Appendices for Effect size measures for longitudinal growth analyses:
Extending a framework of multilevel model R-squareds to accommodate heteroscedasticity,
autocorrelation, nonlinearity, and alternative centering strategies
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Appendix A. Review from Rights & Sterba (2019) of definitions of R-squared measures and
corresponding formulas, assuming person-mean-centering

Here we briefly review the Rights & Sterba (2019) decomposition of model-implied outcome
variance for cluster-mean-centered models, framing this decomposition in terms of longitudinal
models wherein observations are nested within persons (and hence clusters = persons). We will show
how this decomposition is used to form each R-squared measure. Importantly, this decomposition
here assumes that the level-1 errors are homoscedastic and have no autocorrelation—assumptions we
later relax in the current paper.

First note that a two-level person-mean-centered model can be expressed generally as
W, w b, b '

Vi =X v X7y Hwiu; g
u; ~MVN(0,T) (A1)
2
e; ~N(0,07)
Where x;; denotes a vector of all level-1 predictors (each person-mean-centered), v" avector of

fixed components of slopes corresponding to elements in xj/ , xkj? a vector of 1 and all level-2

predictors, ‘Yb a vector of fixed components of slopes corresponding to elements in xl} , W, avector
with the first element equal to 1 and all subsequent elements being predictors with random slopes, u;,

a vector of random effect errors (with covariance matrix T ) corresponding to the elements in w

ij >

and g; the level-1 error. The level 1 errors are presently assumed uncorrelated with homoscedastic

variance 0. The model-implied variance for the person-mean-centered model expression, derived
in Rights & Sterba (2019), is then given as

b, b
var(y; ) = var(x;'y" +X7y° + wiu, +€;)

(A2)
=y"®"y" + 7" ®°Y° +tr(TE) + 7 + 0~

w
ij 2

!
ij

b . . .
where qj”, @ and X denote covariance matrices of elements of x respectively,

x'} ,and w
and 7,, denotes the random intercept variance. The five separate terms in Equation A2 each denote
variance attributable to a distinct source: ’YW’CI)WVW denotes variance attributable to level-1 predictors
via fixed components of slopes, 'yb'fl)b’yb variance attributable to level-2 predictors via fixed

components of slopes, tr(TX) variance attributable to level-1 predictors via random slope variance,

T,, variance attributable to cluster-specific outcome means via random intercept variation, and o’
variance attributable to level-1 errors. Three of these variances (" ®"y", tr(TX), and o) reflect

purely within-person variation, whereas the other two (yb'(I)byb and 7, ) reflect purely between-

person variation.

From this decomposition, we can compute the total single-source R-squared measures,
quantifying total variance explained by one source at a time, for person-mean-centered models
(defined in Table 3 Column 2) as:



th( f) _ 'YW,(I)W'YW
D"y + 4" @y’ +tr(TE) + 7, + 0~

b’ (gyDry D
()]
R = ' b? 1 b ! 2 (A3)
YO +y @y +tr(TE)+ 17, + 0
R2V) _ tr(TX)
t Oy + 4" @y’ +tr(TE) + 17, +0°
RAM™ = oo

7Oy + 4" @y’ +tr(TE) + 7, + 0~
The total combination-source R-squared measures, quantifying total variance explained by multiple
sources together, are then just combinations of these equations, for instance: R*" = R*") + R*("%),
RI™ =R X" + R + R?™, and R2"™ = R*"™ 4+ R* ™) 4+ R*™ 4 R*™  The single-source within-

person measures for person-mean-centered models are then given as

R2() — ’YW’(DW'YW
ey +tr(TE) + o
RIY = tr(TX) (A4)
7' ®"y" +tr(TL) + o~

A combination-source within-person measure is given as R} = R2(") + R2™ | The single-source

between-person measures for person-mean-centered models are likewise:

b’ b b
R2(%) = Y Dy
bbb b
Y DY +7y
R2m —_ Teo
b b’ xb_ b
Y @Y +7y,



Appendix B. New extension: Full decomposition of outcome variance for non-person-mean-
centered models

In Appendix B, we derive a complete model-implied variance decomposition for non-person-
mean-centered models (i.e., models involving uncentered level-1 predictors or involving centering
level-1 predictors at a constant value such as the first assessment value or the grand mean). Here we
show how this variance is a sum of variances attributable to each of the following distinct sources:
e the within-person-varying portion of level-1 predictors via fixed components of slopes (f;);
e the between-person-varying portion of level-1 and/or level-2 predictors via fixed components
of slopes (f,);

e the within-person-varying portion of level-1 predictors via random slope variation (V;);
the between-person-varying portion of level-1 predictors via random slope variation (V;);
person-specific outcome means via random intercept variation at the mean of all predictors
with random slopes (M);

e level-1 errors.

From this decomposition, we show how each of the R-squared measures described in Table 3
Column 3 are computed. Rights & Sterba (2019) had provided a more limited decomposition for

non-person-mean-centered models which did not break down f into f, (reflecting purely within-

cluster variance) and f, (reflecting purely between-cluster variance), and did not break down v into

V, and V,.
An expression for a two-level multilevel model without assuming person-mean-centering is:
Y = XY+ wiu; + e (B1)
u; ~MVN(0,T)
e; ~ N(0, c?)

Here, vy, denotes the outcome for observation i nested within cluster j, x; a vector with the first

element equal to 1 and all subsequent elements being predictors for observation i within person j, y
a vector of fixed components of coefficients corresponding to the elements in x;, w; a vector with

the first element equal to 1 and all subsequent elements being predictors with random slopes, u; a

vector of random effect errors (with covariance matrix T ) corresponding to the elements in w ., and

ij >

g; the level-1 error. The level 1 error covariance matrix is presently assumed diagonal with

homoscedastic variance o .

First note that we can decompose every predictor into a purely within-person-varying portion
and a purely between-person varying portion by using the following substitutions:
X; = (X —X.)) + X, (B2)

1]
Wi = (wij _W.j)+W.j
Here, x,; and w_; denote vectors of person means of each element of x; and w, respectively.
Hence, (x; —x,;) reflects a vector of variables that are deviations from the person-specific means,

and is thus the portion of x;; that varies exclusively within-person (since E; [x; —x,;]=0 for all

ij
clusters, and hence var,[x;; —x,;]=0). Similarly, (w; —w_;) is the portion of w that varies

exclusively within-person. The parts of x; and w that vary exclusively between-person then are



x.; and w_;, respectively (since x_; and w_; are vectors of constants for each cluster, i.e.,

var.

(X, 1= var;[w ;1= 0).

We can then re-write the model expression in Equation Al as
Y = x;jy + wi’juj +€;
=(xij—x.jer.j)'y+(wij—w,j+w,j)'uj+eij (B3)
= (x; —x,j)'y+xij+(wij —w_j)'uj +ijuj +€;
We can then compute the model-implied variance as
var(y;) = var((x; —x,;)"y + X,y +(W; =W ;) 'u; + W_ u; +¢;) B4)
= var((x; —X,;)"y) + var(x/;y) + var((w; —w_;)'u;) + var(w_ u;) + var(g; )

The five variances in the second line of Equation B4 are separable because of the lack of covariance
between the following pairs: the fixed components and random components, the purely within-
cluster-varying portion of predictors and the purely between-cluster-varying portion, and the level-1
errors and all other terms. The first part of Equation B4 is computed as

var((x; —x.;)'y) =7'®,Y (B5)

Where @, is the covariance matrix of the within-cluster-varying portions of x; - The second part of

Equation B4 is computed as
var(x.;y) = y'®,y (B6)

Where @, is the covariance matrix of the between-cluster-varying portions of x; - The third part of

Equation B4 is computed using the law of total variance as
Var((wij —W,j )'uj) = E[Val‘((Wij —W, ),uj ‘ u; )] + Var(E[(wij _W.j)'uj ’ u; ])

=E[u|X u,; ]+ var(E[(w; —w,;)Tu;)
= E[tr(u X, u;)]+ var(0)

= E[tr(u;u}X,)]

=tr(E[uu]X,)

=tr(TXx,)

Where X, is the covariance matrix of the within-cluster-varying portions of w ;. The fourth part of

(B7)

Equation B4 is computed, again using the law of total variance, as
var((w,;)'u;) = E[var(w/;u; [u;)]+ var(E[wu; |u;])
= E[u[X,u; ]+ var(E[w;Ju;)
=E[tr(u’ X, u )]+ var(m u,
[ ( j“b J)] ( b ]) (B8)
= E[tr(u;u’ X, )]+ m var(u;)m,
=tr(E[u;u}]X,) +m;Tm,
=tr(TX,)+m;Tm,
Where X, is the covariance matrix of the between-cluster-varying portions of w; and m, isa

vector containing the means of all elements of w, . The fifth part of Equation B4 is then simply



var(e;) = o’ (B9)
Thus, the total model-implied outcome variance is
var(y;) =y'®,y +y'®,y +tr(TL,) +tr(TE,) + m'Tm + ¢ (B10)
These six distinct variances in Equation B10 denote the variance attributed, in order, to each source

listed in bullet points at the beginning of the Appendix B section. (Later, in Appendix G, we show
how this expression is modified for heteroscedastic models by replacing o’ with E[o’] )



Appendix C. New extension: Full set of definitions of R-squared measures and corresponding
formulas under non-person-mean-centering

From the decomposition of outcome variance provided in Appendix B, we can compute the
total single-source R-squared measures for non-person-mean-centered models (i.e., models involving
uncentered level-1 predictors or involving centering level-1 predictors at a constant value such as the
first assessment value or the grand mean) as

R — TP,y
Y®,y+7'®y+tr(TL,) +tr(TE,) + m'Tm + o’
TPy
YO,y +y'®y+tr(TZ, ) +tr(TZ, )+ m'Tm + o
tr(TZ,,)
Y® vy +y'®,y+tr(TE,)+tr(TE,)+m'Tm +°
tr(TX,)
Y® v +y'®y+tr(TE,) +tr(TE,)+m'Tm + &°
RtZ(m) — m'Tm
Y@,y +y'®,y+tr(TE,)+tr(TE,)+m'Tm+ o’
Example combination-source total R-squared measures that could be constructed are:
th(f) _ th(m I th(m , th(fv) _ th(n) " th(fE) n th(vl) + th(vz) ,and
R2(Fm) = R2(W) 4 R2(R) | R2M) 4 R20%) 4 R2(M)
The single-source within-person measures are then
R _ TP,¥
YYDy +t(TE,) +0°
R2MW) — tr(TZ,)
Y YO, +tr(TE,)+0°

Summing these yields a combination-source within-person measure: R} = R2(") 4 R2M)

RX™) =

(CD)

th(Vl) —

R =

(€2)

The single-source between-person measures are:

R = Ay (€3)
Y@,y +tr(TX,)+m'Tm
tr(TX,)
Y@,y +tr(TZ,)+m'Tm
200) _ m'Tm
" Y@,y +tr(TE,)+m'Tm
Summing these yields a combination-source between-person measure: R’ = R2(") 4 R2).

Previous work (Rights & Sterba, 2019) had provided a more limited set of measures for non-person-
mean-centered models compared to those given above (i.e. previous work only provided total
measures, not level-specific measures, for non-person-mean-centered models).

2%) _
R =




Appendix D. Proof that the proportion of variance attributable to source m, defined in Table 2,
does not change when centering predictors by a constant, regardless of the chosen centering
constant’s value.

In Appendix D, we show that, in the population, the following are invariant to centering
predictors by a constant value: the proportion of total variance attributable to predictors via fixed
components of slopes, the proportion of total variance attributable to predictors via random slope
variation, and the proportion of variance attributable to source m (defined separately for cluster-
mean-centered and non-cluster-mean-centered in Table 2).

We start with the unconditional linear growth model defined in Equation 1, written here in
reduced form:

Yii = Voo tUpj T 710X T U X + €

Uy 0|
0j NMVN |: :|’|: 00 :| (Dl)
ulj 0 T Ty
g ~N (0, 02)
For generality, we denote y as the outcome (e.g., self-efficacy) and x as the level-1 predictor (e.g.,
time). We will compare this to a model that centers X by an arbitrary constant, a. We will show that

the aforementioned proportions will always be the same as those obtained from the uncentered
model, regardless of the value of a. The centered-by-a model is thus given as

yij:7;0+u;j+7/1*0(Xij_a)+ul*j(xij_a)+e; (D2)
We use asterisks to denote terms and parameters from the centered-by-a model. It is well-established
that these two models (Equation D1 and D2) are equivalent models in that their likelihoods are
maximized at the same value and they generate the same set of expectations and dispersions (Kreft,
Aiken, & de Leeuw, 1995). As such, we can write each component of the centered-by-a model in
terms of the components of the uncentered model by rearranging terms like so:

Yij = 730 +u;j "'71*0(Xij _a)+u1*j(xij _a)"'e;‘
:7;0+u;j+71*0Xij_71*0a+ul*jxij_ul*ja+e; (D3)
= (7;0 _7/;03-)"'(“;] _ul*ja)—'_?/l*oxij +u1*jxij +e;

This reexpression highlights the following equivalencies between the two models:
Yoo :7;0 _71*03-
Ug; =Uy; —U;;

Y10 = 710 (D4)
U = Uy
& =€

Hence, we can rewrite the centered-by-a model using terms from the uncentered model like so

Yi = (Yoo + 7108) + (uOj + ulja)+ V10X Uy X € (D5)

The variance component from the centered-by-a model can then be written as



VaI'(U;J-) = var(U,; +U,;d)
= var(U,;) + var(u,;a) + 2 cov(U,;, u,;a)
=1, +a’7, +2ar,,
var(u, ;) =var(u;) (D6)
=1
cov(u;j,u“—) =cov(Uy; +U;;3,U;;)
= cov(uoj,u1j ) +cov(u1ja, u”.)
=17, +ar,,

Using the formulas outlined in Appendix B and in Rights and Sterba (2019), we can then compute
the total variance attributable to predictors via fixed components in the centered-by-a model as:

Y Py :[700"'7103- 710]{0 Var(X--)M 007 v :|
ij 10

Yoo +7loa:| (D7)

= [0 V1o var(X; ):'|:
Y10
= 7/120 Var(xij)
And we see that this is exactly equal to that obtained from the uncentered model:

’ 0 0 Yoo
'Y(I)'Y:|:7/00 y10]|:0 Var(Xij)M%J

= [0 V10 Var(x; )} {%0} (D8)

Y10

2
= 710 var(X;)
We can additionally compute the total variance attributable to predictors via random slope variation
in the centered-by-a model as:

tr(T'E) =tr [{foo +a’r, +2ar, 7 +afu}{0 0 D

Ty targ, T 0 Var(xij)

. HO 7, var(X; ) +ar,, var(x; )D 09)

0 7, var(X;)

=7y, var(X;)

And we again see that this is exactly equal to that obtained from the uncentered model:

tr(TZ“):trﬂ%0 101}[0 ; D
Ty, T, || 0 var(X;)

_y 0 7, var(x;) (D10)
- 0 7, var(X;)

=7y, var(X;)



Lastly, we compute the total variance attributable to source m in the centered-by-a model as:

m'T'm" = [1 E[X; —a]] {TOO tan +2an, 7+ aTUM 1 }

7, +ar, 7, E[Xij —-a]
= [1 E[Xij]—a] 7y ta’r, +2az, 7, +ar, . 1 )
Ty tary, T [Xij] a
1
= |:700 +a's, + 2ar,, +(E[x;]-a)(z, +az,,) 7, +ar, +(E[X;]-a)7, ]|:E[Xij - a:|
_ 2 2 (D11)
=7y +a’7, +2ar, + (E[Xij 1-a)(z, +ar; )+ (E[Xij 1-a)(z,, +ar;))+ (E[Xij I-a)' 7,
=1, +a’°7,, +2ar,, + 2(E[x;]-a)(z,, +ar,,) + E[x; 7, + @’ —2aE[x;]r;,
=1, +a’7,, +2ar,, + 2E[x, |7, — 2ar,, —2a’z,, + 2aE[x; Ir,, + E[x, ' 7, + @’r,, —2aE[x;]r;,
=Ty +2E[Xij]2'01 + E[Xij ]22'11
And we see that this is exactly equal to that obtained from the uncentered model:
T, T, 1
mTm=|1 E[x.] { % ‘“}
[ ] } Ty Ty E[Xij]
=| T t+ E[Xij Ieoy 7o+ E[Xij Iz, \ : (D12)
ElX;]

=Ty + 2E[Xij 17, + E[Xij ]2 T,



Appendix E. Supplementary results from fitting self-efficacy growth models

Appendix E Figure E1. Visualizing R-squared results for the unconditional quadratic growth model
of self-efficacy that centered time at-a-constant and assumed a homoscedastic, diagonal error

covariance structure (Eqn. 3)
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Appendix E Figure E2. Visualizing R-squared results for the unconditional linear growth model of
self-efficacy that centered time at-a-constant and specified a heteroscedastic, diagonal error

covariance structure (see Eqn. 4)
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Appendix E Figure E3. Visualizing R-squared results for the unconditional linear growth model of
self-efficacy that centered time at-a-constant and specified a heteroscedastic, first-order
autoregressive covariance structure (Eqn. 5)
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Appendix F: Proof that when time by itself explains only within-person variability, time? can
still explain some between-person variability.

Here we show that including higher-order (i.e., > 1) polynomial terms associated with level-1
predictors can explain between-cluster variance even when the level-1 predictor has only within-
cluster variance. To illustrate, we will consider the reduced form expression for the quadratic model
given in Equation 3; for generality, we will denote the level-1 predictors (e.g., time) as X:

Vi = Yoo +Ugj + 710X + Va0Xi Uy X5 Uy X5 +€; (F1)
Using the formula in Appendix B Equation B6, we can compute the total variance attributable to the
between-cluster-varying portion of X via its fixed component as

0 0 0 Yoo
Y'(I)b"/:[%o Yio 7/20] 0 var(E;;[x; 1) cov(E;;[x; 1, Ei\j[xi?]) Y10
0 cov(Ey;[x;]. Eyj[x]) var(E;;[x;]) V0
0 0 0 Yoo
=[700 4N 7/20] 0 0 0 i
0 0 wvar( E” i [Xi? DIl 7
= 72 var(Ey;[x) (F2)

= 7220 Var(VariU (Xij )+ Ei|j [Xij ]2)

=72 var(var; (X;))

Note that E;[x;] is necessarily constant across clusters (as the level-1 predictor has only within-

i
cluster variance), and hence var(E;;[X;]) = cov(E;;[X;], E; [Xi?]) = 0. However, Ei“.[xi?] is not
necessarily the same for each cluster, and will vary across clusters when clusters have different
degrees of within-cluster variance of X. As shown in Equation F2, holding all else constant, the
amount of between-cluster variance explained by x; via its fixed component will increase as the
amount of across-cluster variability in the within-cluster variability of X increases.

We can similarly compute the total variance attributable to the between-cluster-varying
portion of X via random slope variation as

Too Toi Tor ||O 0 0
tr(Tx,) =tr{ |z, 7, 7,, (|0 Var(Euj [Xij D COV(Euj[Xij 1, Ei\j [Xi])
T, Tin T ]| 0 cov(Ey;[X;], By [Xj]) var(E,; [Xj])
Too To1 T2 ||O O 0
=tr{|z,, 7, 7,10 O 0

0 Var(Ei”[X;])

~
=)
S
By
IS}
<
)
N}
(e

=1,, var(E;;[x; ]) (F3)
=1, var(var; (X;)+ E;;[%; ")

=Ty Var(Varu i (Xij )

13



Similarly, Equation F3 shows that, holding all else constant, the amount of between-cluster variance
explained by xi? via random slope variation will increase as the amount of across-cluster variability

in the within-cluster variability of X increases.

14



Appendix G: Proof that heteroscedastic level-1 error variance can be accommodated in
the R-squared framework by replacing the o ° term with the expected value of &

across all timepoints.

In Appendix B Equation B10, the level-1 error was assumed homoscedastic, and thus the
variance was given as a single value, o> . Here, we will consider the more general case in which the

variance of e; can differ as a discrete or continuous function of covariates, such as allowing it to

differ discretely across timepoints, or specifying it as a smooth parametric function of time. We’ll
first let e, be a cluster-specific n; x 1 vector of all g; ’s for cluster j (where n ; 1s the number of

observations in cluster j). We can thus allow for heteroscedastic errors with the following expression:

. e | =

[0} |oy
10]| 0 o
e ~MVN | || . .7
0j]{0 - 0 o |}

i (G1)
Where each diagonal element in the covariance matrix denotes the error variance at each particular
value of i, and each off-diagonal element of 0 indicates that there is no autocorrelation (an
assumption we relax in Appendix H).

We’ll then let I; be a cluster-specific n; x1 indicator vector such that the ith element is

equal to 1 and all other elements are equal to 0. We can then say that

e, =Tie, (G2)
For example, if a given cluster j has four observations, and i is 3, then
€
€, i
e3j=[0 0 1 0] =8y, (G3)
€, i
e

"
Using the law of total variance, we can thus compute thejvariance of ; as
var(e;) = Var(I;je )
= E[var(Ije;) | I;; ]+ var(E[Ije; [ I}])
= E[o]+ var(0)
= E[O'iz]

Where o is the error variance for observation i. Hence, the overall/across-time error variance is,

(G4)

sensibly, the expected value of the error variance.
Computing this expected value when there are a discrete set of error variances, by definition,
can be done as so

var(g;) = E[c]
max(n;) (GS)

15



Where max(n;) is the largest possible cluster size and 7; is the probability of a randomly selected

observation being the ith observation within a cluster. As an example, if we had four discrete
timepoints with a separate error variance for each, and had an equal number of observations per
timepoint, the expected error variance would be given as

var(e;) = Elo7]

M-

.0, (G6)

i
1

- T

1 1
2 2 2 2
=—0, +—0, +—0; +—0,
4 4 4 4
which is just the unweighted mean of the four error variances.
When there is not a discrete set of error variances, and the error variance instead varies as a

function of continuous covariates, we compute the expected error variance as
var(e;) = E[Gf]
= E[B’Xij] (G7)
= B'E[Xij]
Where B is the vector of coefficients that are used to model the error variance, and X, 1s the vector

of observation-specific predictors of the error variance. As an example, if the error variance differed
as a linear function of time, then

var(e; ) = Elo7]

1
=E l:[ﬂo ﬂl]{timeij }j| (G8)

=E[ B, + Btime; |
= ﬂo +5 E[timeij ]
Similarly, if the error variance were modeled as a quadratic function of time,
var(e;) = Elo]
= E[ B, + Btime; + B,time; | (G9)
= f3, + BE[time; ]+ B, E[time; |

As a last example, if the error variance were modeled as a quadratic function of time, and a linear
function of some other covariate x;

var(e;) = Elo]
= E[ B, + Atime; + Btime; + Bx; | (G10)

= B, + BE[time; ]+ 5, E[timeﬁ] + B5E[X;]
When estimating these quantities in a sample, the above expectations can be replaced with sample
means, and the parameters can be replaced with estimates. For instance, with our example dataset, if
we were to specify the error variance to have the form of Equation G10 (with X; denoting female to

allow for different error variances for boys and girls), and we would obtain estimates of ,30 =70,
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,él =5, ,82 =0.01, and ,83 =2, and we would then compute the expected error variance as

. . 2 .
70+ 5(sample mean of time; ) +0.01(sample mean of time;) + 2(sample mean of gender; ) , which
in our case is 90. Hence, our estimate of E[c;"] would be 90 (e.g., we would enter 90 in the sigma2

argument of the r2MLMIlong function in Appendix J).
Integrating Appendix B and the current Appendix G, the total model-implied outcome
variance allowing heteroscedasticity of level-1 errors is given as
var(y;) =7'®,y +y'®,y +tr(TE,) +tr(TE,)) + mTm + Elo’] (G11)
The sources corresponding to these terms are defined in Table 2. The only difference in this
expression and that provided in Appendix B Equation B10 is that o * is replaced with E[c].
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Appendix H. Proof that the mathematical computation of the framework’s
R-squared measures is unaffected by the inclusion of any kind of autocorrelation.

In the newly derived expression for var(e;) given in Appendix G, we assumed there was no

autocorrelation. Here we prove that the addition of autocorrelation does not change this formula.
We’ll expand the expression in Appendix G Equation G1 to allow for autocorrelation as such:

[0][ o
_llol| o o
e;,~MVN|| .|| .= -
ol{az - . & |
S . (HI)
Here, each off-diagonal element denotes the error covariance between two different values of i.
Again letting I;; be a cluster-specific n; x1 indicator vector such that the ith element is
equal to 1 and all other elements are equal to 0. We can then say that
e; = Ije; (H2)
And can compute the variance of e; as
var(e;) = var(Ije;)
= E[var(Ije;) | Ij; ]+ var(E[I e, | I} ]) (H3)
= E[o] ]+ var(0)
= E[0}]

This expression here in Equation H3 is identical to that in Equation G4, and hence, the
autocorrelation does not change the formulas used to compute R-squared measures.
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Appendix I Specifications used to obtain AR? effect sizes for individual terms in our illustrative
conditional growth model of self-efficacy

Letting Model B denote the full model of interest given in Equation 6, and using a
simultaneous model-building approach (see Rights & Sterba, 2020) we can compute the variance

uniquely explained by GPA (via each of f,, f,, and V,) by computing R-squared differences

between the full Model B and the following reduced Model A that excludes both person-mean-
centered GPA and person-mean GPA:
selfeff; = B,; + B, time; + B, (volunteer; —volunteer,;) +¢; r)

Byi =Yoo + 7, female; + y;volunteer, ; +u,,
B =1+ 1, female; +u,;
:sz =70 Ty

Specifically, the variance uniquely explained by person-mean-centered GPA via its fixed component
is estimated as AR " (for total variance) and AR (for within-person variance), the variance

uniquely explained by person-mean GPA via its fixed component is estimated as Aﬁtz( ) (for total
variance) and AFQbQ( ") (for between-person variance), and the variance uniquely explained by person-
mean-centered GPA via random slope variation is estimated as Aﬁtz(vl) (for total variance) and

AR2™) (for within-person variance).
We can similarly compute the variance uniquely explained by volunteer hours (via each of
f,, f,,and V,) by computing these same R-squared differences between the full Model B and the

following reduced Model C that excludes person-mean-centered volunteer hours and person-mean
volunteer hours:
selfeff; = g, + f,;time; + /3, (gpa; — gpa.;) + ¢, 12)

Boi =Yoot 70 femalej +7,9Pa,; +Uy;
B :;/10+7“femalej +U;

ﬂzj =720 T Uy

Lastly, we can compute the variance uniquely explained by the product term of timexfemale
by comparing the full Model B and the following reduced Model D that excludes this product term:

selfeff, = B, + B, time; + 3,,(gpa; — gpa.;) + B;; (volunteer, —volunteer,;) + e, 13)
Boi =70 + 70 female; +y,,9pa,; + y;work,; +Uy;
By =10ty
ﬂzj = V20 T Uy
ﬂ3j =73 TUs;

Specifically, the variance uniquely explained by timexfemale via its fixed component is estimated as
the sum of AR> ™ and AR* ™ (for total variance), by AR2™ (for within-person variance), and by

AR (for between-person variance).
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Appendix J. Software implementation of R-square framework via R function r2MLMIong.
r2MLMIlong R function description:

This R function reads in raw data as well as parameter estimates from the researcher’s previously-fit
longitudinal growth model (hence, any software program can have been used to fit the researcher’s
longitudinal growth model prior to the use of this R function, so long as parameter estimates from the
fitted model are recorded). This function then outputs R-squared measures (shown in manuscript
Table 3), as well as variance decompositions and associated barcharts (e.g., manuscript Figures 1-3).
This function allows researchers to input heteroscedastic residual variance by including multiple
estimates, e.g., corresponding to individual timepoints. Users need not specify if predictors are
person-mean-centered or not—the function will automatically output total, within-person, and
between-person variance attributable to each potential source of explained variance (f;, f», vi, v, and
m). Note, however, that the interpretations of these sources differ for person-mean-centered vs. non-
person-mean-centered models (as delineated in manuscript Table 2) and that variance attributable to
v, will necessarily be 0 for person-mean-centered models.

r2MLMlong R function input description:

data — dataset in long format, in which rows denote individual observations and columns denote
variables

covs — list of predictors that in the dataset that have fixed components of slopes included in the model
(if none, set to NULL)

random_covs — list of predictors in the dataset that have random components of slopes included in
the model (if none, set to NULL)

clusterID — variable name in dataset corresponding to cluster (e.g., person) identification

gammas — vector containing estimated fixed components of all slopes, listed in the order specified in
covs (if none, set to NULL)

Tau — random effect covariance matrix; the first row and the first column denote the intercept
variance and covariances and each subsequent row/column denotes a given random slope’s
variance and covariances (to be entered in the order listed by random_covs)

sigma2 — level-1 residual variance; can be entered as a single number, or as a set of numbers, e.g.,
corresponding to different residual variances at individual timepoints; if entered as a set of
numbers, function will assume equal weights and take the raw average of these to estimate
the expectation of the error variance

r2MLMlong R function example input:

#NOTE: estimates in the input represent hypothetical results for a random slope model with “time” and “x” as level-1 predictors and “w1”
and “w2” as level-2 predictors; model also allows level-1 residual variance to vary across the five timepoints

#in practice a user would have previously obtained these input estimates by fitting their model in MLM software

#additionally, the input consists of hypothetical predictor data, whereas in practice a user would read-in their actual data

exampledata <- matrix(NA,100*5,5)
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time <-rep(seq(5),100)

x <- rnorm(100%*5,0,2)

wl<-rnorm(100,2,1)

w2<-rnorm(100,3,2)

exampledatal[,1] <- rep(seq(100),each=5)

exampledata[,2:3] <- cbind(time,x)

exampledata[,4] <- rep(w1,each=5)

exampledata[,5] <- rep(w2,each=5)

exampledata<-as.data.frame(exampledata)

colnames(exampledata) <- c("person”,"time","x","w1","w2")

r2MLMIlong(data=exampledata,covs=c("time","x","w1","w2"),random_covs=c("time","x"),gammas=c(.25,1.5,-.75,.01),
clusterID="person", Tau=matrix(c(4,1,.75,1,1,.25,.75,.25,.5),3,3),sigma2=c(10,11,12,14,15))

r2MLMlong R function code:

#need to install the following packages
library(rockchalk)

r2MLMlong <- function(data,covs,random_covs,clusterID,gammas, Tau,sigma2){

if(is.null(covs)==FALSE){

centered_data <- gmc(data,covs,clusterID)

phi_w <- var(centered_data[,c(pasteO(covs,"_dev"))])
phi_b <- var(centered_data[,c(pasteO(covs," mn"))])
gammas <- matrix(c(gammas),ncol=1)
f1<-t(gammas)%*%phi_w%*%gammas
f2<-t(gammas)%*%phi_b%*%gammas

else{
f1<-0
f2<-0
}

if(is.null(random_covs)==FALSE){

centered_data_rand <- gmc(data,random_covs,clusterID)

Sig_w <- var(centered_data_rand[,c(pasteO(random_covs,"_dev"))])
Sig_b <- var(centered_data_rand[,c(pasteO(random_covs," mn"))])
m_mat <- matrix(c(colMeans(cbind(1,data[,c(random_covs)]))),ncol=1)
v1<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_w))
v2<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_b))

else{
v1l<-0
v2<-0
m_mat <- 1

}

m<- t(m_mat)%*%Tau%*%m_mat
sigma<-mean(sigma2)
#decompositions

decomp_fixed within <- f1/sum(f1,f2,v1,v2,m,sigma)
decomp_fixed_between <-f2/sum(f1,f2,v1,v2,m,sigma)
decomp_varslopes_within <- v1/sum(f1,f2,v1,v2,m,sigma)
decomp_varslopes_between <- v2/sum(f1,f2,v1,v2,m,sigma)
decomp_varmeans <- m/sum(f1,{2,v1,v2,m,sigma)
decomp_sigma <- sigma/sum(f1,f2,v1,v2,m,sigma)

decomp_fixed within_w <- fl/sum(f1,v1,sigma)
decomp_fixed_between_b <-f2/sum(f2,v2,m)
decomp_varslopes within w <- v1/sum(f1,v1,sigma)
decomp_varslopes_between_b <- v2/sum(f2,v2,m)
decomp_varmeans_b <- m/sum(f2,v2,m)
decomp_sigma_w <- sigma/sum(fl,v1,sigma)

#barchart

contributions_stacked <-
matrix(c(decomp_fixed within,decomp_fixed between,decomp_varslopes within,decomp varslopes_between,decomp_varmeans,decomp_sigma,
decomp_fixed within_w,0,decomp_varslopes_within_w,0,0,decomp_sigma_w,
0,decomp_fixed between b,0,decomp_varslopes between_b,decomp varmeans_b,0),6,3)
colnames(contributions_stacked) <- ¢("total","within","between")
rownames(contributions_stacked) <- ¢("fixed slopes (within)",

21




"fixed slopes (between)",
"slope variation (within)",
"slope variation (between)",
"intercept variation (between)",
"residual (within)")

barplot(contributions_stacked, main="Decomposition ", horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","steelblue", "midnightblue","white"),ylab="proportion of variance",
density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0),xlim=c(0,1.5),width=c(.3,.3))

legend(1.1,.65,legend=rownames(contributions_stacked_avg),fill=c("darkred","steelblue","darkred","steelblue","midnightblue","white"),
cex=.7, pt.cex = 1,xpd=T,density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0))

#create tables for output

decomp_table <- matrix(c(decomp_fixed within,decomp fixed between,decomp varslopes within,decomp varslopes between,decomp varmeans,decomp_sigma,
decomp_fixed_within_w,"NA",decomp_varslopes_within_w,"NA","NA",decomp_sigma_w,
"NA",decomp_fixed between b,"NA",decomp_varslopes between_b,decomp varmeans b,"NA"),6,3)
colnames(decomp_table) <- c("total","within","between")
rownames(decomp_table) <- c("fixed slopes (within)",
"fixed slopes (between)",
"slope variation (within)",
"slope variation (between)",
"intercept variation (between)",
"residual (within)")

R2_table <- matrix(c(decomp_fixed within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes between,decomp_varmeans,
decomp_fixed withintdecomp_fixed between,decomp fixed within+decomp fixed betweentdecomp varslopes within+tdecomp varslopes_between,
decomp_fixed_within+decomp_fixed_between+decomp_varslopes_within+decomp_varslopes_between+decomp_varmeans,

decomp_fixed within w,"NA",decomp_varslopes_within_w,"NA","NA","NA",decomp_fixed within w+decomp_varslopes_within_w,"NA",

"NA",decomp_fixed between b,"NA",decomp varslopes between b,decomp varmeans b,"NA",decomp fixed between b+decomp varslopes between b,"NA"),8,
3)

colnames(R2_table) <- c("total","within","between")
rownames(R2._table) <- c("f1","£2" "y 1" " 2" "m" """y " fym")

Output <- list(noquote(decomp_table),noquote(R2_table))
names(Output) <- ¢("Decompositions","R2s")

return(Output)
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