
 
 

Appendices for Effect size measures for longitudinal growth analyses:  
Extending a framework of multilevel model R-squareds to accommodate heteroscedasticity, 

autocorrelation, nonlinearity, and alternative centering strategies 
 

  Table of Contents 
 
Appendix A. Review from Rights & Sterba (2019) of definitions of R-squared measures and  

corresponding formulas, assuming person-mean-centering ………..…………..…….…  1 
 

Appendix B. New extension: Full decomposition of outcome variance for non-person-mean- 
centered models……………………………………………………………………………..  3 
 

Appendix C. New extension: Full set of definitions of R-squared measures and corresponding  
formulas under non-person-mean-centering ………………………………...…………… 6 
 

Appendix D. Proof that the proportion of variance attributable to source m, defined  
in Table 2, does not change when centering predictors by a constant,  
regardless of the chosen centering constant’s value…………………………….………..  7 
 

Appendix E. Supplementary results from fitting self-efficacy growth model………………...…10 
 
Appendix F: Proof that when time by itself explains only within-person variability, time2 can  

still explain some between-person variability……………………………………………  10 
 

Appendix G: Proof that heteroscedastic level-1 error variance can be accommodated in the  
R-squared framework by replacing 2  with the expected value of 2

i  across all 

timepoints…………………………………………………………………………………....15 
 

Appendix H. Proof that the mathematical computation of the framework’s R-squared  
measures is unaffected by the inclusion of any kind of autocorrelation………..……….18 
 

Appendix I. Specifications used to obtain ΔR2 effect sizes for individual terms in our illustrative  
conditional growth model of self-efficacy……………………………………….………. .19 
 

Appendix J. Software implementation of R-squared framework via R function r2MLMlong...20 
 

 

 
  



1 
 

Appendix A. Review from Rights & Sterba (2019) of definitions of R-squared measures and 
corresponding formulas, assuming person-mean-centering 

  
Here we briefly review the Rights & Sterba (2019) decomposition of model-implied outcome 

variance for cluster-mean-centered models, framing this decomposition in terms of longitudinal 
models wherein observations are nested within persons (and hence clusters = persons). We will show 
how this decomposition is used to form each R-squared measure. Importantly, this decomposition 
here assumes that the level-1 errors are homoscedastic and have no autocorrelation—assumptions we 
later relax in the current paper. 

First note that a two-level person-mean-centered model can be expressed generally as  
w w b b

ij ij j ij j ijy e     x γ x γ w u  

~ ( , )j MVNu 0 Τ                                                             (A1) 
2~ (0, )ije N   

Where w
ijx  denotes a vector of all level-1 predictors (each person-mean-centered), wγ  a vector of 

fixed components of slopes corresponding to elements in w
ijx ,  b

jx  a vector of 1 and all level-2 

predictors, bγ  a vector of fixed components of slopes corresponding to elements in b
jx , ijw  a vector 

with the first element equal to 1 and all subsequent elements being predictors with random slopes, ju  

a vector of random effect errors (with covariance matrix Τ ) corresponding to the elements in ijw , 

and ije  the level-1 error. The level 1 errors are presently assumed uncorrelated with homoscedastic 

variance 2 . The model-implied variance for the person-mean-centered model expression, derived 
in Rights & Sterba (2019), is then given as  

2
00

var( ) var( )

            ( )

w w b b
ij ij j ij j ij

w w w b b b

y e

tr  

     

     

x γ x γ w u

γ Φ γ γ Φ γ ΤΣ
                                    (A2) 

where 
wΦ , 

bΦ , and Σ  denote covariance matrices of elements of w
ijx , b

jx , and ijw , respectively, 

and  00  denotes the random intercept variance. The five separate terms in Equation A2 each denote 

variance attributable to a distinct source: w w wγ Φ γ  denotes variance attributable to level-1 predictors 

via fixed components of slopes, b b bγ Φ γ  variance attributable to level-2 predictors via fixed 

components of slopes, ( )tr ΤΣ  variance attributable to level-1 predictors via random slope variance, 

00  variance attributable to cluster-specific outcome means via random intercept variation, and 2

variance attributable to level-1 errors. Three of these variances ( w w wγ Φ γ , ( )tr ΤΣ , and 2 ) reflect 

purely within-person variation, whereas the other two ( b b bγ Φ γ  and 00 ) reflect purely between-

person variation.  
From this decomposition, we can compute the total single-source R-squared measures, 

quantifying total variance explained by one source at a time, for person-mean-centered models 
(defined in Table 3 Column 2) as: 
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t w w w b b b
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


    

γ Φ γ

γ Φ γ γ Φ γ ΤΣ
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                                   (A3) 
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The total combination-source R-squared measures, quantifying total variance explained by multiple 
sources together, are then just combinations of these equations, for instance: 1 22( ) 2( )2( ) f ff

t t tR R R  ,
1 22( ) 2( )2( ) 2( )f ffv v

t t t tR R R R   , and 1 22( ) 2 ( )2( ) 2( ) 2( )f ffvm v m
t t t t tR R R R R    . The single-source within-

person measures for person-mean-centered models are then given as  

12( )

2( )

w w w
f

w w w w
R

tr 




  

γ Φ γ

γ Φ γ ΤΣ
 

2( )
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( )

( )

v
w w w w

tr
R

tr 


  

ΤΣ

γ Φ γ ΤΣ
                                               (A4) 

A combination-source within-person measure is given as 1 12( ) 2( ) 2( )f v f v
w w wR R R  . The single-source 

between-person measures for person-mean-centered models are likewise: 
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Appendix B. New extension: Full decomposition of outcome variance for non-person-mean-
centered models  

In Appendix B, we derive a complete model-implied variance decomposition for non-person-
mean-centered models (i.e., models involving uncentered level-1 predictors or involving centering 
level-1 predictors at a constant value such as the first assessment value or the grand mean). Here we 
show how this variance is a sum of variances attributable to each of the following distinct sources:  

 the within-person-varying portion of level-1 predictors via fixed components of slopes (f1); 
 the between-person-varying portion of level-1 and/or level-2 predictors via fixed components 

of slopes (f2);  
 the within-person-varying portion of level-1 predictors via random slope variation (v1);  
 the between-person-varying portion of level-1 predictors via random slope variation (v2); 
 person-specific outcome means via random intercept variation at the mean of all predictors 

with random slopes (m);  
 level-1 errors. 

From this decomposition, we show how each of the R-squared measures described in Table 3 
Column 3 are computed. Rights & Sterba (2019) had provided a more limited decomposition for 
non-person-mean-centered models which did not break down f into 1f  (reflecting purely within-

cluster variance) and 2f  (reflecting purely between-cluster variance), and did not break down v  into 

1v  and 2v . 

 An expression for a two-level multilevel model without assuming person-mean-centering is: 

ij ij ij j ijy e   x γ w u                                                          (B1) 

~ ( , )j MVNu 0 Τ  
2~ (0, )ije N   

Here, ijy  denotes the outcome for observation i nested within cluster j, ijx  a vector with the first 

element equal to 1 and all subsequent elements being predictors for observation i within person j, γ  
a vector of fixed components of coefficients corresponding to the elements in ijx , ijw  a vector with 

the first element equal to 1 and all subsequent elements being predictors with random slopes, ju  a 

vector of random effect errors (with covariance matrix Τ ) corresponding to the elements in ijw , and 

ije  the level-1 error. The level 1 error covariance matrix is presently assumed diagonal with 

homoscedastic variance .   
 First note that we can decompose every predictor into a purely within-person-varying portion 
and a purely between-person varying portion by using the following substitutions: 

 ( )ij ij j j  x x x x                                                           (B2) 

( )ij ij j j  w w w w   

Here, jx  and jw   denote vectors of person means of each element of ijx  and ijw , respectively.  

Hence, ( )ij jx x   reflects a vector of variables that are deviations from the person-specific means, 

and is thus the portion of ijx  that varies exclusively within-person (since | [ ] 0i j ij jE  x x   for all 

clusters, and hence var [ ] 0j ij j x x  ). Similarly, ( )ij jw w   is the portion of ijw  that varies 

exclusively within-person. The parts of ijx  and ijw  that vary exclusively between-person then are 

2
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jx   and jw  , respectively (since jx  and jw   are vectors of constants for each cluster, i.e., 

| |var [ ] var [ ] 0i j j i j j x w  ).  

 We can then re-write the model expression in Equation A1 as  

    ( ) ( )

    ( ) ( )

ij ij ij j ij

ij j j ij j j j ij

ij j j ij j j j j ij

y e

e

e

   

       

         

x γ w u

x x x γ w w w u

x x γ x γ w w u w u

   

   

                                         (B3) 

We can then compute the model-implied variance as  
var( ) var(( ) ( ) )

            var(( ) ) var( ) var(( ) ) var( ) var( )

ij ij j j ij j j j j ij

ij j j ij j j j j ij

y e

e

         

         

x x γ x γ w w u w u

x x γ x γ w w u w u

   

   

       (B4) 

The five variances in the second line of Equation B4 are separable because of the lack of covariance 
between the following pairs: the fixed components and random components, the purely within-
cluster-varying portion of predictors and the purely between-cluster-varying portion, and the level-1 
errors and all other terms. The first part of Equation B4 is computed as 

var(( ) )ij j w  x x γ γ Φ γ                                                            (B5) 

Where wΦ  is the covariance matrix of the within-cluster-varying portions of ijx . The second part of 

Equation B4 is computed as  
var( )j b x γ γ Φ γ                                                                 (B6) 

Where bΦ  is the covariance matrix of the between-cluster-varying portions of ijx . The third part of 

Equation B4 is computed using the law of total variance as  
var(( ) ) [var(( ) | )] var( [( ) | ])

                              [ ] var( [( ) ] )

                              [ ( )] var(0)

                     

ij j j ij j j j ij j j j

j w j ij j j

j w j

E E

E E

E tr
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  


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j j w
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E tr
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

u u Σ

u u Σ

ΤΣ

          (B7) 

Where wΣ  is the covariance matrix of the within-cluster-varying portions of ijw . The fourth part of 

Equation B4 is computed, again using the law of total variance, as  
var(( ) ) [var( | )] var( [ | ])

                     [ ] var( [ ] )

                     [ ( )] var( )

                     [ ( )] var( )

         

j j j j j j j j

j b j j j

j b j b j
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E E
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E tr

E tr
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  
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                                 (B8) 

Where bΣ  is the covariance matrix of the between-cluster-varying portions of ijw  and bm  is a 

vector containing the means of all elements of ijw . The fifth part of Equation B4 is then simply 
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2var( )ije                                                                           (B9) 

Thus, the total model-implied outcome variance is 

2var( ) ( ) ( )ij w b w by tr tr        γ Φ γ γ Φ γ ΤΣ ΤΣ m Τm                         (B10) 

These six distinct variances in Equation B10 denote the variance attributed, in order, to each source 
listed in bullet points at the beginning of the Appendix B section. (Later, in Appendix G, we show 

how this expression is modified for heteroscedastic models by replacing 2  with 2[ ]E  .) 
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Appendix C. New extension: Full set of definitions of R-squared measures and corresponding 
formulas under non-person-mean-centering  

From the decomposition of outcome variance provided in Appendix B, we can compute the 
total single-source R-squared measures for non-person-mean-centered models (i.e., models involving 
uncentered level-1 predictors or involving centering level-1 predictors at a constant value such as the 
first assessment value or the grand mean) as 
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f w
t

w b w b

R
tr tr 




      
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γ Φ γ

γ Φ γ γ Φ γ ΤΣ ΤΣ m Τm
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v w
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w b w b

tr
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tr tr 


      
ΤΣ

γ Φ γ γ Φ γ ΤΣ ΤΣ m Τm
                           (C1) 
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Example combination-source total R-squared measures that could be constructed are: 
1 22( ) 2( )2( ) f ff

t t tR R R  , 1 2 1 22( ) 2( ) 2( ) 2( )2( ) f f v vfv
t t t t tR R R R R    , and 

1 2 1 22( ) 2( ) 2( ) 2( )2( ) 2( )f f v vfvm m
t t t t t tR R R R R R     .  

The single-source within-person measures are then  
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f w
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  
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                                                 (C2) 

Summing these yields a combination-source within-person measure: 1 1 1 12( ) 2( ) 2 ( )f v f v
w w wR R R  . 

The single-source between-person measures are: 

   22( )

( )
f b

b
b b

R
tr




  
γ Φ γ

γ Φ γ ΤΣ m Τm
                                           (C3) 
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R
tr




  
m Τm

γ Φ γ ΤΣ m Τm
 

Summing these yields a combination-source between-person measure: 2 2 2 22( ) 2( ) 2( )f v f v
b b bR R R  . 

Previous work (Rights & Sterba, 2019) had provided a more limited set of measures for non-person-
mean-centered models compared to those given above (i.e. previous work only provided total 
measures, not level-specific measures, for non-person-mean-centered models). 
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Appendix D. Proof that the proportion of variance attributable to source m, defined in Table 2, 
does not change when centering predictors by a constant, regardless of the chosen centering 

constant’s value. 

 In Appendix D, we show that, in the population, the following are invariant to centering 
predictors by a constant value: the proportion of total variance attributable to predictors via fixed 
components of slopes, the proportion of total variance attributable to predictors via random slope 
variation, and the proportion of variance attributable to source m (defined separately for cluster-
mean-centered and non-cluster-mean-centered in Table 2).  
 We start with the unconditional linear growth model defined in Equation 1, written here in 
reduced form: 

00 0 10 1ij j ij j ij ijy u x u x e       

0 00

1 01 11

0
~ ,

0
j

j

u
MVN

u


 

     
     
      

                                               (D1) 

 2~ 0,ije N   

For generality, we denote y as the outcome (e.g., self-efficacy) and x as the level-1 predictor (e.g., 
time). We will compare this to a model that centers x by an arbitrary constant, a. We will show that 
the aforementioned proportions will always be the same as those obtained from the uncentered 
model, regardless of the value of a. The centered-by-a model is thus given as    

* * * * *
00 0 10 1( ) ( )ij j ij j ij ijy u x a u x a e                                                (D2) 

We use asterisks to denote terms and parameters from the centered-by-a model. It is well-established 
that these two models (Equation D1 and D2) are equivalent models in that their likelihoods are 
maximized at the same value and they generate the same set of expectations and dispersions (Kreft, 
Aiken, & de Leeuw, 1995). As such, we can write each component of the centered-by-a model in 
terms of the components of the uncentered model by rearranging terms like so: 

* * * * *
00 0 10 1

* * * * * * *
00 0 10 10 1 1

* * * * * * *
00 10 0 1 10 1

( ) ( )

   

   ( ) ( )

ij j ij j ij ij

j ij j ij j ij

j j ij j ij ij

y u x a u x a e

u x a u x u a e

a u u a x u x e

 

  

  

      

      

      

                                    (D3) 

This reexpression highlights the following equivalencies between the two models: 
* *

00 00 10a     
* *

0 0 1j j ju u u a   
*

10 10                                                                     (D4) 
*

1 1j ju u  
*

ij ije e  

Hence, we can rewrite the centered-by-a model using terms from the uncentered model like so  

00 10 0 1 10 1( ) ( )ij j j ij j ij ijy a u u a x u x e                                           (D5) 

The variance component from the centered-by-a model can then be written as  
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*
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                                                                                 (D6) 

 

*
0 1 0 1 1

0 1 1 1

01 11

cov( , ) cov( , )

                   cov( , ) cov( , )

                   

j j j j j

j j j j

u u u u a u

u u u a u

a 

 

 

 

                                                      _  

Using the formulas outlined in Appendix B and in Rights and Sterba (2019), we can then compute 
the total variance attributable to predictors via fixed components in the centered-by-a model as: 

* * * 00 10
00 10 10
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 

    
 



γ Φ γ

                                  (D7) 

And we see that this is exactly equal to that obtained from the uncentered model: 
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                                                     (D8) 

We can additionally compute the total variance attributable to predictors via random slope variation 
in the centered-by-a model as: 

2
* * 00 11 01 01 11
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    
  

 




      
          

  
      


Τ Σ
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And we again see that this is exactly equal to that obtained from the uncentered model: 
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Lastly, we compute the total variance attributable to source m in the centered-by-a model as: 
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And we see that this is exactly equal to that obtained from the uncentered model: 
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Appendix E. Supplementary results from fitting self-efficacy growth models 
 

Appendix E Figure E1. Visualizing R-squared results for the unconditional quadratic growth model 
of self-efficacy that centered time at-a-constant and assumed a homoscedastic, diagonal error 
covariance structure (Eqn. 3)  
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Appendix E Figure E2. Visualizing R-squared results for the unconditional linear growth model of 
self-efficacy that centered time at-a-constant and specified a heteroscedastic, diagonal error 
covariance structure (see Eqn. 4) 
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Appendix E Figure E3. Visualizing R-squared results for the unconditional linear growth model of 
self-efficacy that centered time at-a-constant and specified a heteroscedastic, first-order 
autoregressive covariance structure (Eqn. 5) 
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Appendix F: Proof that when time by itself explains only within-person variability, time2 can 
still explain some between-person variability. 

 
 Here we show that including higher-order (i.e., > 1) polynomial terms associated with level-1 
predictors can explain between-cluster variance even when the level-1 predictor has only within-
cluster variance. To illustrate, we will consider the reduced form expression for the quadratic model 
given in Equation 3; for generality, we will denote the level-1 predictors (e.g., time) as x: 

2 2
00 0 10 20 1 2ij j ij ij j ij j ij ijy u x x u x u x e                                               (F1) 

Using the formula in Appendix B Equation B6, we can compute the total variance attributable to the 
between-cluster-varying portion of x via its fixed component as 
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Note that | [ ]i j ijE x  is necessarily constant across clusters (as the level-1 predictor has only within-

cluster variance), and hence 2
| | |var( [ ]) cov( [ ], [ ]) 0i j ij i j ij i j ijE x E x E x  . However, 2

| [ ]i j ijE x  is not 

necessarily the same for each cluster, and will vary across clusters when clusters have different 
degrees of within-cluster variance of x. As shown in Equation F2, holding all else constant, the 
amount of between-cluster variance explained by 2

ijx  via its fixed component will increase as the 

amount of across-cluster variability in the within-cluster variability of x increases. 
 We can similarly compute the total variance attributable to the between-cluster-varying 
portion of x via random slope variation as 
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Similarly, Equation F3 shows that, holding all else constant, the amount of between-cluster variance 
explained by 2

ijx  via random slope variation will increase as the amount of across-cluster variability 

in the within-cluster variability of x increases. 
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Where max( )jn  is the largest possible cluster size and i  is the probability of a randomly selected 

observation being the ith observation within a cluster. As an example, if we had four discrete 
timepoints with a separate error variance for each, and had an equal number of observations per 
timepoint, the expected error variance would be given as  

2

4
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2 2 2 2
1 2 3 4
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1 1 1 1
           

4 4 4 4

ij i

i i
t

e E 
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

   

                                               (G6) 

which is just the unweighted mean of the four error variances.  
When there is not a discrete set of error variances, and the error variance instead varies as a 

function of continuous covariates, we compute the expected error variance as  
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                                                               (G7) 

Where β  is the vector of coefficients that are used to model the error variance, and ijX  is the vector 

of observation-specific predictors of the error variance. As an example, if the error variance differed 
as a linear function of time, then  
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Similarly, if the error variance were modeled as a quadratic function of time,  
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As a last example, if the error variance were modeled as a quadratic function of time, and a linear 
function of some other covariate ijx  
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                           (G10) 

When estimating these quantities in a sample, the above expectations can be replaced with sample 
means, and the parameters can be replaced with estimates. For instance, with our example dataset, if 
we were to specify the error variance to have the form of Equation G10 (with ijx  denoting female to 

allow for different error variances for boys and girls), and we would obtain estimates of 0
ˆ 70  , 
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1̂ 5  , 2
ˆ 0.01  , and 3

ˆ 2  , and we would then compute the expected error variance as 
270 5(sample mean of ) 0.01(sample mean of ) 2(sample mean of )ij ij ijtime time gender   , which 

in our case is 90. Hence, our estimate of 2[ ]iE   would be 90 (e.g., we would enter 90 in the sigma2 

argument of the r2MLMlong function in Appendix J). 
Integrating Appendix B and the current Appendix G, the total model-implied outcome 

variance allowing heteroscedasticity of level-1 errors is given as 
2var( ) ( ) ( ) [ ]ij w b w b iy tr tr E        γ Φ γ γ Φ γ ΤΣ ΤΣ m Τm                    (G11) 

The sources corresponding to these terms are defined in Table 2. The only difference in this 
expression and that provided in Appendix B Equation B10 is that 2  is replaced with 2[ ]iE  .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

R
 

In

autocorre
We’ll exp

Here, eac
A

equal to 1

And can c

This expr
autocorre

 

 

 

 

 

 

 

 

 

 

Appendix 
R-squared me

n the newly d

elation. Here 
pand the expr

ch off-diagon
Again letting 

1 and all othe

compute the 

ression here i
elation does n

H. Proof th
easures is un

derived expre

we prove tha
ression in Ap

nal element d

ijI  be a clust

er elements a

variance of 

var( )

           

           

           

ije 






in Equation H
not change th

hat the mathe
naffected by

ession for va

at the additio
ppendix G Eq

enotes the er
ter-specific n

are equal to 0

ije

ije  as 

2

2

var( )

[var(

[ ] va

[ ]

ij j

ij j

i

i

E

E

E









 



I e

I e

H3 is identica
he formulas u

ematical com
y the inclusio

ar( )ije  given 

on of autocorr
quation G1 to

rror covarianc
1jn   indicat

0. We can the

ij j I e          

) | ] var(

ar(0)

j ij I

al to that in E
used to comp

mputation o
on of any kin

in Appendix

relation does
o allow for a

ce between t
tor vector su

en say that  
                    

( [ | ])ij j ijE  I e I

Equation G4,
pute R-square

of the framew
nd of autoco

x G, we assum

s not change 
autocorrelatio

                 
two different 
uch that the it

                    

)
                  

, and hence, t
ed measures. 

work’s  
orrelation. 

med there wa

this formula.
on as such: 

                    
values of i. 

th element is 

                    

                    

the 
 

18 

as no 

. 

 (H1) 

 (H2) 

 (H3) 



19 
 

Appendix I. Specifications used to obtain ΔR2 effect sizes for individual terms in our illustrative 
conditional growth model of self-efficacy 

 Letting Model B denote the full model of interest given in Equation 6, and using a 
simultaneous model-building approach (see Rights & Sterba, 2020) we can compute the variance 
uniquely explained by GPA (via each of 1f , 2f , and 1v ) by computing R-squared differences 

between the full Model B and the following reduced Model A that excludes both person-mean-
centered GPA and person-mean GPA: 

0 1 2 ( )ij j j ij j ij j ijselfeff time volunteer volunteer e                          (I1) 
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j j
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 

   

  

 



 

Specifically, the variance uniquely explained by person-mean-centered GPA via its fixed component 
is estimated as 12( )ˆ f

tR (for total variance) and 12( )ˆ f
wR  (for within-person variance), the variance 

uniquely explained by person-mean GPA via its fixed component is estimated as 22( )ˆ f
tR (for total 

variance) and 22( )ˆ f
bR  (for between-person variance), and the variance uniquely explained by person-

mean-centered GPA via random slope variation is estimated as 12( )ˆ v
tR  (for total variance) and 

12( )ˆ v
wR  (for within-person variance). 

 We can similarly compute the variance uniquely explained by volunteer hours (via each of 

1f , 2f , and 1v ) by computing these same R-squared differences between the full Model B and the 

following reduced Model C that excludes person-mean-centered volunteer hours and person-mean 
volunteer hours: 
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Lastly, we can compute the variance uniquely explained by the product term of time×female 
by comparing the full Model B and the following reduced Model D that excludes this product term: 
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Specifically, the variance uniquely explained by time×female via its fixed component is estimated as 
the sum of 12( )ˆ f

tR and 22( )ˆ f
tR  (for total variance), by 12( )ˆ f

wR  (for within-person variance), and by 

22( )ˆ f
bR  (for between-person variance).  
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Appendix J. Software implementation of R-square framework via R function r2MLMlong. 

r2MLMlong R function description: 
 
This R function reads in raw data as well as parameter estimates from the researcher’s previously-fit 
longitudinal growth model (hence, any software program can have been used to fit the researcher’s 
longitudinal growth model prior to the use of this R function, so long as parameter estimates from the 
fitted model are recorded). This function then outputs R-squared measures (shown in manuscript 
Table 3), as well as variance decompositions and associated barcharts (e.g., manuscript Figures 1-3). 
This function allows researchers to input heteroscedastic residual variance by including multiple 
estimates, e.g., corresponding to individual timepoints. Users need not specify if predictors are 
person-mean-centered or not—the function will automatically output total, within-person, and 
between-person variance attributable to each potential source of explained variance (f1, f2, v1, v2, and 
m). Note, however, that the interpretations of these sources differ for person-mean-centered vs. non-
person-mean-centered models (as delineated in manuscript Table 2) and that variance attributable to 
v2 will necessarily be 0 for person-mean-centered models. 
 
r2MLMlong R function input description: 
 
data – dataset in long format, in which rows denote individual observations and columns denote  

variables 
 

covs – list of predictors that in the dataset that have fixed components of slopes included in the model  
           (if none, set to NULL) 
 
random_covs – list of predictors in the dataset that have random components of slopes included in  

the model (if none, set to NULL) 
 
clusterID – variable name in dataset corresponding to cluster (e.g., person) identification 
 
gammas – vector containing estimated fixed components of all slopes, listed in the order specified in 

covs (if none, set to NULL) 
 
Tau – random effect covariance matrix; the first row and the first column denote the intercept  

variance and covariances and each subsequent row/column denotes a given random slope’s  
variance and covariances (to be entered in the order listed by random_covs) 

 
sigma2 – level-1 residual variance; can be entered as a single number, or as a set of numbers, e.g.,  

corresponding to different residual variances at individual timepoints; if entered as a set of  
numbers, function will assume equal weights and take the raw average of these to estimate 
the expectation of the error variance 

 
r2MLMlong R function example input: 
 
#NOTE: estimates in the input represent hypothetical results for a random slope model with “time” and “x” as level-1 predictors and “w1” 
and “w2” as level-2 predictors; model also allows level-1 residual variance to vary across the five timepoints 
#in practice a user would have previously obtained these input estimates by fitting their model in MLM software  
#additionally, the input consists of hypothetical predictor data, whereas in practice a user would read-in their actual data  
 
exampledata <- matrix(NA,100*5,5)  
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time <-rep(seq(5),100) 
x <- rnorm(100*5,0,2)  
w1<-rnorm(100,2,1) 
w2<-rnorm(100,3,2) 
exampledata[,1] <- rep(seq(100),each=5) 
exampledata[,2:3] <- cbind(time,x) 
exampledata[,4] <- rep(w1,each=5) 
exampledata[,5] <- rep(w2,each=5) 
exampledata<-as.data.frame(exampledata) 
colnames(exampledata) <- c("person","time","x","w1","w2") 
  
r2MLMlong(data=exampledata,covs=c("time","x","w1","w2"),random_covs=c("time","x"),gammas=c(.25,1.5,-.75,.01), 
          clusterID="person",Tau=matrix(c(4,1,.75,1,1,.25,.75,.25,.5),3,3),sigma2=c(10,11,12,14,15)) 

 
r2MLMlong R function code: 
 
#need to install the following packages 
library(rockchalk) 
 
r2MLMlong <- function(data,covs,random_covs,clusterID,gammas,Tau,sigma2){ 
  
  if(is.null(covs)==FALSE){ 
  centered_data <- gmc(data,covs,clusterID) 
  phi_w <- var(centered_data[,c(paste0(covs,"_dev"))]) 
  phi_b <- var(centered_data[,c(paste0(covs,"_mn"))]) 
  gammas <- matrix(c(gammas),ncol=1) 
  f1<-t(gammas)%*%phi_w%*%gammas 
  f2<-t(gammas)%*%phi_b%*%gammas 
  } 
  else{ 
  f1<-0 
  f2<-0 
  } 
   
  if(is.null(random_covs)==FALSE){ 
  centered_data_rand <- gmc(data,random_covs,clusterID) 
  Sig_w <- var(centered_data_rand[,c(paste0(random_covs,"_dev"))]) 
  Sig_b <- var(centered_data_rand[,c(paste0(random_covs,"_mn"))]) 
  m_mat <- matrix(c(colMeans(cbind(1,data[,c(random_covs)]))),ncol=1) 
  v1<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_w)) 
  v2<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_b)) 
  } 
  else{ 
  v1<-0 
  v2<-0 
  m_mat <- 1   
  } 
   
  m<- t(m_mat)%*%Tau%*%m_mat 
   
  sigma<-mean(sigma2) 
 
  #decompositions 
 
  decomp_fixed_within <- f1/sum(f1,f2,v1,v2,m,sigma) 
  decomp_fixed_between <-f2/sum(f1,f2,v1,v2,m,sigma) 
  decomp_varslopes_within <- v1/sum(f1,f2,v1,v2,m,sigma) 
  decomp_varslopes_between <- v2/sum(f1,f2,v1,v2,m,sigma) 
  decomp_varmeans <- m/sum(f1,f2,v1,v2,m,sigma) 
  decomp_sigma <- sigma/sum(f1,f2,v1,v2,m,sigma) 
   
  decomp_fixed_within_w <- f1/sum(f1,v1,sigma) 
  decomp_fixed_between_b <-f2/sum(f2,v2,m) 
  decomp_varslopes_within_w <- v1/sum(f1,v1,sigma) 
  decomp_varslopes_between_b <- v2/sum(f2,v2,m) 
  decomp_varmeans_b <- m/sum(f2,v2,m) 
  decomp_sigma_w <- sigma/sum(f1,v1,sigma) 
     
  #barchart 
   
  contributions_stacked <- 
matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes_between,decomp_varmeans,decomp_sigma, 
                                        decomp_fixed_within_w,0,decomp_varslopes_within_w,0,0,decomp_sigma_w, 
                                        0,decomp_fixed_between_b,0,decomp_varslopes_between_b,decomp_varmeans_b,0),6,3) 
  colnames(contributions_stacked) <- c("total","within","between") 
  rownames(contributions_stacked) <- c("fixed slopes (within)", 
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                                           "fixed slopes (between)", 
                                           "slope variation (within)", 
                                           "slope variation (between)", 
                                           "intercept variation (between)", 
                                           "residual (within)") 
  
   
   barplot(contributions_stacked, main="Decomposition                     ", horiz=FALSE, 
          ylim=c(0,1),col=c("darkred","steelblue","darkred","steelblue","midnightblue","white"),ylab="proportion of variance", 
          density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0),xlim=c(0,1.5),width=c(.3,.3)) 
  legend(1.1,.65,legend=rownames(contributions_stacked_avg),fill=c("darkred","steelblue","darkred","steelblue","midnightblue","white"), 
         cex=.7, pt.cex = 1,xpd=T,density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0)) 
   
  #create tables for output  
   
  decomp_table <- matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes_between,decomp_varmeans,decomp_sigma, 
                           decomp_fixed_within_w,"NA",decomp_varslopes_within_w,"NA","NA",decomp_sigma_w, 
                           "NA",decomp_fixed_between_b,"NA",decomp_varslopes_between_b,decomp_varmeans_b,"NA"),6,3) 
  colnames(decomp_table) <- c("total","within","between") 
  rownames(decomp_table) <- c("fixed slopes (within)", 
                                       "fixed slopes (between)", 
                                       "slope variation (within)", 
                                       "slope variation (between)", 
                                       "intercept variation (between)", 
                                       "residual (within)") 
   
  R2_table <- matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes_between,decomp_varmeans, 
                       
decomp_fixed_within+decomp_fixed_between,decomp_fixed_within+decomp_fixed_between+decomp_varslopes_within+decomp_varslopes_between, 
                       decomp_fixed_within+decomp_fixed_between+decomp_varslopes_within+decomp_varslopes_between+decomp_varmeans, 
                       decomp_fixed_within_w,"NA",decomp_varslopes_within_w,"NA","NA","NA",decomp_fixed_within_w+decomp_varslopes_within_w,"NA", 
                       
"NA",decomp_fixed_between_b,"NA",decomp_varslopes_between_b,decomp_varmeans_b,"NA",decomp_fixed_between_b+decomp_varslopes_between_b,"NA"),8,
3) 
   
  colnames(R2_table) <- c("total","within","between") 
  rownames(R2_table) <- c("f1","f2","v1","v2","m","f","fv","fvm") 
   
  Output <- list(noquote(decomp_table),noquote(R2_table)) 
  names(Output) <- c("Decompositions","R2s") 
   
  return(Output) 
} 
 
 
 

 




