2, we identify the target single-source AR’
measures that reflect the impact of added terms in
each model comparison. Results for these target
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measures are given in Table 3 (where the hats over
each AR’ indicate that these are sample estimates). In
accordance with Step 4 of Table 2, we then juxtapose
and visualize results from all single source measures,
in Figure 2.

Specific interpretations of target measure results are
as follows. The AR® between Models A and B helps
ascertain the contribution of both the within-class and
between-class fixed component of sex (fi and f,
respectively) above and beyond that of the random-
intercept-only model. In Table 3 we see that, of the
total variance in popularity, an additional 19% is
explained by Slza(?s)—mean—centered sex via its fixed
component (AR,"" = .19) and an additional 17% is
explgined by class-mean sex via its fixed component
(Aﬁt * = .17). Further, of the within-cluster variance
in popularity, an additional 31% is explaine(zi by class-
mean-centered sex via its fixed effect (AIAQW1 = .31)
and an additional 45% is explained by class-mean sex
via its fixed effect (Aﬁz(ﬁ) = .45). Thus, there is evi-
dence that sex accounts for a sizable portion of both
within- and between-class differences in popularity,
with females being more popular within individual
classrooms and classrooms with more females having
more popular students on average. This is visualized
in Figure 2 by comparing Columns 1 and 2."”

Going from Model B to Model C helps ascertain
the contribution of these same two components (f;
and f,) with regards to extraversion. Table 3 shows
that, of the total variance, a sizeable additional 12% is
explained by class-mean-centered extraversion via its
fixed component but a negligible amount (<1%) is
explained by class-mean extraversion via its fixed
component. Further, Table 3 shows that, of the
within-cluster variance, an additional 19% is explained
by class-mean-centered extraversion via its fixed com-
ponent (with more extraverted students being more
popular than their less extraverted classmates) but
very little (<1%) is explained by class-mean extraver-
sion via its fixed component. This can be visualized in
Figure 2 by comparing Columns 2 versus 3.

Next we assess the importance of the level-2 pre-
dictor teacher experience. Comparing Models C and
D reveals that an additional 7% of total variance is
explained by teacher experience (Aﬁf ¥ =.07), as

Note that had we instead entered class-mean-centered sex and class-
mean sex individually in separate model comparisons, the target single-
source AR? estimates would be identical to three decimal places. Note
also, however, that solely adding a cluster-mean-centered predictor will
lead to a small increase in the estimated level-2 random intercept
variance (Hoffman, 2015; Snijders & Bosker, 1994) and would thus lead to
a slight increase in estimates of Rf ™. Here we follow recommendations
(Hoffman, 2015) to add both the within-cluster and between-cluster
portions of level-1 variables simultaneously.
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Table 4. Parameter estimates and standard errors from illustrative example Model F.

Fixed effects Est SE t
Intercept 1.36 0.59 2.30%*
slope of class-mean-centered sex 1.23 0.84 2.22%
slope of class-mean-centered extraversion 0.45 0.02 25.62*
slope of class-mean sex 217 0.30 7.31%
slope of class-mean extraversion 0.50 0.12 4.20%*
slope of teacher experience 0.09 0.01 6.86*
slope of class-mean-centered extraversion x teacher experience —0.03 <0.01 —9.54*
Variance components Est SE Z'
variance of level-2 random intercept residuals 0.27 0.04 6.27*
variance of level-2 random slope residuals for class-mean-centered extraversion —0.01 0.01 -0.17
covariance of level-2 random intercept residuals w/ level-2 random slope

residuals of class-mean-centered extraversion 0.01 0.01 1.27
variance of level-1 residuals 0.55 0.02 29.97*

Notes: Results obtained from Proc MIXED in SAS. *significant, p < .05.

Conventional z-tests of variance components are conservative; thus here we employed the alpha-correction approach of Fitzmaurice et al. (2011, p. 209).

For a discussion of other alternatives, see Rights and Sterba (2016).

is 19% of between-cluster variance (Aﬁi(ﬁ) =.19). This
can be seen in Figure 2 by comparing Columns 3 and 4.
By comparing Models D and E we can assess
the contribution of the random component of class-
mean-centered extraversion; it accounts for 2% of
total variance (Aﬁf Y= .02) as well as 3% of within-
cluster variance (Aﬁfvv = .03). This can be visualized
in Figure 2 by comparing Columns 4 and 5. Lastly,
we assess the importance of the cross-level interaction.

Going from Model E to F, this interaction accounts
)

for an additional 2% of total variance (Aﬁf(ﬁ =.02)
and 3% of within-cluster variance (Af{fv(fl) =.03).

Inspecting the Figure 2 barchart indicates that across-
class slope variability in Model E is instead accounted
for by the cross-level interaction in Model F, such
that, going from Model E to F, the increase in
variance attributable to fixed effects (the target source)
is accompanied by an equivalent decrease in variance
attributable to random slope variance.'®

In accordance with Step 5 of Table 2 we could
optionally decide to also report some combination-
source measures mentioned in Table 1, Columns 4
and 5. For instance, if we wanted to quantify the
cumulative impact of sex (above and beyond the
random-intercept-only model) via fixed components
at both the within-classroom and between-classroom
level, we could compute the total combination-source

measure Aﬁf(ﬁ) + Aﬁf(ﬁ) = Aﬁf(f), which is .36 when
comparing Models A to B.

Taken together, the suite of AR? measures depicted
in Figure 2 provides information on practical signifi-

cance that supplements the traditional presentation

¥if from Model E to F we had instead added a cross-level interaction
involving a variable with a fixed slope, the increase in variance
attributable to fixed effects (the target source) would instead be
accompanied by a decrease in variance attributable to level-1 residuals
(Hoffman, 2015).

of results. The traditional presentation of results,
shown here in Table 4, involves reporting point
estimates and standard errors for the parameters of
the final Model F. We can see from Table 4 that all
of the fixed effects are statistically significant.
However, as an example of the utility of reporting

AR? effect sizes in MLM, our measures Aﬁf(ﬁ) and

AIAQfUZ) provided the additional insight that the esti-
mated contribution of level-1 predictor extraversion
via its within-cluster fixed component is more
practically significant than that of its between-
cluster fixed component.

Discussion

This paper’s purpose was to resolve areas of confu-
sion surrounding how AR®> measures can be used as
effect size indices in multilevel model comparisons.
We identified three limitations of prior simulation
studies on AR in MLM that had led to misleading
or incomplete recommendations for practice. To
remedy these limitations and misconceptions, we
defined a general set of AR®> measures and then
provided a concrete, step-by-step procedure for
identifying which measure is relevant to which
model comparison, and how that measure can be
interpreted in practice. We supplied simulated and
analytic demonstrations of the limitations in previous
studies on AR> in MLM and showed how the
application of our step-by-step procedures and gen-
eral set of measures overcomes them. Additionally,
we provided and illustrated graphical tools and soft-
ware that allow researchers to automatically compute
and visualize the framework of AR® measures as an
integrated set. Next, we provide recommendations,
extensions, and avenues for future research.
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Recommendations

Overall summary of recommended practice

To summarize, for a given model comparison, we rec-
ommend that researchers implement the procedures
in Table 2 to determine which target single-source
AR?(s) are able to detect the type of term(s) added to
Model A to form Model B. We suggest focusing inter-
pretation on these target single-source AR*> measure(s)
as quantitative effect size(s) associated with the add-
ition of particular term(s) to the MLM. The target
AR?(s) should also be considered and visualized in the
context of the other AR’s in the framework (e.g.,
using the associated bar chart, as in Figure 2).

Comments on using combination-source versus
single-source AR? for MLMs

Earlier, we explained why reporting a combination-
source AR” in isolation can be misleading and why it
is both necessary and sufficient to instead report its
constituent single-source AR?%s. Nonetheless, when
multiple sources of explained variance are of interest
in a given application, researchers may at times be
motivated to additionally report combination-source
AR’s to get an omnibus a summary of the overall
impact of added term(s) on all these sources taken
together. Additionally, researchers may be motivated
to compute combination-source AR’ estimates in
order to relate them to previously reported estimates
of the same measures from earlier studies, given that
preexisting studies have focused moreso on combin-
ation-source than single-source AR?. Hence, an overall
guideline regarding reporting combination-source
AR’s is to always interpret combination-source meas-
ures in the context of their single-source constituent
measures, and to only report combination-source
measures that are consistent with the recommenda-
tions in Columns 4 and 5 of Table 1. Violating the
guidelines in Columns 4 and 5 of Table 1—such as by

reporting AR?WM) when adding a level-2 predictor in
the illustrative example Model C to D comparison or
reporting ARf(fvm), ARf(M, or ARi,(f‘V) when adding a
cross-level interaction in the illustrative example
Model E to F comparison—could be misleading in
yielding estimates of 0 even though the level-2 pre-
dictor did explain 7% of total outcome variance via its
fixed slope and even though the cross-level interaction
did explain 2% of total outcome variance via its fixed
slope. In the latter inappropriate uses of combination-
source measures, increases in the target source of
explained variance cancel with decreases in other
sources of explained variance. Note that these are

examples of the issue detailed in the Limitation

2 section.

Comments on using “conditional” versus
“marginal” AR? for MLMs

Previous MLM literature has drawn a distinction
between “conditional” R®> measures—that consider
variance attributable to source “f;” along with sources
“v” and/or “m,” to be explained—and “marginal”
measures—that consider only variance attributable to
source “f’ (i.e., predictors via fixed effects) to be
explained (e.g., Edwards et al, 2008; Orelien &
Edwards, 2008; Rights & Sterba, 2019; Vonesh &
Chinchilli, 1997; Wang & Schaalje, 2009; Xu, 2003).
Certain measures in our Table 1 framework can be
termed conditional (e.g., ARf(fvm)) whereas others can
be termed marginal (e.g., ARf(f)). Psychologists tend
to be less familiar with the conditional perspective
and thus may not recognize that actually they are
already using certain conditional measures in practice,
for instance, when comparing competing MLMs using
Raudenbush and Bryk’s [2002, p. 79] measure (which
we showed in the Limitation 3 section to be equiva-
lent in the population to ARi,(flv)). Conditional meas-
ures have been employed across disciplines to assess
how accurate a model’s predictions are when taking
into account all cluster-specific information provided
by a model—that is, not just information from clus-
ter-level predictors but also from cluster-specific inter-
cepts and/or slopes. In essence, from a conditional
perspective, cluster membership is itself an inherent
source of explanation when computing R*. The condi-
tional perspective can be useful, according to Vonesh
and Chinchilli (1997, p. 423), because a “moderately low
value for [a marginal measure] may mislead the user
into thinking the selected fixed effects fit the data
poorly. Therefore, it is important that we also assess the
fit of both the fixed and random effects based on the
conditional mean response” (see also Rights & Sterba,
2019, p. 320).

A benefit of the framework provided in the current
paper is that exclusively adopting a marginal or a con-
ditional approach is not necessary. We simply provide
an informative partitioning of variance, and show
visually how this partitioning changes when adding
terms to a model. A researcher can visualize and
report changes in this partitioning whether they deem
the individual sources of variance to be “explained” or
“unexplained.” For instance, in the illustrative
example, we added a random slope to Model D and
computed the target measure ARf(V). From a condi-
tional perspective, ARfM tells us that the random



slope explains 2% of the total outcome variance. From
a marginal perspective, this measure instead informs
us how much variance there is to be explained by
cross-level interaction terms, such as that introduced
in Model F. Lastly, from a neutral perspective, AR?M
is an effect size quantifying the degree of random
slope variability and simply tells us that random slope
variation accounts for an estimated 2% of the total
outcome variance.

Comments on using total versus level-specific AR
for MLMs

Step 2 of our decision-making framework in Table 2
asked researchers to specify whether their interest
focused on total and/or level-specific AR’s. Presently,
level-specific measures are more commonly reported
in psychology and education applications whereas
total measures are more common in biomedical appli-
cations. Rather than reflecting distinct disciplinary
needs, such reporting differences are likely to simply
reflect a lack of awareness across disciplines of the full
set of possibilities in Table 1.

Regarding when researchers would find total versus
level-specific measures most informative, consider
the following examples. Researchers studying math
achievement among students nested within schools
may find total measures more informative when they
wish to explain differences in math achievement
across all students, that is, both students within the
same school and students coming from different
schools. Additionally, certain kinds of combination-
source measures are only possible as total measures—
those that combine sources from different levels
(e.g. AR?m = AR?W —&—AR?UZ)). On the other hand,
researchers who want to primarily explain why
students from the same school perform differently
on math tests may be most interested in within-
cluster measures quantifying within-school variance
explained. Researchers who instead primarily want to
explain why schools have different average levels of
performance may be most interested in between-
cluster measures quantifying between-school variance
explained. However, we argue that inspecting total
and level-specific measures in juxtaposition for a
target source of explained variance in Table 2 affords
the most comprehensive context for understanding
and interpreting results. For instance, doing so allows
identification of situations wherein a small portion of
total variance is explained by a given source, despite
a lot of level-specific variance being explained by
that source.
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Extensions

Extension: Using AR’ with simultaneous versus
hierarchical MLM model building strategies

In the earlier illustrative example, we computed AR
for model comparisons using a hierarchical model
building approach, meaning that terms were added
sequentially to build from the most parsimonious
MLM (Model A) to the full (most complex) MLM,
Model F. A characteristic of a hierarchical approach is
that AR? results depend on the order in which terms
are added to the MLM—meaning that, if terms were
added in a different order, then the AR® result for
a given term could differ because that AR® result con-
trols for previously added but not subsequently added
terms. The same characteristic holds of the hierarch-
ical approach implemented for single-level regression
rather than MLM. Hoffman (2015), Hox (2010), and
Snijders and Bosker (2012) provide rationales for
particular orderings of terms in hierarchical model
building in MLMs.

If the order-dependence characteristic of the
hierarchical approach is not desirable in a particular
substantive context, an alternative is a simultaneous
model building approach wherein the full (most com-
plex) MLM is compared to each possible reduced
MLM that removes (usually) one term at a time from
the full model. Under a simultaneous approach, each
MLM AR? controls for all other terms. Note, however,
that the AR may not have a substantively useful
interpretation for every term under a simultaneous
approach (e.g., if the full MLM includes an
interaction, a researcher may not want to interpret the
AR® representing the unique contribution of a condi-
tional main effect). The same characteristic holds
of the simultaneous approach when implemented in
single-level regression rather than MLM (e.g. Cohen,
Cohen, West & Aiken, 2003).

To employ the simultaneous approach in the con-
text of the illustrative example MLM, we can desig-
nate Model F as the full model, Model G as the full
model minus the fixed components for class-mean-
centered sex and class-mean sex, Model H as the full
model minus the fixed components for class-mean-
centered extraversion and class-mean extraversion,
Model I as the full model minus the random compo-
nent for class-mean-centered extraversion, Model ] as
the full model minus the fixed component for teacher
experience, and Model K as the full model minus the
fixed component for the cross-level interaction. See
Appendix B for scalar level-specific expressions for
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Models F-K. We can then compute AR’s when com-
paring Models G vs. F, Hvs. F, I vs. F, J vs. F, and K
vs. F. Importantly, we can still use the Table 2 proce-
dures to do so, for each of the latter five model com-
parisons. That is, the Table 2 procedures apply to
each pairwise model comparison embedded either
within a hierarchical or simultaneous model-build-
ing approach.
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Extension: If research interest lies in computing
“pseudo-R?” (proportion reduction in residual
variance) measures for any null model, there are
benefits to using our AR? framework to do so
Earlier we noted that the Raudenbush & Bryk (2002,
p- 79, 74, 85) proportion reduction measures have
been called pseudo-R*s. A pseudo-R* can be expressed
generally as (Hoffman, 2015):

residual variance of reduced model-residual variance of full model

pseudo-R* =

The simultaneous approach also conveniently
allows us to decompose outcome variance from the
fullest model into that attributable uniquely to specific
predictors versus that attributable to the set of predic-
tors jointly, as shown for the illustrative example in
Table 5. In single-level regression contexts, the former
is often termed the unique contribution of the predic-
tors and the latter the common contribution of predic-
tors (e.g., Ray-Mukherjee, Nimon, Mukherjee, Morris,
Slotow, & Hamer, 2014). In a multilevel context, we
can distinguish the unique versus common contribu-
tion of predictors for the total/level-specific variance
attributable to each of f;, f,, and v. For instance,
the unique contribution of the fixed component of
the level-1 predictor class-mean-centered sex to the

full Model F’s Rf((;l)) can be computed as Aﬁf((gé),

wherein the (FG) subscript notation, also used in
Table 5, refers to subtracting the Rf(ﬂ) from Model G
from the Rf(fl) for Model F. The common contribu-
tion of the fixed component of the level-1 predictors

is then simply Rf((Q)) for the full Model F minus the

sum of the AR?(ﬂ)S for each individual term (notated
in Table 5 as Ry(%) —(AR;I) + AR L)+ ARYT) ). As
shown in Table 5, this same procedure can be done
for Rf(fz) (computing the unique contribution for each

level-2 predictor’s fixed slope) and R,ZM (computing
the unique contribution for each level-1 predictor’s

random component), and for the level-specific R,

Ri(ﬁ), and R (using the level-specific AR%s).
In Table 5 the common plus unique contributions
of each term are shown to sum down each column
to 100% of the total variance (2nd column), 100%
of within-cluster variance (3rd column), and 100%
of between-cluster variance (4th column) for Model F
using the simultaneous approach.

residual variance of reduced model

(19)

where the residual variance in Equation (19) is
either the level-1 residual variance, the level-2 random
intercept variance, or a level-2 random slope’s
variance, depending on the pseudo-R*> measure.
Though we earlier discussed how our framework
subsumes two of these three pseudo-R®> measures
from Raudenbush and Bryk (2002, p. 79 and p. 74)
when the reduced model is a random-intercept only
null model, we now discuss how our framework
relates more generally to all three pseudo-R’s
(Raudenbush & Bryk, 2002, p. 79, p, 74, and p. 85)
for any user-defined null model.

Pseudo-R* measures can be computed using our AR?
framework, and moreover there are distinct benefits to
doing so, in that our framework allows researchers to
simultaneously consider not only (a) the proportion of
the reduced model residual variance explained by the
added term(s), but also (b) the proportion of the fotal
outcome variance explained and (c) the proportion of
level-specific outcome variance explained. Relying solely
on (a), as is traditionally done with the pseudo—R2
measures, can be misleading when there is little residual
variance in the reduced model because then a large
pseudo-R*> can be obtained even if the added terms
account for little actual outcome variance.

We next show that the pseudo-R®> measures are
simply scaled versions of certain AR® from our frame-
work. The proportion reduction in level-1 residual
variance for any reduced model is defined as

2

2
o -0
pseudo-R}| = 7’”’;‘“‘1 (20)

reduced

Here o*fedwd is the level-1 residual variance for the
reduced model and ¢? is that for the full model.
Appendix C provides a derivation showing that
pseudo-R7, is equivalent in the population to
scaled versions of our ARf(ﬁ'm) and AREV(M), as
described in Equation (21):
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ARZ™
1— RZ(fvm)

t, reduced

pseudo-R:, =

21
AR 1)

TR

w, reduced

Thus our framework allows juxtaposing the
pseudo-R?, (proportion of the reduced model level-1
residual variance accounted for by the added terms)
with AR’ (proportion of the total outcome
variance accounted for by the added terms) and
with ARz(f1 (proportion of the within-cluster outcome
variance accounted for by the added terms).

Similarly, the proportion reduction in level-2
random intercept variance for any reduced model is:

_ T00, reduced~T00

pseudo-R%, = (22)

T00, reduced
T00, reduced 18 the level-2 random intercept variance for
the reduced model and 7( is that for the full model.
In Appendix C we derive the equivalence in the opu-
lation of pseudo-R2,, to scaled versions of AR and
AR, 2(m) 45 shown in Equation (23):
2
ARt(m>
_ p2(m)
t, reduced
: 23)
2(m) (
AR,™
2(m)
b, reduced

pseudo-R2, =

Using our framework the pseudo -R? . can thus be jux-
taposed with AR ) and AR

Lastly, the proportion reductlon in level-2 random
slope variance for any reduced model is:

T —7T
pseudo R _ 11, reduced 11 (24)

slope T11, reduced
T11, reduced 18 @ level-2 random slope variance for the
reduced model and t;; is that for the full model. In
Appendix C, we derive the following equivalence in
the g)Opulatlon of pseudo-R%, ope L0 scaled versions of
R and AR ) when there is one random slope in
Models A and B:

2(v
AR
slope - 2(v)
At,Rrsc(ig)ced (2 5)
- _RZ(V>

w, reduced

pseudo-R>

pseudo- Rslope is typically reported in isolation after
adding a cross-level interaction to the reduced model.
However it is useful to juxtapose it with ARt( ") and
ARW from our framework for reasons we now illus-
trate. Consider the Model E to F comparison from

our earlier illustrative example, in which we added a
cross-level interaction term. In this case, the estimate
of pseudo- Rslope is 1, suggesting a large effect size asso-
ciated with the cross-level interaction. Although the
addition of the cross-level interaction to Model E
indeed accounts for all outcome variance due to
random slopes, our framework indicates that the
interaction term’s importance must be gauged against
the fact that there was little outcome variance available
to be explained. That is, the random slope accounted
for very little outcome variance in the first place
(ARZ(V) .02 and AR 20 _ = .03 from Model D to E).
Additional extensions and future directions

Next we consider three additional extensions and
future directions. First, though we recommend
researchers utilize cluster-mean-centering to both disag-
gregate within-cluster and between-cluster effects and
to facilitate decomposition of level-specific proportions
of outcome variance, a subset of the Table 1 measures
could nonetheless be computed without cluster-mean-
centering, i.e., when level-1 variables have both within-
cluster and between-cluster variability. In this case,
RO RV RHM M and R**™ can each be com-
puted for Models A and B using modified formulae
provided in Rights and Sterba (2019). Taking these dif-
ferences then yields non-cluster-mean-centered versions
of AR, AR}, ARP™, AR;™, and AR;™™. Though
they provide less information than our full suite of
measures, these versions still allow researchers to separ-
ately consider total outcome variance explained via f, v,
and m, rather than relying on preexisting measures
that implicitly combine these sources.

Second, in the current paper we presented measures
based on MLMs with the most widely used outcome
distribution, that is, normal outcomes. However, these
measures can be extended for use with generalized lin-
ear mixed models (GLMMs) in order to accommodate
different outcome types, such as binary outcomes. This
can be done by adapting the approach of Nakagawa
and Schielzeth (2013), Johnson (2014), and Nakagawa
et al. (2017) who provide GLMM versions of R and
Rf(fv ). In contrast to the MLM versions, for GLMM
the level-1 residual variance changes depending on the
error distribution and link function used. For instance,
with binary outcomes using a logit link, ¢ is replaced
with 7%/3. This same replacement can be done for
our set of measures, and thus GLMM versions of the
differences in Table 1 can be computed.

Lastly, here we provided formulae to compute
point estimates of AR®> for MLMs, but a researcher
might additionally be interested in computing



confidence intervals of said differences. For confidence
interval computation, a straightforward approach
would be to use bootstrapping (for an overview of
procedures specific to multilevel data, see Goldstein,
2011). For each bootstrap resample, one can compute
each of the available AR’ and can thus obtain an
empirical sampling distribution of each individually.
Note that when computing the full suite of measures
for cluster-mean-centered models, each bootstrap
resample would require cluster-mean-centering.

Conclusions

The use of effect size measures has been widely
recommended to help social scientists move beyond
exclusive reliance on statistical significance when fitting
and comparing models (e.g., APA, 2008, 2009;
Appelbaum et al., 2018; Harlow, Mulaik, & Steiger, 1997;
Kelley & Preacher, 2012; Panter & Sterba, 2011). AR?
measures provide effect size differences on a familiar
metric that can be a useful supplement to existing infer-
ential and ranking methods for comparing MLMs, such
as likelihood ratio tests and information criteria
(Edwards et al., 2008). It is our hope that by resolving
confusion surrounding the use of AR’ measures for
MLM, providing a more general set of AR> measures for
MLM, and developing a clear step-by-step procedure for
choosing and interpreting relevant AR’ measures,
researchers comparing MLMs will be better equipped to
consider the practical importance of included terms.
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Appendix A: Review of definitions for multilevel
model (MLM) R?s in Rights and Sterba’s (2019)
integrative framework used for evaluating a
single model in isolation: Previous authors of
measures equivalent in the population are listed

in the table notes

Symbol Definition Computation*
Total MLM R*s _
Single-source measures Rfm Proportion of total outcome variance explained by level-1 predictors via Egﬂ:t:g:g;
26) ﬁxed. components of slopes ) ) ‘ . Equaton (8)
R Proportion of total outcome variance explained by level-2 predictors via Eguation(s)
fixed components of slopes )
Rfm Proportion of total outcome variance explained by level-1 predictors via Egﬂ:t:g:g;
random slope (co)variation’ )
Rf(m) Proportion of total outcome variance explained by cluster-specific %m
outcome means via random intercept variation
Combination-source measures Rfm Proportion of total outcome variance explained by all predictors via Rf(f‘) + Rfm)
fixed slopes®
Rf(f") Proportion of total outcome variance explained by predictors via fixed Rf(f‘) + Rfm + RfM
slopes & random slope (co)variation
Rf(fvm) Proportion of total outcome variance explained by predictors via fixed Rf(f‘) + Rfm) + Rfm + wa
slopes and random slope (co)variation & by cluster-specific outcome
means via random intercept variation®
Within-cluster MLM R?s
Single-source measures Rfff‘) Proportion of within-cluster outcome variance explained by level-1 %ﬁ‘”(%
20) predictors via fixed components of slopes Exuation 5)
W Proportion of within-cluster outcome variance explained by level-1 %
predictors via random slope (co)variation
Combination-source measure Rff’"’) Proportion of within-cluster outcome variance explained by level-1 sz(f‘) + Rff")
predictors via fixed slopes & random slope (co)variation®*
Between-cluster MLM R’s )
Single-source measures Ri(m Proportion of between-cluster outcome variance explained by level-2 %ﬂ%
’m) predi_ctors via fixed components of slopes‘f _ Equation (10
R, Proportion of between-cluster outcome variance explained by cluster- EZUTW

specific outcome means via random intercept variation

Notes. *= Computation refers to equation numbers in the current paper. Authors of a measure equivalent in the population are as follows: 1= Aguinis &
Culpepper (2015); 2 =Johnson (2014) (extension of Nakagawa & Schielzeth [2013]) and Snijders & Bosker (2012) and Vonesh & Chinchilli (1997);
3 =Johnson (2014) (extension of Nakagawa & Schielzeth [2013]) and Vonesh & Chinchilli (1997) and Xu (2003); 4 =Hox (2010) and Kreft & de Leeuw
(1998) and Vonesh & Chinchilli (1997) and Raudenbush & Bryk's (2002) “pseudo-R*s” (computed with a random-intercept-only null model). See Rights &
Sterba (2019, Appendix B) for derivations underlying each of these population equivalencies.

Appendix B: Scalar model expressions for the
illustrative example

In the manuscript section titled Illustrative Example, we
described Models A-F that were used in a hierarchical
model building approach. In the subsection titled
Extension: Using AR with simultaneous versus hierarch-
ical MLM model building strategies, we described
Models F-K that were used in a simultaneous model
building approach with the same data. Here, we supple-
ment all of the manuscript text descriptions of Models
A-K with scalar level-1 and level-2 expressions (as in
manuscript Equation (1)-(2)). For each model below,
popular;; denotes student i’s popularity (within class j);
additionally, all level-1 residuals (e;’s) are normally dis-
tributed, and all random effect residuals are multivariate
normally distributed (with all random effect residuals
allowed to covary).

Model A:

popular; = By + e
ﬁ()j = Yoo T Uoj

Model B:
yij = Poj + Byj(sexij—sex;) + e;

Boj = Voo + Vorsex.; + g
ﬁu =710

(where sex;j—sex.; = class-mean-centered student sex and
sex;j = class-mean sex)

Model C:
yij = Boj + Byj(sexii—sex;) + Byj(extravi—extrav.;) + e;;

Boj = V00 + Vorsex.j + popextrav. + ug;

31]‘ = "10
ﬁZj =720
(where  extrav;—extrav; = class-mean-centered  student

extraversion and extrav.; = class-mean extraversion)
Model D:
yii = Boj + Byj(sexi—sex;) + Byj(extravi—extrav.;) + e;;

ﬁoj = Yoo + Yo15€X.j + Yppextrav., + yosteach exp; + uo;
.Blj = %10
ﬁzj =720

(where teach exp ; = teacher years of experience)
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Model E:
yij = Boj + Pij(sex—sex;) + Py(extravi—extrav;) + e;

ﬂoj = Yoo + Vo15€xj + Vprextrav; + ygsteach exp; + uoj

ﬁlj = "Y10
Baj = 720 + 1y

Model F:
yij = Boj + Pij(sex—sex;) + Py(extravi—extrav;) + e;

ﬂoj = Yoo + Yo15€X,j + Ypaextrav; + Yosteach exp; =+ Ug;

Blj = %10
Baj = 720 + Varteach exp; + u;

Model G:
yij = PBoj + Byj(extravi—extrav;) + e;

Boj = Vo0 + Yorextrav. + poyteach exp; + uo;

ﬂlj = %10
Baj = 720 + Varteach exp; + uy

Model H:
yij = Poj + Byj(sexi—sex;) + e

Boj = Voo + Yo15ex.j + Vosteach exp; + u;

By =10
Baj = 720 + Vi teachexp; + uy;

Model I:
yii = Boj + PByj(sexi—sex;) + Byj(extravi—extrav;) + ej;

[30]. = Yoo + Vo15€x.j + Yppextrav. + yosteach exp; + uoj

By =10
Baj = V20 + Varteach €xp;

Model J:
yij = Boj + Byj(sexi—sex;) + Byj(extravi—extrav;) + e;;

Boj = Voo T Vorsex;j + Yopextrav, + ug;

51]‘ = "0
Baj = 20 + Varteach exp; + wy;

Model K:

yij = Boj + Byj(sexi—sex;) + Byj(extravi—extrav;) + e;;
ﬁoj = Yoo T Yor15€xj + Ypaextrav; + yo3 teach exp; =+ Uo;
ﬁlj =710

Baj = 720 + 12
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Appendix C

Analytically relating “pseudo-R*” measures to our
AR? framework

Derivations showing the equivalence in the population of
manuscript equations (20) and (21) are provided here in
Appendix C equations (C1) and (C2). Symbols were defined
in the manuscript text.

2 )
Oreduced 0

2
O reduced

pseudo-R | =

_ (074,ea—07)/ (total outcome variance)

2 s
02, 1uceq/ (total outcome variance)

2 2
O reduced g

_ total outcome variance total outcome variance

2
O reduced
total outcome variance

b b,,b b
(1 — ereduced/q)wyxduced + yreduced/q) Vreduced + tr(TZ)reduced + Too,reduced> — (1 — YW/q)WYW + ’Yb/q) Yb + tT’(TZ) + TOO)
total outcome variance total outcome variance

w 'MW AW b 702V
(1 _ Vreduced s Vreduced + Vreduced @ Vreduced + tr(TZ)reduced + Too, reduwd)

total outcome variance
(1= Rma) - (1= RE™™)
2(fvm)
(1 - Rt, reduced)

th(fvm) _Rz(ﬁ/m>

_ t, reduced

t, reduced
2
A Rt (fvm)

2(fvm)
(1 - Rt, r:duead)

(C1)
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2 2
Oveduced 9
2
reduced

pseudo-RZ, =

 (07,4uceq—07)/ (within-cluster outcome variance)

2 . . .
02 ucea/ (Within-cluster outcome variance)

2
O veduced

2

_ within-cluster outcome variance within-cluster outcome variance

2
O veduced

within-cluster outcome variance

(1 _ yxduced,q)wyr;duced + tr(TZ)reduced> _ (1
within-cluster outcome variance

YOy + tr(TX) )

within-cluster outcome variance

(1 — deucea'ﬁq)wyxduced + tr(TE) reduced) (CZ)

within-cluster outcome variance

2(fiv) 2(fiv)
(1 - Rw,;;duwd) - (1 — Ry v )
2(fiv)
(1 - Rw, r:duced)

R%V(fl v) _R2(f11/)

w, reduced
2(fiv)

(1 - Rw, ;educed)
ARZ)

2(fiv)
(1 - Rw, ;educed)

Derivations showing the equivalence in the population of
manuscript equations (22) and (23) are provided here in
Appendix C equations (C3) and (C4). Symbols were defined
in the manuscript text.

2 00, reduced —T00
int

pseudo-R
T00, reduced

(00, reduced—To0) / (total outcome variance)
00, reduced/ (total outcome variance)

T00, reduced T00

_ total outcome variance total outcome variance
T00, reduced
total outcome variance

2
_Rt (m)

2(m)

_ Rt, reduced
- 2(m)
t, reduced

2(m) _ p2(m)
_ Rt T reduced
_RZ(m)

t, reduced

2
ARt (m)
2(m)
¢ reduced

(C3)

T00, reduced —T00
pseudo-R%, = —2E 2
T00, reduced

(700, reduced—To0) / (between-cluster outcome variance)

T 00, reduced/ (between-cluster outcome variance)
T00, reduced _ Too
_ between-cluster outcome variance between-cluster outcome variance
T00, reduced
between-cluster outcome variance

2(m) 2(m)
Rb, reduced 7Rb
2(m)
Rb, reduced

2(m) _ p2(m)
_ Rb _Rb, reduced
2(m)
b, reduced

2(m)
— ARb

T _p2(m)
_Rb, reduced

—R

(C4)

Derivations showing the equivalence in the population
of manuscript equations (24) and (25) when there is one
random slope in the both the full and reduced models
are provided here in Appendix C equations (C5) and (C6).
Symbols were defined in the manuscript text.



2 _ T11, reduced —T11

pseudo-Rg,,, =

T11, reduced

~ var(x;;) (%11, reduced—T11) / (total outcome variance)

Var(X;) 11, reduced/ (total outcome variance)
Var(xij)rll,reduced Var(xij)fll
_ total outcome variance total outcome variance
Var(-xij)fll, reduced
total outcome variance
2(v) 2(v)
Ry reducediRi
- 2(v)
t, reduced
2(v) _ p2(v)
Rl ¢, reduced

_R2<V)

t, reduced

2(v)

_Rt, reduced

(C5)
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T11, reduced —T11
2 _ , reduce
pseudo—Rslape =
T11, reduced

~ var(x;) (T11, reduced—T11) / (Within-cluster outcome variance)

Var(Xi;)T11, reduced/ (Within-cluster outcome variance)

Var(xij)fll,redur:ed Var(xij)fll

_ within-cluster outcome variance _within-cluster outcome variance

Var(xij )TI 1, reduced
within-cluster outcome variance

2(v, 2(v
RW( r)educed_RW( )
2(v)
w, reduced
2(v 2(v
_ RW( )7 W, r)educed
2(v)
w, reduced

AREY
20)

R, reduced

(Ce)



ONLINE APPENDIX

Online Appendix to accompany “New recommendations on the use of R-squared differences in
multilevel model comparisons”: r2ZMLMcomp R function

r2ZMLMcomp R function Description:

This function reads in raw data and multilevel model (MLM) parameter estimates from two
separate models under comparison (Model A and Model B) and outputs all R* measures (reviewed
and defined in the manuscript’s print Appendix A) for both models as well as all AR* measures
(defined in the manuscript’s Table 1). Additionally, the function produces side-by-side graphical
comparisons of the R measures for Model A vs. B that can be used to visualize changes in each
measure across models (see manuscript description of Figure 2 for an example illustration). This
function assumes all level-1 predictors are cluster-mean-centered for reasons described in the
manuscript. Any number of level-1 and/or level-2 predictors is supported and any of the level-1
predictors can have random slopes. This function can be used with either the hierarchical or the
simultaneous model-building approach described in the manuscript (in which Model B is the more
complex model for a given pairwise comparison). Our function can also be used with either nested
non-nested model comparisons (in which R? estimates for Model A are subtracted from those for
Model B).

r2MLMcomp R function Input:

data — Dataset with rows denoting observations and columns denoting variables

within_covs_modA — List of numbers corresponding to the columns in the dataset of the level-1
predictors used in the Model A MLM (if none used, set to NULL)

between_covs_modA — List of numbers corresponding to the columns in the dataset of the level-2
predictors used in the Model A MLM (if none used, set to NULL)

random_covs_modA — List of numbers corresponding to the columns in the dataset of the level-1
predictors that have random slopes in the Model A MLM (if no random slopes, set to NULL)

gamma_w_modA — Vector of estimates of the fixed component of slopes for all level-1 predictors for
Model A, to be entered in the order of the predictors listed by within_covs (if none, set to
NULL)

gamma_b_modA — Vector of estimates of the fixed component of the intercept and slopes for all
level-2 predictors for Model A, to be entered intercept first followed by level-2 slopes in the
order listed by between_covs

Tau_modA — random effect covariance matrix for Model A; note that the first row/column denotes
the intercept variance and covariances (if intercept is fixed, set all to 0) and each subsequent
row/column denotes a given random slope’s variance and covariances (to be entered in the
order listed by random_covs). Variances are on diagonal and covariances are on off-diagonal.

sigma2_modA — level-1 residual variance for Model A

within_covs_modB — List of numbers corresponding to the columns in the dataset of the level-1
predictors used in the Model B MLM (if none used, set to NULL)

between_covs_modB — List of numbers corresponding to the columns in the dataset of the level-2
predictors used in the Model B MLM (if none used, set to NULL)

random_covs_modB — List of numbers corresponding to the columns in the dataset of the level-1
predictors that have random slopes in the Model B MLM (if no random slopes, set to NULL)

gamma_w_modB — Vector of estimates of the fixed component of slopes for all level-1 predictors for
Model B, to be entered in the order of the predictors listed by within_covs (if none, set to
NULL)

gamma_b_modB — Vector of estimates of the fixed component of the intercept and slopes for all
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level-2 predictors for Model B, to be entered intercept first followed by level-2 slopes in the
order listed by between_covs
Tau_modB — random effect covariance matrix for Model B; note that the first row/column denotes
the intercept variance and covariances (if intercept is fixed, set all to 0) and each subsequent
row/column denotes a given random slope’s variance and covariances (to be entered in the
order listed by random_covs). Variances are on diagonal and covariances are on off-diagonal.
sigma2_modB — level-1 residual variance for Model B

r2ZMLMcomp R function Code:

r2MLMcomp <- function(data,within_covs_modA,between covs_modA,random_covs_modA,
gamma_w_modA,gamma_b_modA,Tau_modA,sigma2_modA,
within_covs_modB,between_covs_modB,random_covs_modB,
gamma_w_modB,gamma b _modB,Tau_modB,sigma2_modB){
##r2MLM function
r2MLM <- function(data,within_covs,between_covs,random_covs,
gamma_w,gamma_b,Tau,sigma2,modelname){
if(length(gamma_b)>1) gamma <- ¢(1,gamma_w,gamma_b[2:length(gamma_b)])
if(length(gamma b)==1) gamma <- ¢(1,gamma_w)
if(is.null(within_covs)==T) gamma w <- 0
if(is.null(gamma)) gamma <- 0
##compute phi
phi <- var(cbind(1,data[,c(within_covs)],data[,c(between_covs)]),na.rm=T)
phi_w <- var(data[,within_covs],na.rm=T)
if(is.null(within_covs)==T) phi_w <- 0
phi_b <- var(cbind(1,data[,between_covs]),na.rm=T)
if(is.null(between_covs)==T) phi_b <- 0
##compute psi and kappa
var_randomcovs <- var(cbind(1,data[,c(random_covs)]),na.rm=T)
if(length(Tau)>1) psi <- matrix(c(diag(Tau)),ncol=1)
if(length(Tau)==1) psi <- Tau
if(length(Tau)>1) kappa <- matrix(c(Tau[lower.tri(Tau)==TRUE]),ncol=1)
if(length(Tau)==1) kappa <- 0
v <- matrix(c(diag(var_randomcovs)),ncol=1)
r <- matrix(c(var_randomcovs[lower.tri(var_randomcovs)==TRUE]),ncol=1)
if(is.null(random_covs)==TRUE){
v<-0
r<-0
m <- matrix(1,ncol=1)
v
s
if(length(random_covs)>0) m <- matrix(c(colMeans(cbind(1,data[,c(random_covs)]),na.rm=T)),ncol=1)
#total variance
totalvar_notdecomp <- t(v)%*%psi + 2*(t(r)%*%kappa) + t(gamma)%*%phi%*%gamma + t(m)%*%Tau%*%m + sigma2
totalwithinvar <- (t(gamma_w)%*%phi_w%*%gamma_w) + (t(v)%*%psi + 2*(t(r)%*%kappa)) + sigma2
totalbetweenvar <- (t(gamma_b)%*%phi_b%*%gamma_b) + Tau[1]
totalvar <- totalwithinvar + totalbetweenvar
##total decomp
decomp_fixed notdecomp <- (t(gamma)%*%phi%*%gamma) / totalvar
decomp_fixed within <- (t(gamma_w)%*%phi_w%*%gamma_w) / totalvar
decomp_fixed between <- (t(gamma_b)%*%phi_b%*%gamma_b) / totalvar
decomp_fixed <- decomp_fixed within + decomp_fixed between
decomp_varslopes <- (t(v)%*%psi + 2*(t(r)%*%kappa)) / totalvar
decomp_varmeans <- (t(m)%*%Tau%*%m) / totalvar
decomp_sigma <- sigma2/totalvar
##within decomp
decomp_fixed within_w <- (t(gamma_w)%*%phi_w%*%gamma_w) / totalwithinvar
decomp_varslopes_w <- (t(v)%*%psi + 2*(t(r)%*%kappa)) / totalwithinvar
decomp_sigma w <- sigma?2/totalwithinvar
##tbetween decomp
decomp_fixed_between_b <- (t(gamma_b)%*%phi_b%*%gamma_b) / totalbetweenvar
decomp_varmeans b <- Tau[1] / totalbetweenvar
##measures
R2_f<-decomp_fixed
R2_f1 <- decomp_fixed within
R2 f2 <- decomp fixed between
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R2 fv <- decomp_fixed + decomp_varslopes
R2_fvm <- decomp_fixed + decomp_varslopes + decomp_varmeans
R2 v <- decomp_varslopes
R2 m <- decomp_varmeans
R2 f w<-decomp_fixed within w
R2 f b <-decomp fixed between b
R2 fv_w <-decomp_fixed within w + decomp_varslopes_ w
R2 v _w <-decomp varslopes w
R2 m b <-decomp varmeans_b
decomp _table <- matrix(c(decomp_fixed within,decomp_fixed between,decomp varslopes,decomp varmeans,decomp_sigma,
decomp_fixed within w,"NA",decomp_varslopes w,"NA",decomp_sigma w,
"NA",decomp_fixed between b,"NA",decomp varmeans_b,"NA"),ncol=3)
rownames(decomp_table) <- ¢("fixed, within","fixed, between","slope variation","mean variation","sigma2")
colnames(decomp _table) <- ¢("total","within","between")
R2 table <- matrix(c(R2_f1,R2 f2,R2 v,R2 m,R2 fR2 fv,R2 fvm,
R2 f w,"NA"R2 v_w,"NA""NA"R2 fv_w,"NA",
"NA",R2_f b,"NA",R2_m_b,"NA","NA","NA")
,ncol=3)
rownames(R2_table) <- c¢("f1","f2","v","m","f","fv","fvm")
colnames(R2_table) <- c("total","within","between")
#itbarchart
contributions_stacked <- matrix(c(decomp_fixed within,decomp_fixed between,decomp_varslopes,decomp_varmeans,decomp_sigma,
decomp_fixed within_w,0,decomp_varslopes_w,0,decomp_sigma_w,
0,decomp_fixed between_b,0,decomp varmeans b,0),5,3)
colnames(contributions_stacked) <- c("total","within","between")
rownames(contributions_stacked) <- ¢("fixed slopes (within)",
"fixed slopes (between)",
"slope variation (within)",
"intercept variation (between)",
"residual (within)")
barplot(contributions_stacked, main=paste0("Decomposition of Scaled Variance, Model ",modelname), horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","midnightblue","white"),ylab="proportion of variance",
density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0),xlim=c(0,1),width=c(.3,.3))
legend(.33,-.1,legend=rownames(contributions_stacked),fill=c("darkred","steelblue","darkred","midnightblue","white"),
cex=.7, pt.cex = 1,xpd=TRUE,density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0))
Output <- list(noquote(decomp_table),noquote(R2_table))
names(Output) <- ¢("Decompositions","R2s")
return(Output)
}
#compute decomp for Model A and B
results_ modA <- 2MLM(data,within_covs_modA,between_covs modA,random_covs_modA,
gamma_w_modA,gamma_b_modA,Tau modA,sigma2 modA,"A")
decomp_modA <- results modA$Decompositions
results_ modB <- r2MLM(data,within_covs modB,between_covs modB,random_covs modB,
gamma_w_modB,gamma b _modB,Tau_modB,sigma2 modB,"B")
decomp _modB <- results modB$Decompositions
##comparison measures
delta f1 t <- as.numeric(decomp_modA[1,1]) - as.numeric(decomp _modBJ[1,1])
delta 2 t <- as.numeric(decomp _modA[2,1]) - as.numeric(decomp _modB[2,1])
delta v_t <- as.numeric(decomp_modA[3,1]) - as.numeric(decomp_modB[3,1])
delta m_t <-as.numeric(decomp modA[4,1]) - as.numeric(decomp modB[4,1])
delta_fl w <- as.numeric(decomp_modA[1,2]) - as.numeric(decomp_modB[1,2])
delta_ v_w <- as.numeric(decomp _modA[3,2]) - as.numeric(decomp modB[3,2])
delta f2 b <- as.numeric(decomp _modA[2,3]) - as.numeric(decomp _modB[2,3])
delta_m_b <- as.numeric(decomp_modA[4,3]) - as.numeric(decomp_modB[4,3])
delta_f t<-delta fl t+delta f2 t
delta fv_t<-delta fl t+delta f2 t+delta v t
delta fvm t<-delta fl t+delta f2 t+delta v_t+delta m t
delta flv_w <-delta fl_w +delta v w
##comparison bar charts
contributions_stacked_total <-
matrix(c(as.numeric(decomp_modA[1,1]),as.numeric(decomp modA[2,1]),as.numeric(decomp modA[3,1]),as.numeric(decomp modA[4,1]),as.
numeric(decomp _modA[5,1]),
as.numeric(decomp_modB[1,1]),as.numeric(decomp_modB[2,1]),as.numeric(decomp modB[3,1]),as.numeric(decomp_modB[4,1]),as.numeric(d
ecomp_modB[5,1])),5,2)
colnames(contributions_stacked total) <- ¢("Model A","Model B")
barplot(contributions_stacked _total, main="Decomposition of Scaled Total Variance", horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","midnightblue","white"),ylab="proportion of variance",
density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0),width=c(.3,.3))
legend(0.26,-.1,legend=c("fixed slopes (within)",
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"fixed slopes (between)",
"slope variation (within)",
"intercept variation (between)",
"residual (within)"),fill=c("darkred","steelblue","darkred","midnightblue","white"),
cex=.7, pt.cex = 1,xpd=TRUE,density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0))
contributions_stacked_within <-
matrix(c(as.numeric(decomp_modA[1,2]),0,as.numeric(decomp modA[3,2]),0,as.numeric(decomp modA[S5,2]),
as.numeric(decomp modB[1,2]),0,as.numeric(decomp modB[3,2]),0,as.numeric(decomp modB[5,2])),5,2)
colnames(contributions_stacked_within) <- ¢("Model A","Model B")
barplot(contributions_stacked within, main="Decomposition of Scaled Within-Cluster Variance", horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","midnightblue","white"),ylab="proportion of variance",
density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0),width=c(.3,.3))
legend(0.28,-.1,legend=c("fixed slopes (within)",
"slope variation (within)",
"residual (within)"),fill=c("darkred","darkred","white"),
cex=.7, pt.cex = 1,xpd=TRUE,density=c(NA,30,NA),angle=c(0,0,0))
contributions_stacked between <- matrix(c(0,as.numeric(decomp modA[2,3]),0,as.numeric(decomp modA[4,3]),0,
0,as.numeric(decomp_modB[2,3]),0,as.numeric(decomp_modB[4,3]),0),5,2)
colnames(contributions_stacked between) <- ¢("Model A","Model B")
barplot(contributions_stacked between, main="Decomposition of Scaled Between-Cluster Variance", horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","midnightblue","white"),ylab="proportion of variance",
density=c(NA,NA,30,40,NA),angle=c(0,45,0,135,0),width=c(.3,.3))
legend(0.26,-.1,legend=c("fixed slopes (between)",
"intercept variation (between)"),fill=c("steelblue","midnightblue"),
cex=.7, pt.cex = 1,xpd=TRUE,density=c(NA,40),angle=c(45,135))
#table of R2 deltas
R2_modA <- results_modA$R2s
R2_modB <- results_modB$R2s
R2 _delta <- suppressWarnings(as.numeric(R2_modB) - as.numeric(R2_modA))
R2_delta <- matrix(R2_delta,7,3)
colnames(R2_delta) <- colnames(R2_modA)
rownames(R2_delta) <- rownames(R2_modA)
Output <- list(R2_modA,R2_modB,R2_delta)
names(Output) <- ¢("Model A R2s","Model B R2s","R2 differences, Model B - Model A")

return(Output)

}

r2MLMcomp R function Example Input:

#NOTE: estimates in the input represent hypothetical results for a comparison between a random slope model with two
#level-1 predictors and one level-2 predictor (Model A) and a model that adds an additional level-2 predictor (Model B);
#in practice a user would have previously obtained these input estimates by fitting their models in MLM software;
#additionally, the input consists of hypothetical predictor data, whereas in practice a user would read-in their actual data

data <- matrix(NA,100,4)

xs <- mvrnorm(n=100,mu=c(0,0),Sigma=matrix(c(2,.75,.75,1.5),2,2))

ws <- mvrnorm(n=10,mu=c(0,2),Sigma=matrix(c(1,.5,.5,2),2,2))

data[,1:2] <- xs

for (i in seq(10)){
data[(10*(i-1)+1):(1*10),3
data[(10*(i-1)+1):(1*10),4
data[(10*(i-1)+1):(1*10),1
data[(10*(i-1)+1):(1*10),2

<-ws[i,1]

<- ws[i,2]

<- data[(10*(i-1)+1):(i*10),1] - mean(data[(10*(i-1)+1):(i*10),1])
<- data[(10*(i-1)+1):(i*10),2] - mean(data[(10*(i-1)+1):(i*10),2])

—_ e

r2MLMcomp(data,within_covs modA=c(1,2),between_covs modA=c(3),random_covs_modA=c(1,2),
gamma w_modA=c(2.5,-1),gamma_b_modA=c(1,4),Tau_modA=matrix(c(8,1,.75,1,1,.25,.75,.25,.5),3,3),sigma2_modA=10,
within_covs modB=c(1,2),between_covs modB=c(3,4),random_covs modB=c(1,2),
gamma w_modB=c(2.5,-1),gamma b _modB=c(1,4,1),Tau_modB=matrix(c(6.5,.5,.25,.5,1,.25,.75,.25,.5),3,3),sigma2_modB=10)
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