
MULTIVARIATE BEHAVIORAL RESEARCH
, VOL. , NOS. –, –
http://dx.doi.org/./..

Accounting for Parcel-Allocation Variability in Practice: Combining Sources of
Uncertainty and Choosing the Number of Allocations

Sonya K. Sterba and Jason D. Rights

Vanderbilt University

KEYWORDS
Item parceling;
parcel-allocation variability;
pooling rules; structural
equation modeling;
sampling variability

ABSTRACT
Item parceling remains widely used under conditions that can lead to parcel-allocation variability
in results. Hence, researchers may be interested in quantifying and accounting for parcel-allocation
variability within sample. To do so in practice, three key issues need to be addressed. First, how can
we combine sources of uncertainty arising from sampling variability and parcel-allocation variability
when drawing inferences about parameters in structural equationmodels? Second, onwhat basis can
we choose the number of repeated item-to-parcel allocations within sample? Third, how canwe diag-
nose and report proportions of total variability per estimate arising due to parcel-allocation variability
versus sampling variability? This article addresses these three methodological issues. Developments
are illustrated using simulated and empirical examples, and software for implementing them is pro-
vided.

Psychologists commonly create parcel scores by sum-
ming or averaging subsets of items and then use the
parcel scores as factor indicators in structural equation
models (SEMs). Reviews suggest that between one out
of five (Bandalos & Finney, 2001; Hall, Snell, & Foust,
1999) and one out of two (Plummer, 2000; Williams &
O’Boyle, 2008) SEM applications use parceling. Parceling
is often employed and recommended in the common con-
text of low item communalities and/or small samples (e.g.,
Bagozzi & Edwards, 1998; Matsunaga, 2008; Meade &
Kroustalis, 2006; Nasser-Abu & Wisenbaker, 2006; West,
Finch, & Curran, 1995; Williams & O’Boyle, 2008; Yang,
Nay, & Hoyle, 2010; Yuan, Bentler, & Kano, 1997). In
this context, parceling also has been used to avoid poten-
tial estimation problems that could be encountered when
employing categorical variable estimation methods with
many ordered-categorical items (see Bandalos, 2008;West
et al., 1995; Yang et al., 2010). Reasons for these recom-
mendations include the fact that, compared with item-
level models, parcel-level models have higher communal-
ities and fewer estimated parameters, and may have lower
risk of convergence problems (e.g., Little, Cunningham,
Shahar, & Widaman, 2002; Little, Rhemtulla, Gibson, &
Schoemann, 2013).

Alternative item-to-parcel allocations within sample
(i.e., alternative parceling strategies) were long considered
to provide the same results in terms of structural parame-
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ters and model fit so long as items loading on a given fac-
tor were unidimensional in the population (e.g., Hagtvet
&Nasser, 2004; Hall et al., 1999; Hau &Marsh, 2004; Lan-
dis, Beal, & Tesluk, 2000; Little et al., 2002;Marsh, Lüdtke,
Nagengast, Morin, & Van Davier, 2013; Matsunaga, 2008;
Meade & Kroustalis, 2006; Nasser-Abu & Wisenbaker,
2006; Plummer, 2000; Rogers & Schmitt, 2004; Sass &
Smith, 2006; Williams & O’Boyle, 2008). However, recent
research has shown that in this context, model fit, stan-
dard errors, and parameter estimates—including those
for structural parameters—can vary meaningfully across
alternative allocations of items to parcels, given a fixed
number of items per parcel and parcels per factor (Sterba,
2011; Sterba & MacCallum, 2010). This result holds even
in the context of equal item loadings on each factor. The
amount of such parcel-allocation variability in results is
elevated under the exact conditions where parceling has
been widely recommended (e.g., small samples and/or
modest communalities). In addition, if items loading on
a given factor are not unidimensional in the popula-
tion, further parcel-allocation variability would arise (e.g.,
Bandalos, 2002; Bandalos & Finney, 2001). Since SEM
applications using parceling typically assume unidimen-
sional items for each factor in the population (see Marsh
et al., 2013), in this article we conservatively focus on the
context where parcel-allocation variability arises despite
item unidimensionality in the population.
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In this context, consider a common scenario where
a researcher is interested in fitting a two-factor confir-
matory factor analysis (CFA) model with 15 items per
factor, using the combination scheme of five parcels per
factor and three items per parcel. There are 2.82 ×1016

possible item-to-parcel allocations that could be chosen
within sample under this combination scheme. However,
researchers typically pick just one allocation of items to
parcels (i.e., one parceling strategy). Often this allocation
is chosen randomly; other times it is substantively justi-
fied. Researchers typically do not consider what results
would have been obtained from other potential alloca-
tions. Even if a researcher has a substantive justifica-
tion for employing a particular allocation, the researcher
may still question how generalizable the results are with
respect to results that could be obtained fromother alloca-
tions within the sample. For example, Cattell and Burdsal
(1975) expressed concern that a particular choice of parcel
allocation could be “too subjective” and could depend on
“stereotypes of a particular experimenter” (p. 167). Under
some data/model conditions, alternative parcel alloca-
tions give very similar results. Under other data/model
conditions, alternative parcel allocations can give very dif-
ferent results (e.g., parameter estimates ranging from sig-
nificant to nonsignificant). In summary, researchers may
wonder whether their results are representative of those
that could have been obtained from the distribution of
possible parcel allocations within sample.

To address such concerns about generalizability and
representativeness of results across alternative parcel-
allocations, researchers need to be able to quantify the
variability in results across alternative parcel allocations
within sample. Sterba and MacCallum (2010) suggested
a reporting strategy to accomplish this. Specifically, they
suggested that a researcher interested in random item-
to-parcel allocating could repeatedly randomly allocate
items to parcels 100 times, within his or her single sam-
ple. Then the researcher could fit his or her SEM model
to each allocation and report the following information
about the within-sample parcel-allocation distribution of
each parameter estimate and standard error:
• across-allocations mean, standard deviation, mini-
mum, and maximum of each parameter estimate,
• across-allocations mean, standard deviation, mini-
mum, and maximum of each standard error, and
• proportion of allocations in which the null hypothe-
sis could be rejected for each parameter.

This reporting strategy was intended to communicate
uncertainty due to parcel-allocation variability in results
for each parameter. However, there are three impor-
tant limitations to this reporting strategy: (1) Parame-
ter estimate and standard error results were not pooled
across allocations to yield a single inferential decision

per parameter; (2) the number of repeated allocations
was chosen arbitrarily; and (3) the amount of variability
per parameter estimate due to sampling variability ver-
sus parcel-allocation variability was not distinguished and
quantified. The purpose of the current article is to address
these three limitations. Each limitation is described fur-
ther, in conjunction with how it will be addressed in the
current article.

How can we pool results across allocations
within sample, per each parameter?

The first limitation of Sterba and MacCallum’s (2010)
reporting strategy is that they did not provide a sin-
gle test per parameter that incorporated uncertainty due
to both sampling variability and parcel-allocation vari-
ability. Therefore, their strategy did not facilitate a sin-
gle decision regarding whether to reject the null hypoth-
esis for that parameter. For example, in the empirical
example supplied to illustrate this strategy, the effect
of an agreeableness latent factor on a tangible support
latent factor was significant in 78% of allocations within
sample and nonsignificant in 22% of allocations within
sample. What overall substantive conclusion should the
researcher draw from this result? Is 78% of allocations so
many that the researcher ought to reject the null hypoth-
esis? What if the null hypothesis had been rejected in
10% of allocations within sample? Or 50% of allocations
within sample? The fundamental issue is that the previ-
ously recommended reporting strategy did not provide
a way to combine estimates across allocations and com-
bine standard errors across allocations to make a sin-
gle inferential decision about rejecting the null hypoth-
esis per parameter. Furthermore, the previously recom-
mended reporting strategy was not compact; it required
nine columns of results to summarize parcel-allocation
variability in a set of parameter estimates and standard
errors. The first goal of the current article is to provide and
demonstrate an approach, fromRubin (1987), for pooling
parameter estimates and pooling standard errors across
allocations to yield a single inferential decision per
parameter that reflects two sources of variability: across-
samples and across-allocations within-sample. Not only
will this approach provide a single null hypothesis signifi-
cance test per parameter (rather than 100 of them), but we
will also extend previous research by providing a pooled
confidence interval for each parameter.

How should we choose the number of repeated
allocations?

The second limitation of Sterba and MacCallum’s (2010)
reporting strategy had to do with the chosen number of
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repeated item-to-parcel allocations within sample. The
number of allocations chosen (100) was arbitrary. Of
course, it would not be practical computationally to repeat
the SEM analysis for every single allocation from the
finite population of millions of allocations possible using
a given combination scheme. Instead, researchers may
want to gauge howmany allocations are required to obtain
pooled parameter estimate and standard error results that
are reasonably stable—even in the event that a specified
number of new allocations from that combination scheme
are analyzed. There is reason to anticipate that the num-
ber of allocations needed to fulfill this objectivewould dif-
fer depending on particular model and data conditions,
rather than being a fixed number (e.g., 100). The second
goal of the current article is to address the limitation of
an arbitrarily selected number of repeated random allo-
cations. Specifically, we develop and illustrate a computa-
tional algorithm for choosing the number of allocations,
in a given sample, that are needed to obtain a desired
degree of stability in pooled parameter estimates and stan-
dard errors that are reflective of both sampling and parcel-
allocation variability.

How can we diagnose the amount of
parameter-estimate variability due to sampling
versus parcel allocating?

A third limitation of the previous reporting strategy is
that it provided no method to quantify the increase in
such pooled standard errors due to the presence of parcel-
allocation variability, above and beyond the presence of
sampling variability. This increase would not necessar-
ily be the same for each parameter in a given model.
Some parameters’ standard errors may be little affected
by parcel-allocation variability, whereas other parame-
ters’ standard errors may be greatly affected. It could be
substantively useful to know which parameters’ standard
errors aremore affected. The third goal of the current arti-
cle is to provide indices that (a) quantify the contribu-
tion of parcel-allocation variability to the total variability
in each estimate and (b) compare the amount of parcel-
allocation variability versus sampling variability in each
estimate.

Broadly speaking, the goals of this article reflect a com-
mon statistical interest in accounting for variability aris-
ing from both sampling and nonsampling sources when
interpreting results (e.g., Bayarri et al., 2007; Cole, Chu,
& Greenland, 2006; Ghosh-Dastidar & Schafer, 2003;
Groves & Lyberg, 2010; Hoeting, Madigan, Raftery, &
Volinsky, 1999;MacCallum, 2013;Mislevy, 1991;Mislevy,
Johnson, & Muraki, 1992; Reiter & Raghunathan, 2007;
Rubin, 1987; Stuart & Rubin, 2008). The focus of this arti-
cle on pooling estimates across allocations within sample

also reflects the principle of aggregation (see discussion
in Little et al., 2013; Matsunaga, 2008; Nunnally, 1978;
Rushton, Brainerd, & Pressley, 1983). That is, results from
any single parcel allocation are less representative of the
entire within-sample parcel-allocation distribution than
are results produced by combining information across
allocations.

The remainder of this article proceeds as follows. First,
we motivate and describe the use of Rubin’s (1987) rules
as an approach for pooling estimates and standard errors
for SEM parameters across random allocations within
sample. We show that this approach matches results of a
Monte Carlo pooling approach. We also describe hypoth-
esis testing and confidence intervals for SEM parameters.
Second, we describe an algorithm to select the number
of allocations needed to produce pooled estimates and
standard errors that maintain a desired degree of sta-
bility when a specified number of new allocations are
included. We also motivate and then investigate hypothe-
ses regarding data and model features expected to, on
average, increase or decrease the number of allocations
required to meet these convergence criteria. Third, we
describe indices to assess the proportion of variance in
a parameter estimate that is due to allocation variabil-
ity. Fourth, we demonstrate the application of methods
introduced in prior sections in an empirical example.
This example makes use of software tools developed in
R to allow researchers to obtain results described in pre-
vious sections. We conclude with a discussion of future
research topics. In this regard, note that the scope of the
present article pertains to parameter estimates and stan-
dard errors, rather than tomodel fit; the latter is discussed
as a future direction.

Pooling parameter estimates and pooling
standard errors across allocations within sample

Pooling using Rubin’s rules

Rubin (1987) proposed rules for combining two sources
of variability—arising from repeated-sampling and non-
sampling sources—when drawing inferences about a
given parameter. In Rubin’s (1987) context, the nonsam-
pling variability arose due to missing data. Specifically,
there was uncertainty about what the missing values of
variables would have been, had they been observed. Mul-
tiple plausible scores (i.e., imputations) for these missing
values were drawn from a distribution of missing values
given observed values, and then for each (m = 1…M)
draw, a complete-data analysis was performed. Finally, the
M sets of parameter estimates and standard errors were
combined using these pooling rules (for more details see,
e.g., Enders, 2010; Little & Rubin, 2002).
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Subsequently, Rubin’s (1987) pooling rules have been
used extensively outside the missing data context to com-
bine other nonsampling sources of variability, together
with sampling variability, when drawing inferences (see
Reiter & Raghunathan 2007, for review). For example,
these pooling rules have been used to combine sam-
pling variability with uncertainty in latent ability scores
in educational testing (e.g., Li, 2012; Mislevy, 1991;
Mislevy et al., 1992), sampling variability with uncer-
tainty in matches from multiple control groups or mul-
tiple data sets (e.g., Rässler, 2003; Stuart & Rubin, 2008),
or sampling variability with uncertainty due to measure-
ment/response error generally (Asparouhov & Muthén,
2010a; Cole et al., 2006; Ghosh-Dastidar & Schafer, 2003).

In the present context, the sources of variability to
be combined in creating pooled estimates and standard
errors arise from both repeated sampling and repeated
parcel allocating within sample. Using this approach,
a pooled parameter of inferential interest is defined as
the expected value of the parcel-level parameter, across
repeated allocations within sample and across repeated
samples. For pooled structural parameters, this is sim-
ply the structural parameter from the generating item-
level model (Sterba &MacCallum, 2010). In many empir-
ical parceling applications, substantive interest lies only
in structural parameters (Bandalos & Finney, 2001; Lit-
tle et al., 2002, 2013; Marsh et al., 2013; Matsunaga,
2008; Meade & Kroustalis, 2006; Plummer, 2000; Rogers
& Schmitt, 2004; Sass & Smith, 2006; Sterba & Rights,
in press; Stucky, Goffredson, & Panter, 2012; Williams &
O’Boyle, 2008). If substantive interest also lies in parcel-
level measurement parameters, and unidimensionality
and random parcel-allocating are assumed, each pooled
parcel-loading parameter is the average generating item
loading across all items per factor (see the Appendix
for details), and each pooled parcel residual variance
parameter is the average generating item residual vari-
ance divided by the number of items per parcel (see
the Appendix for details). Of course, if researchers are
interested in making inferences about individual item-
level loadings and item-level residual variances, they are
advised to instead fit an item-level SEM rather than a
parcel-level SEM (Bandalos & Finney, 2001; Little et al.,
2002; Matsunaga, 2008; Meade & Kroustalis, 2006; Plum-
mer, 2000; Rogers & Schmitt, 2004; Sass & Smith, 2006;
Stucky et al., 2012; Williams & O’Boyle, 2008). Further-
more, if researchers are not comfortable assuming uni-
dimensional items on a given factor and are interested
in exploratory analyses to compare competing measure-
ment models, they likewise are advised to fit an item-level
SEM, rather than a parcel-level SEM (see Bandalos, 2002,
2008; Bandalos & Finney, 2001; Hall et al., 1999; Hagtvet
&Nasser, 2004; Little et al., 2002;Matsunaga, 2008;Meade

& Kroustalis, 2006; Plummer, 2000; Rogers & Schmitt,
2004; Sass & Smith, 2006; Stucky et al., 2012; Williams &
O’Boyle, 2008).

Rubin (1987, 1996) justified the pooling rules using
both randomization-based (frequentist) and Bayesian
arguments. Here, we relate Rubin’s (1987) randomization-
based frequentist arguments for use of the pooling rules
to the present context of pooling estimates and standard
errors across randomallocationswithin sample, under the
assumption that items loading on each factor are unidi-
mensional. We begin with some definitions.

A combination scheme for repeated item-to-parcel allo-
cations within sample is uniquely defined by the num-
ber of factors, K, with parcel indicators (where factors are
indexed k= 1…K); the number of item indicators for the
kth factor, rk; the number of parcels for the kth factor, pk;
and the number of items per parcel j of factor k, q jk. We
refer to a generic combination scheme as Cqjk pk . For such
a combination scheme, the total possible number of item-
to-parcel allocations within a given sample is

T =
K∏

k=1

⎛⎜⎜⎜⎝ rk!
pk∏
j=1

(q jk!)

⎞⎟⎟⎟⎠. (1)

From a randomization-based perspective, the total
number of allocations possible using a particular com-
bination scheme represents an allocation frame (e.g.,
Kish, 1965; see Sterba, 2009, for review). Each draw or
allocation, denoted A, from this frame has a known,
nonzero probability of selection. Specifically, in our case
of repeated random parcel allocating, each allocation has
a (1/T ) probability of selection (i.e., simple random allo-
cating). LetM indicate the size of a set of allocations ran-
domly1 selected from the frame within a researcher’s sin-
gle sample (where allocations are indexed m = 1…M).
Later in this article, we address choosing the number M.
Here, repeated allocations are drawn with replacement,
implying that a given allocation can in theory be selected
more than once in a set.

Suppose a SEM is fit to each allocation m = 1…M
within sample. Most commonly, this would be done
using maximum likelihood estimation. Rubin’s (1987)
rules assume that estimates from the mth fitted model

 Althoughweare conceptualizing allocations as randomly selected, by repeat-
edly randomly allocating we are likely to encounter, by chance, allocations
that fit the description of certain existing purposive parceling strategies that
can assume unidimensionality (see Little et al., , or Matsunaga, , for
review). For example, one purposive strategy that could be encountered by
chance is a correlational strategy (Rogers & Schmitt, ). Using this strat-
egy for a given factor, parcels are initially seededwith pairs of themost highly
correlated items, and subsequent items are assigned to the parcel withwhich
they are most highly correlated.
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are normally distributed across repeated samples. Consis-
tent with this assumption, for the mth allocation’s fitted
model, maximum likelihood estimates are asymptotically
normally distributed across repeated samples (for review,
see Bollen, 1989). Under simple random allocating with
replacement, Equation (2) provides an estimate of the
expected value of the model parameter θ across sam-
ples and allocations generated using combination scheme
Cqjk pk .

θ̄ = 1
M

M∑
m=1

θ̂m. (2)

For large M, θ̄ will be approximately normally dis-
tributed due to the central limit theorem (Rubin,
1987, 1996). Under simple random allocating with-
replacement, Equation (3) is an estimate of the variance
of the θ̂ across samples and across allocations generated
using combination schemeCqjk pk .

VT = VW +VB + VB

M
. (3)

The term VW in Equation (3) quantifies uncertainty due
to sampling variability. The term VW is defined in Equa-
tion (4) as the across-allocation average of the repeated-
sampling variance of θ̂ . In allocationm, the repeated sam-
pling variance of θ̂ is the square of its analytic standard
error, denoted SE2

m.

VW = 1
M

M∑
m=1

SE2
m. (4)

The term VB in Equation (3) quantifies uncertainty due
to parcel-allocation variability. The term VB is defined in
Equation (5) as the between-allocation variance of θ̂ .

VB = 1
M − 1

M∑
m=1

(θ̂m − θ̄ )
2
. (5)

The final term in Equation (3), VB/M, is an estimate of
the variance of θ̄ across repeated sets of M allocations
(Schafer, 1997), and the influence of this term disappears
asM increases. The pooled standard error is thus

SEpool = √
VT . (6)

More information on the frequentist/randomization-
based justification for Equations (2)–(5) is given in Rubin,
(1987, 1996), Schafer (1997), and Van Buuren (2012).

Demonstration of the correspondence between
Rubin’s rules and aMonte Carlo approach for
pooling estimates and SE

To make the interpretation of Equations (2)–(5) and the
assumptions underlying them concrete in the present
context, it is instructive to compare the convenient ana-
lytic pooling approach using Rubin’s (1987) rules to an
alternative Monte Carlo pooling approach that entails the
same assumptions. First, we describe this Monte Carlo
pooling approach, and then we provide a demonstra-
tion that the within-sample results obtained using Rubin’s
pooling rules match those obtained using the alternative
Monte Carlo approach.

Like Rubin’s (1987) rules, for allocation m, the
Monte Carlo approach assumes normality for the esti-
mate’s repeated sampling distribution. Like Rubin’s (1987)
rules, the Monte Carlo approach does not make any
distributional assumptions about the parcel-allocation
distribution (across m) other than to require simple ran-
dom allocating with replacement. The Monte Carlo pool-
ing approach involves implementing the following four
steps:

Step 1. For each allocation m = 1…M, fit the parcel-
level SEM. Record the vector of parameter esti-
mates from allocation m. Also record the asymptotic
covariance matrix of the parameter estimates from
allocationm.

Step 2. For each allocation m = 1…M, generate a sam-
pling distribution of multivariate normal estimates
using the mth allocation’s estimate vector as the gen-
erating mean vector and the mth allocation’s asymp-
totic covariance matrix as the generating covariance
matrix. For example, the sampling distribution in
allocation m might consist of R = 1,000 generated
estimates.

Step 3. For each model parameter, pool all M×R (e.g.,
100×1000) estimates generated in Step 2. This cre-
ates a distribution pooled across repeated samples and
repeated parcel allocations, which is conditional on the
items from the original sample.

Step 4. For each model parameter, compute the mean and
standard deviation of the pooled sampling/allocation
distribution from Step 3. The mean of the pooled dis-
tribution should closely match Rubin’s pooled estimate
in Equation (2). The standard deviation of this pooled
distribution should closely match Rubin’s pooled stan-
dard error in Equation (6).

Next, we demonstrate the correspondence of within-
sample results obtained using Rubin’s pooling rules and
using the Monte Carlo pooling approach. This demon-
stration uses a simulated data set of N = 100 generated
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Table . Parameter estimates and standard errors pooled across
allocations within a single sample using Rubin’s () rules versus
a Monte Carlo approach.

Pooling using Rubin’s ()
rules

Pooling using Monte Carlo
approach

Avg Est Pooled SE Avg Est Pooled SE

λ11 . . . .
λ12 . . . .
λ13 . . . .
λ14 . . . .
λ15 . . . .
λ21 . . . .
λ22 . . . .
λ23 . . . .
λ24 . . . .
λ25 . . . .
θ11 . . . .
θ12 . . . .
θ13 . . . .
θ14 . . . .
θ15 . . . .
θ21 . . . .
θ22 . . . .
θ23 . . . .
θ24 . . . .
θ25 . . . .
φ12 . . . .

Note. SE= Standard error. Est= estimate. Avg= average.

from a CFA model with K = 2 factors and 15 unidi-
mensional item indicators of each factor in the popula-
tion.2 Within this sample, we randomly allocate items to
parcels M = 100 times for each factor using a combina-
tion scheme where there are pk= 5 parcels for each fac-
tor and q jk= 3 items per parcel j of factor k. Then, we
fit our parcel-level two-factor CFA model to each of the
M = 100 allocation-specific data sets, within sample,
using maximum likelihood estimation.

Note that for identification, we fixed each factor vari-
ance to 1 (and gave loadings positive start values). How-
ever, we could have instead fixed one loading to 1 on each
factor; if so, the other loadings and the factor variance
would be rescaled accordingly.3

We record the parameter estimates and standard
errors from the M allocations. The pooled estimates and
pooled standard errors computed using Rubin’s (1987)
rules (Equations [2]–[6]) are given in the left-hand two
columns of Table 1. These results closely match those
computed using the Monte Carlo approach, in the right-
hand columns of Table 1.

 In generating the item-level model, the item factor loadings alternated
among λ = .4, .5, .6 , and corresponding item residual variances alternated
among θ = .84, .75, .64 so that items had unit variances. Factor variances
and covariances were φ11 = 1, φ22 = 1, φ12 = .25. Parameters that are the
subject of inference in a parcel-level analysis were discussed earlier in the
article text and do not include individual item-level loadings and residual
variances.

 Structural parameters are estimated under slightly different assumptions
across factor identification methods; they will not necessarily yield the same
pooled z-statistic results across factor identificationmethods for reasons dis-
cussed in, for example, Gonzalez and Griffin ().

Note that some parameters’ sampling distributions
will not be normal in small samples (e.g., correlations
or variances) even if they are asymptotically normally
distributed. Despite this fact, in the missing data con-
text, multiple imputation software in widespread use
routinely implements Rubin’s (1987) rules in the pool-
ing phase for all model parameters, under normality
assumptions for parameter estimates’ sampling distribu-
tions (for review, see Enders, 2010; Harel & Zhou, 2007).
Applied researchers fitting SEMs thus widely use pooled
results under this assumption in practice (Asparouhov
& Muthén, 2010b). It is possible to apply a normaliz-
ing transformation to a parameter estimate prior to the
application of Rubin’s rules or prior to the application
of the alternative Monte Carlo approach (e.g., Ratitch,
Lipkovich, & O’Kelly, 2013; Van Buuren, 2012). Hypoth-
esis testing could then be performed using the stan-
dard error for the transformed estimate. Such a pre-
liminary transformation would not affect the correspon-
dence between the Rubin’s rules analytic approach and
the Monte Carlo approach. For instance, in our exam-
ple we could transform φ12 (which was shown to have
a pooled Est = .279 and pooled SE = .110 using either
pooling approach, in Table 1) to a z′ metric using Fisher’s
(1921) transformation. Fisher’s transformation can be
implemented as a model constraint in our M fitted CFA
models. Doing so, we still obtain the same estimate
and pooled standard error using both Rubin’s rules and
the Monte Carlo pooling approach, now in the z′ met-
ric (pooled Est = .287, pooled SE = .119, with either
approach). When computing confidence interval bounds
for such a parameter, as described in the next sec-
tion, the upper and lower bounds could be computed
in the z′ metric, and then both bounds could be con-
verted back to the original parameter’s (e.g., correlation)
metric.

In summary, in this subsection, the Monte Carlo
approach was introduced to illustrate the assump-
tions under which Rubin’s (1987) rules are applied
in the parcel-allocation context. The within-allocation
distributional assumptions under which Rubin’s rules
are applied in the parceling context are the same as
the within-imputation distributional assumptions under
which Rubin’s rules are currently widely applied in the
missing-data context. We anticipate that, in practice,
researchers would typically be interested in using the
simpler Rubin’s rules approach, rather than the Monte
Carlo approach, to compute estimates and standard
errors pooling sampling and parcel-allocation variabil-
ity. Thus, we have implemented Rubin’s analytic approach
in an R program for use with repeated random alloca-
tions from a given combination scheme, as described
later.
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Null hypothesis testing and confidence intervals for
pooled parameters

Now that we have discussed computing pooled param-
eter estimates and pooled standard errors across alloca-
tions, it is of interest to discuss inference for each parame-
ter. In SEM applications, null hypothesis significance tests
(NHSTs) for individual parameters are typically z tests
(e.g., Bollen, 1989). Accordingly, in the context of miss-
ing data, when NHSTs are conducted for individual SEM
parameters using multiple imputation, often z tests are
employed (e.g., Muthén & Muthén, 1998–2016). In the
context of parcel allocations, we could similarly employ
z tests4 for each model parameter, with the test statistic
calculated using quantities from Equations (2) and (6):
ˆ̄
θ/ŜEpool ∼ N(0, 1). For example, these tests could be of
interpretive interest for testing the null hypothesis that
a pooled factor correlation is 0 or that a pooled parcel-
loading is 0 in the population.

Confidence intervals (CIs) for each pooled parameter
can also be calculated as CI100(1−α) = ˆ̄

θ ± zα/2ŜEpool . A
95%CI, for example, encloses 95%of the pooled-sampling
and repeated-allocations distribution. If our null hypoth-
esized value, θnull , lies outside thisCI95, then we can reject
the null hypothesis. We can thus conclude that, across
repeated samples and repeated allocations within sample,
we are unlikely to observe such a large pooled estimate
if the null hypothesis is true. Thus, our inference regard-
ing pooled parameter estimates incorporates uncertainty
due to repeated sampling and repeated parcel-allocating.
To illustrate, we reanalyzed the empirical example from
Sterba and MacCallum (2010) using their original 100
allocations. For the slope mentioned earlier (effect of
the tangible support factor on the agreeableness factor),
pooled results now provide a single inferential decision:
ˆ̄
θ = −.45, ŜEpool = .24, p = .06, and CI95 {−.91, .02} .

Note that a wide CI corresponds with less precision
and corresponds with greater variance of the pooled dis-
tribution. However, simply knowing that the CI is wide
does not inform us whether more of the variability in the
estimate is due to sampling variability or due to parcel-
allocation variability. In a later section,we consider how to
assess the relative contributions of parcel-allocation vari-
ability versus sampling variability to SEpool .

 Rubin () also considers t tests ˆ̄
θ/ŜEpool ∼ t(d f ) where d f = (M −

1)(1 + (MV̂W )/(MV̂B + V̂B))2 . We do not discuss these here since t tests
are less standard when fitting SEMs and since this df increases withM; at the
large M needed in the context of parcel allocating (discussed later; see, e.g.,
Table ) the corresponding p value closely matches that of a z test. Nonethe-
less, NHST and CI using both t and z reference distributions are provided for
each model parameter in our R function.

Choosing the number of item-to-parcel
allocations within sample

The previous section described methods for pooling
parameter estimates and standard errors across M allo-
cations within sample to yield a single inferential decision
per parameter. Asmentioned previously, we are interested
in randomly drawing a set of M allocations rather than
taking a census of all the, for example, millions or tril-
lions of possible allocations under a particular combina-
tion scheme. In this section,we address how to choose this
number of allocations,M.

To motivate the task of choosing M, we consider the
behavior of the pooled parameter estimates and pooled
SE asM increases, within sample. Figure 1 plots variabil-
ity in pooled parameter estimates (Panel A) and pooled
standard errors (Panel B) across 50 repeated sets of ran-
domly drawn allocations, each of size M = 5, 10, 25, 50,
100, 150, 200, 300, or 400 for a single sample. ThisN= 100
sample was generated from the two-factor CFA described
in Footnote 2, and each line in Figure 1 corresponds to
a different parcel-level parameter. Figure 1 shows that, as
the size of M increases, there is a reduction of variability
in results, should a different set of allocations be randomly
chosen. Note that the rate of descent in the Figure 1 plots
will be particular to this model and these data conditions.
We are thus motivated to pick anM that leads to less vari-
ability in results, and we may need to do so in a manner
that is tailored to specific model and data conditions.

Relatedly, existing literature has addressed choosing
the number of imputations in the missing data context
and choosing the number of plausible values in other
data analysis contexts. Recent studies have indicated that
the optimal number of imputations or plausible values
depends to some extent on the statistic or quantity of
interest (point estimate, standard error, etc.), the objec-
tive (e.g., stability of results despite further increases
in the number of plausible values), and the model/data
conditions (e.g., sample size, percent of missing data)
(Asparouhov & Muthén, 2010a; Bodner, 2008; Graham,
Olchowski, & Gilreath, 2007; Reiter, 2007; White, Roys-
ton, & Wood, 2011). For some objectives, three to five
imputationsmay be sufficient (see Rubin, 1987). For other
objectives, many imputations may be required. For exam-
ple, recent simulations have shown that � 100 imputa-
tions may be necessary if the objective is for pooled stan-
dard errors to remain stable despite further increases in
the number of imputations (e.g., Graham et al., 2007; also
see Bodner, 2008; White et al., 2011). A large number of
imputations is necessary for the latter objective because
the between-imputation variance (Equation [5]), which
appears in the pooled standard error computation, stabi-
lizes as the number of imputations increases. Authors of
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Figure . Variability of pooled parameter estimates (Panel A) and
pooled standard errors (Panel B) across  sets of M allocations
within a single sample, where the size of M (on the x-axis) ranges
from M =  to M = . See text for a description of the gener-
ating and fitted models. For a given choice of M (x-axis value), a
set of M random item-to-parcel allocations is drawn and used to
createM parcel-level data sets. These data sets are separately ana-
lyzed and results are pooled. This process is repeated for  dif-
ferent sets of M random allocations, at each size of M. The y-axis
value depicts the standard deviation of results across these  sets
of M random allocations. Each line corresponds to pooled results
for a particular parameter. There are asmany lines per plot as there
are freely estimated parameters. Specifically, in Panel A, each line
depicts how the variability in the pooled estimate of a particular
parameter, across repeated sets of M allocations, decreases as the
size of M increases. In Panel B, each line depicts how the variabil-
ity in the pooled standard error of a particular parameter, across
repeated sets ofM allocations, decreases as the size ofM increases.
SD= standard deviation. SE= standard error.

these simulations also cautioned that the results regard-
ing sufficient numbers of imputations could be specific
to their chosen model/data conditions (e.g., a very sim-
ple one-parameter model was used in Bodner (2008) that
would not mirror models used in most applications).

Similarly, in the parcel-allocation context, different
objectives could be defined, leading to different optimal
numbers of allocations. Here, we define the following
objective in choosing the number of allocations M. In

the discussion, we describe other potential objectives that
could be of future research interest.

Objective: To select a sufficiently large M such that, if a
specified greater number of allocations were randomly
drawn (M∗=M+Minc), pooled parameter estimates and
standard errors would not change appreciably.

This stated objective clarifies that our interest is in
finding M that yields pooled parameter estimates and
pooled standard errors whose values show robustness to a
specified increase in the number of allocations. Note that,
in this stated objective, the phrase “would not change
appreciably” refers to our convergence criteria (defined
subsequently). We can anticipate that data/model condi-
tions that would lead to more parcel-allocation variability
would also lead to larger M needed to fulfill this objec-
tive. As discussed later, these conditions that lead to more
parcel-allocation variability should include smaller sam-
ple size, fewer items per parcel and parcels per factor,
and more factors (holding constant the number of items
per parcel and parcels per factor; Sterba, 2011; Sterba &
MacCallum, 2010). The relationship between these con-
ditions and necessaryMwill be investigated subsequently.
Presently, we focus on pragmatics of how to chooseM to
fulfill our stated objective.

In themissing data context, the number of imputations
is sometimes chosen using rules of thumb, based on inter-
polation/extrapolation from existing simulation results,
but is other times chosen using algorithms tailored to a
particular set of data andmodel conditions (Bodner, 2008;
Graham et al., 2007; Reiter, 2007; Royston, 2004; White
et al., 2011). Here we consider both strategies, starting
with the latter. To choose M that fulfills the above objec-
tive, we developed and implemented an iterative algo-
rithm that can be adapted and used with a researcher’s
item-level data set and SEM. In the Discussion, we con-
sider when this algorithm would be most useful versus
when a rule-of-thumb for the number of allocations could
be sufficient.

Iterative algorithm for choosing the number of
allocations (M)

To employ the algorithm requires first specifying a combi-
nation scheme (Equation [1]) for generating random allo-
cations; specifying a starting/baseline number of alloca-
tions, Mstart; and specifying a number of allocations by
which to increment,Minc. In this article, we conservatively
use Mstart = 5 and Minc = 5 because preliminary investi-
gations indicated that large values (e.g., 50) could lead to
more variability in the final choice of M within sample.
The algorithm implements the following steps:
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1. At iteration h = 1, the SEM is fit to Mstart ran-
domly drawn allocations, and pooled parameter
estimates and pooled standard errors are com-
puted using Equations (2)–(6).

2. At iteration h > 1, the SEM is fit to Mstart + ((h -
1)×Minc) brand new randomly drawn allocations.
Pooled parameter estimates and pooled standard
errors are computed using Equations (2)–(6). This
step is repeated until convergence criteria are met.

We define the algorithm’s convergence criteria as fol-
lows. Convergence is met when each pooled parameter
estimate and each pooled standard error changes by less
than δa% of its value at the previous iteration (or changes
less than δb, if δa% is smaller than δb). When implement-
ing the algorithm in practice, researchers have the option
to specify their own choice of δa and δb, based on their
own substantive considerations. However, we use δa= 1%
and δb= .01 in this article because smaller values are
unlikely to be substantivelymeaningful inmost contexts.5

These convergence criteria are examples of the maximum
absolute deviation type of convergence criteria (Thisted,
1988). If the convergence criteria are met at the itera-
tion of the algorithm using M + Minc allocations, this
implies that the algorithm converges to the choice of M
allocations.

Researchers have the option of interpreting pooled
parameter estimates and pooled standard errors using
those M allocations, as will be done here. Researchers
also have the option of outputting results using all avail-
able allocations employed by the algorithm in deter-
mining M (i.e.,

∑H
h=1 (Mstart + (h − 1) × Minc) allo-

cations), where H is the total number of iterations
until convergence. Under this option, allocations from
the previous iteration are not discarded at the begin-
ning of Step 2. We do not demonstrate this option
here, however, because our focus is on illustrating
the behavior and performance of the algorithm at the
chosenM.

Our convergence criteria concern pooled estimates
and pooled standard errors (rather than other statistics)
because our objective in choosingM specifically concerns
achieving a desired degree of stability in these quantities.
To fulfill this objective, our convergence criteria need to
include pooled standard errors, despite the fact that the
final term in Equation (3) itself involves M. This final
term in Equation (3) should become inconsequential asM
increases; furthermore, it is relevant to consider when this
happens (similarly to Bodner, 2008; Graham et al., 2007;
White et al., 2011).

 Note also that it is possible to just use δa (i.e., set δb= ). However, we feel it is
useful to specify δb= . to accommodate very small pooled values for which
the δa= % criterion would be extremely small.

It is possible to specify that only a subset of freely esti-
mated parameters contributes toward determining con-
vergence. That is, the convergence criteria needn’t be
applied to the entire set of all pooled parameter estimates
and pooled standard errors if there is a substantive reason
to exclude some of them from determining convergence.
For example, if certain parameter estimates will not be
substantively interpreted in a given application (e.g., inter-
cepts), they could potentially be excluded from the con-
vergence criteria and thus not contribute toward deter-
mining the choice ofM.

Demonstration of the algorithm for choosingM
within sample

To illustrate the application of this algorithm within sam-
ple, here we use it to choose M in a simulated sample of
N = 100 generated from a K = 2 factor item-level CFA
model. In the population, there were 15 normally dis-
tributed, unidimensional item indicators of each factor.
Item factor loadings were all λ = .4, and item residual
variances were all θ = .84 so that items had unit vari-
ances. The fact that loadings are equal is not relevant to
the illustration and was done for simplicity. Factor vari-
ances and covariances were φ11 = 1, φ22 = 1, φ12 = .25.
To create each parcel-level data set, an item-to-parcel allo-
cationwas drawn froma combination schemewhere there
were pk= 5 parcels per factorwith q jk = 3 items per parcel.
This implies a communality of .36 for each parcel indica-
tor in the fitted parcel-level models. A two-factor parcel-
level CFA model was fit to each parcel-level data set. The
algorithm was specified to haveMstart = 5 andMinc = 5.

The top three panels of Figure 2 plot pooled estimates
(for different kinds of parameters) versus iteration (i.e.,
loop) of the algorithm, within sample. The bottom three
panels of Figure 2 plot the associated pooled standard
errors (for each kind of parameter) versus iteration of
the algorithm, within sample. Researchers mainly inter-
ested in interpreting structural parameters in the parcel-
solution would focus on the middle column of plots,
where the single jagged line corresponds to the pooled
estimate (top) and pooled standard error (bottom) results
for the factor correlation. The first column of plots con-
tains five jagged lines per plot; in this first column, each
line corresponds to results for a particular loading. For
clarity of presentation, results for the five loadings from
only one of the two factors are superimposed in a given
plot. Results for residual variances from the same fac-
tor are plotted in the third column; in this third column,
each line corresponds to results for a particular resid-
ual variance. Results from the other factor exhibited the
same pattern. The grey vertical line indicates the iteration
(x-axis value) at which the global convergence criteria
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Figure . Plots of pooled parameter estimates versus iteration of the algorithm for choosingM and plots of pooled standard errors versus
iteration of the algorithm for choosingM: Illustrative CFA application in a single sample. Iteration  (i.e., loop ) uses five allocations drawn
with replacement from the allocation scheme (i.e.,Mstart = ). At each subsequent iteration, the number of allocations increments by five
(i.e.,Minc = ), and all allocations are redrawnwith replacement. The grey vertical line is where the algorithm’s global convergence criteria
are met (here, atM=  allocations). Only  of  loadings (λ) and  of  residual variances (θ ) from the two-factor CFAmodel are shown
for parsimony. φ = factor covariance. Each jagged line corresponds with a single parameter’s results. M = the number of random item-
to-parcel allocations that meets the user-specified convergence criteria (see text) for the algorithm. CFA = confirmatory factor analysis
model. h= iteration (i.e., loop) of the algorithm (see text).

were met for all pooled estimates and pooled standard
errors simultaneously (iteration H = 46, where M = 235
allocations). Pooled parameter estimates and standard
errors could be interpreted at thisM. Figure 2 shows that,
for low numbers of iterations (i.e., when there are few
allocations total), pooled parameter estimates and pooled
standard errors each bounce around considerably when
allocations are redrawn with-replacement at the subse-
quent iteration. This uncertainty diminishes as the num-
ber of iterations increases (and thusM increases). Pooled
parameter estimates and standard errors can still exhibit
limited variation after the convergence criteria were met.

The algorithm’s convergence criteria require local sta-
bility of results (i.e., between consecutive iterations). In
Figure 2, results for 10 iterations post-convergence are
shown to the right of the grey vertical lines. Future
research could use diagnostics to assess the stationarity of
results after the convergence criteria aremet (for example,
an adaptation of Gelman & Rubin, 1992).

Data/model conditions leading to choice of largerM

In the previous section, a demonstration of the algo-
rithm for choosing M was conducted using one model

and one data set under one set of conditions. More gen-
erally, certain data/model conditions may tend to neces-
sitate smaller or larger M to fulfill the algorithm’s objec-
tive (defined earlier) of meeting local stability criteria for
pooled parameter estimates and pooled standard errors.
The central limit theorem implies that, as M increases,
the stability in the between-allocation variance (Equa-
tion [5]) increases. Relatedly, data/model conditions lead-
ing to larger parcel-allocation variability (larger between-
allocation variance) may tend to require largerM to reach
stability. Conditions that increase parcel-allocation vari-
ability (Sterba, 2011; Sterba&MacCallum, 2010) and thus
may increase requiredM include: smaller sample size (i.e.,
more sampling error) as well as the combination of fewer
items per parcel and fewer parcels per factor (i.e., less
information per indicator combinedwith lesswell overde-
termined factors). For a given number of items per par-
cel and parcels per factor, more factors should also lead
to larger required M because of the greater number of
estimated parameters that need to simultaneously reach
stability to fulfill the convergence criteria, particularly
if measurement parameters are included in the conver-
gence criteria. To demonstrate the relationship between
required M and these conditions, a simulation study was
conducted. One hundred samples were generated from
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Table . Comparisonof selectedM, on average across  samples,
for different model and data conditions.

Effect of sample size
Sample size  
#factors  
#items/parcel,

#parcels/factor
,  , 

M: Average (SD)  ()  ()

Effect of #factors†

Sample size  
#factors  
#items/parcel,

#parcels/factor
,  , 

M: Average (SD)  ()  ()

Effect of #items/parcel, #parcels/factor

Sample size   
#factors   
#items/parcel,

#parcels/factor∗
,  ,  , 

M: Average (SD)  ()  ()  ()

Note. M: Average = number of allocations chosen within sample by the itera-
tive algorithm, averaged across  samples. M: SD = standard deviation of
chosenM across  samples.

∗ Note that the , and , conditions imply  items/factor, and the , condi-
tion implies  items/factor.

† Note that the number of factorswas increased, holding constant the number
of items/parcel and number of parcels/factor.

CFAmodels under each of several conditions. Conditions
were as follows:

N= 100, factors= 2, items/parcel= 3, parcels/factor= 5
N= 250, factors= 2, items/parcel= 3, parcels/factor= 5
N= 100, factors= 4, items/parcel= 3, parcels/factor= 5
N= 100, factors= 2, items/parcel= 3, parcels/factor= 3
N= 100, factors= 2, items/parcel= 5, parcels/factor= 3

Generating λ and θ parameters in this simulation
matched the simulated example from the previous
section. Factor variances were all 1. Factor covari-
ances were φ12 = .25 in the two-factor condition,
and φ12 = .25; φ13 = .50; φ14 = .10; φ23 = .20; φ24 =
.40; φ34 = .15 in the four-factor condition.

In each condition, the number of allocations, M,
was selected within sample using the algorithm; all
parameters except for indicator intercepts were used in
determining convergence. The average chosen M across
the 100 repeated samples per condition was computed.
Table 2 compares the average chosen M, across condi-
tions. Table 2 indicates that, on average,M is twice as large
for N = 100 than for N = 250, all else equal. In addi-
tion, M is on average 50% larger for four factors than for
two factors. Furthermore, holding constant the number
of item indicators of a factor (15), fewer larger parcels led
to lower M than did more smaller parcels (average M =
78 vs. 145). The combination of fewer items per parcel and

fewer parcels per factor led to greater averageM (i.e., 187)
across samples.

In summary, certain data/model conditions can, on
average, systematically increase or decrease the necessary
number of allocationsM. For this reason, it can be useful
for researchers to use an algorithm to selectM under their
specific data/model conditions, which may differ from
those studied here. An R program implementing the pro-
posed algorithm is available on the authors’ websites and
incorporated into a release of the semTools R package (see
Footnote 7).

Indices to quantify uncertainty in estimates due
to sampling versus allocation variability

Suppose a researcher has chosen M using procedures in
the previous section. Also suppose the researcher has
computed and interpreted pooled parameter estimates
and pooled standard errors at that M (as described in
the first section). In addition, the researcher may want an
index of the proportion of total variability in each param-
eter estimate that is due to parcel-allocation variability.
Furthermore, the researcher may also want an index of
the amount of parcel-allocation variability relative to sam-
pling variability in each parameter estimate. These two
indices are discussed in the current section. For each
parameter estimate, these two indices can be computed
from the total variance in Equation (3), within-allocation
variance in Equation (4), and between-allocation variance
in Equation (5).

The first index we consider is the proportion of the
total variance of a parameter estimate that is attributable
to parcel-allocation variability (PPAV). The PPAV can be
calculated for eachmodel parameter estimate as follows:

PPAV = VB + (VB/M)

VT
. (7)

Note that this formula is also used in the multiple
imputation literature involvingmissing data (e.g., Enders,
2010; Savalei & Rhemtulla, 2012; Schafer & Graham,
2002; also see closely related expressions in Schafer, 1997;
Schafer & Olson, 1998) to assess the contribution of
between-imputation variability to uncertainty about the
parameter. The PPAV in Equation (7) can be interpreted
as an effect size, ranging from 0 to 1, that measures the
contribution of parcel-allocation variability to the total
variance of the estimate (akin to an R2; Enders, 2010).
If there is no parcel-allocation variability in a particu-
lar parameter estimate, Equation (7) will be 0. If Equa-
tion (7) is .30, then 30% of the total variability in that
estimate is contributed by between-allocation variability.
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Researchers can examine the extent to which PPAV dif-
fers from one parameter to another in order to judge the
implications of parcel-allocation variability for inference
about particular parameters of substantive interest. Note
that we compute PPAV only at the final chosenM.We do
not compute it iteratively at each loop in the algorithm
for choosing M, nor do we use it to inform the choice of
M because this practice has been critiqued in the impu-
tation literature (e.g., Harel, 2007; Schafer, 1997). In that
literature, this proportion has been shown to be noisy and
imprecise at low M (Bodner, 2008; Savalei & Rhemtulla,
2012).

The second index we consider is the ratio of the
between-allocation variance of a parameter estimate to
the within-allocation variance (RPAV). This formula is
also used in the missing data literature to compare
between-imputation and within-imputation variability
(Enders, 2010; Rubin, 1987; Schafer, 1997; Schafer &
Olsen, 1998).

RPAV = VB + (VB/M)

VW
. (8)

If the RPAV in Equation (8) is > 1, then there is relatively
more parcel-allocation variability than sampling variabil-
ity in that estimate; if the RPAV is < 1, then there is rela-
tively less parcel-allocation variability than sampling vari-
ability. This index can also be calculated for each model
parameter, as demonstrated below.

Demonstration of the PPAV and RPAV indices

For illustrative purposes, the PPAV and RPAV indices
were calculated for each parameter from the four-factor
CFA model used in Table 1 and then averaged across
the 100 simulated samples. Across parameters, the PPAV
ranged from .04 to .51, and RPAV ranged from .04 to 1.03.
On average, across all parameters, the PPAV= .41 (i.e., on
average, 41% of the total variability in an estimate is due
to parcel-allocation variability), and the RPAV = .80 (i.e.,
parcel-allocation variability in an estimate is .80 as large
as sampling variability, on average).

The PPAV for a given parameter is related to the sta-
bility of that parameter’s pooled estimate and standard
error across iterations of the algorithm for choosingM. In
particular, a parameter with higher PPAV should require
more allocations (higherM) to reach effective stability of
its pooled estimate and standard error. Thus, that param-
eter’s pooled estimate and standard error should be sta-
ble across a smaller percentage of iterations of the algo-
rithm. This implies that a parameter with higher PPAV
should individually meet the convergence criteria of the

Figure . Path diagram for parcel-level empirical example model.
Squaresdenotemanifest indicators. Circlesdenote latent variables.
Straight arrows denote regression paths. Curved arrows denote
(co)variances.

algorithm for choosing M at a smaller percentage of
iterations.6

Empirical example

We use an empirical example to illustrate the develop-
ments presented in the previous sections. Our theoreti-
cal model for this illustration is a latent variable regres-
sion model. In our model, alienation in the freshman
year of college and self-esteem in the sophomore year
are hypothesized to predict expectation for affection (i.e.,
expectation to be liked) in the junior year. This SEM is
diagrammed in Figure 3. The path from alienation to
expectation for affection is hypothesized to be negative
because more prior experiences of isolation can lower
expectations for peer acceptance (e.g., Lee&Robins, 1998;
Williams, 2001). The path from self-esteem to expect-
ing affection is hypothesized to be positive because youth
with lower self-worth may selectively remember rejec-
tion experiences and thus have lower expectations for

 For example, using our four-factor simulated example from Table , we found
a correlation of r= -. between PPAV for a parameter and the proportion
of iterations (i.e., loops) of the algorithmwhere the convergence criteria were
met for that parameter in particular. This correlation was calculated across
parameters within sample and then averaged across our  samples.
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peer acceptance (McFarlin & Blascovich, 1981). Our sub-
stantive interest lies in testing the significance of both
structural paths. Self-esteem and alienation are allowed to
covary.

Methods

Our empirical example employs the Jessor and Jes-
sor (1977) Socialization of Problem Behavior in Youth:
1969–1981 study data set. In this study, a sample of
N = 205 college students at a large state university com-
pleted surveys in the spring of each academic year. Expec-
tation for affection is measured by ten 10-point Likert
items; an illustrative item is “How important is it to be
well liked by most of the people around here?” Alien-
ation is measured by fifteen 4-point Likert items; an illus-
trative item is “I often find it difficult to feel involved
in the things I’m doing.” Self-esteem is measured by ten
4-point Likert items; an illustrative item is “How well
do you make decisions about important things in your
life?”

Because we are primarily interested in interpreting
structural parameters in this example, we selected the
number of repeated item-to-parcel allocations (M) to
reach stability criteria for the structural parameters’
pooled estimates and standard errors specifically. The
combination scheme used for item-to-parcel allocations
was as follows. Expectation for affection items were allo-
cated into three parcels of size 3, 3, and 4 items. Alienation
items were allocated into three parcels of size 5, 5, and 5
items. Self-esteem items were allocated into three parcels
of size 3, 3, and 4 items.

Results

Convergence criteria of the algorithm for choosing M
were reached at M = 90 allocations. The estimates
and pooled standard errors for the paths of interest
(using Rubin’s [1987] rules) and the associated p val-
ues and pooled CIs were as follows. As hypothesized,
an increase in freshman-year feelings of alienation sig-
nificantly reduced junior-year expectation for affection,
β = −.213 (.093), p = .022, CI = {−.396, −.031},
and an increase in sophomore-year self-esteem signif-
icantly increased junior-year expectation for affection,
β = .548 (.125), p < .001, CI = {.302, .793}. The corre-
lation between alienation and self-esteem was negative,
ρ = −.559 (.096), p < .001. The PPAVs were .09, .28, and
.27 for the three structural parameters, respectively, indi-
cating that parcel-allocation variability contributes 9% of
the variance in the effect of alienation on expecting affec-
tion, 28% of the variance in the effect of self-esteem on

expecting affection, and 27% of the variance in the corre-
lation of alienation and self-esteem. The RPAVs were .09,
.38, and .38, indicating that there was over one third as
much parcel allocation variability as sampling variability
in some slopes. Future research could investigate whether
this pattern of results can be replicated when sociomet-
ric information, instead of self-report information, is
used to define alienation (e.g., Sandstrom & Cillessen,
2006).

Discussion

Parcel-allocation variability is known to arise under a
variety of data and model conditions, despite having
unidimensional item indicators of each factor in the pop-
ulation (Sterba & MacCallum, 2010). Parceling remains
widely used under these conditions (e.g., modestly sized
samples or communalities). Researchers may be inter-
ested in considering item-level analysis alternatives to
parceling, together with categorical variable estimation
methods for binary/ordinal items (Bandalos, 2008), when
available and estimable. When implementing parcel-level
analyses in practice, however, researchers may be inter-
ested in how to quantify and account for parcel-allocation
variability. Previously, psychologists lacked information
on how to: (1) combine sources of sampling variabil-
ity and parcel-allocation variability when drawing infer-
ences about parameters in SEMs, (2) choose the number
of repeated allocations, and (3) quantify and report pro-
portions of total variability per estimate due to parcel-
allocating versus sampling. This article addressed these
three gaps.

Regarding (1), we proposed the application of Rubin’s
(1987) rules to obtain pooled parameter estimates and
pooled standard errors that account for uncertainty due to
sampling and parcel-allocation variability within-sample.
We showed that these pooled estimates and standard
errors could be used for inference via NHST and CIs.
Furthermore, we showed that Rubin’s analytic pool-
ing approach matches results of a Monte Carlo pool-
ing approach implemented under the same assumptions.
Regarding (2), we introduced an algorithm to select the
number of allocations needed to meet a particular objec-
tive (here, that pooled estimates and standard errors
retain a desired degree of stability when a specified greater
number of allocations are drawn, with-replacement). We
discussed alternatives for defining the convergence of this
algorithm. Furthermore, we hypothesized that particu-
lar data and model conditions could increase the aver-
age number of allocations required by this algorithm, and
we tested these hypotheses via simulation. We found that,
indeed, under lowerN, fewer items per parcel and parcels
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per factor, and more factors (holding constant the num-
bers of items per parcel and parcels per factor), more allo-
cations (M) were required, on average, to produce results
meeting our stability criteria. Regarding (3), we provided
two indices (PPAV and RPAV) to evaluate and compare
the amount of parcel-allocation versus sampling variabil-
ity per parameter, and we illustrated their interpretation
in the context of an empirical example. In the remainder
of this discussion, we address software implementation,
generalizability, limitations, and future directions for our
methods.

Software implementation

The algorithm for choosing M is implemented in an
R function PoolMAlloc that is available on the authors’
websites as well as incorporated into a release of the
semTools R package.7 A user provides an input item-
level data set, a combination scheme for allocating items
to parcels (Cqjk pk , see Equation [1]), values of Mstart,
Minc, δa, and δb, and a specification for a parcel-level
SEM, in lavaan (Rosseel, 2012) format. At a given iter-
ation of the algorithm, the Mstart + ((h - 1)×Minc) allo-
cations are randomly generated8 according to scheme
Cqjk pk . Output includes the following quantities described
in previous sections: the selected number of allocations
M, the pooled estimates and pooled standard errors,
associated p values and CI, and the PPAV and RPAV
indices.8 The reported M is the number of allocations
for which model fitting was attempted in order for
local stability criteria to be fulfilled using the alloca-
tion solutions that were converged and proper. Pooled
estimates and standard errors are calculated across only
those allocations that yielded converged and proper
solutions.

Limitations and future directions

Several limitations can be noted that serve as directions
for future research. First, the scope of this article was
limited to pooling parameter estimates across allocations
and obtaining inferences for pooled parameter estimates.
Future research could consider pooling model fit statis-
tics across allocations. Some literature has addressed this
in the context of multiple imputation (Lee & Cai, 2012;
Li, Meng, Raghunathan, & Rubin, 1991; Meng & Rubin,
1992), but these methods would need to be modified

 See http://www.vanderbilt.edu/psychological_sciences/bio/jason-rights
and http://www.vanderbilt.edu/peabody/sterba/ and https://cran.r-
project.org/web/packages/semTools/index.html

 For details on repeatedly randomly generating allocations with replacement
from Cqjk pk , see Sterba and MacCallum’s () ParcelAlloc or Quick and
Schoemann’s () parcelAllocation program.

for the context of parcel allocations. Second, this arti-
cle defined one objective for our algorithm for choos-
ingM and developed convergence criteria that implement
this objective. Future research could also consider other
kinds of convergence criteria based on different objectives
(see Robert & Casella, 2004) such as seeking stability in
p values of parameter estimates (see Bodner, 2008; Gra-
ham et al., 2007). Third, the M obtained from this algo-
rithm will vary across implementations of the algorithm
within sample. For example, across 50 different imple-
mentations of the algorithm to the sample in Figure 1, the
average chosen M was 137 with a standard deviation of
30. Researchers can rerun the algorithm multiple times
within sample to get a sense of the different estimated M
that can achieve similar stability in pooled results across
repeated executions of the algorithm using different sets
of allocations.

Tailored algorithm for choosingM versus
rule-of-thumb for choosingM

In considering the results of Table 2, readers may wonder
whether a fixed rule-of-thumbM that is larger than all the
Ms in Table 2 (e.g., M = 300 or 500) could be employed
in lieu of an iterative algorithm for determining M. This
can be a reasonable strategy in contexts similar to those of
Table 2, for example. Furthermore, computational time is
shorter for a fixed rule-of-thumb approach as compared
to a tailored iterative algorithm approach. For example,
in the Figure 1 sample, the algorithm used on average
2.81 minutes of computational time whereas adopting a
fixed number of M = 400 allocations used on average
0.53 minutes. Our R software also allows users to obtain
pooled results for any fixed, prespecifiedM, and will addi-
tionally indicate elapsed computing time in the output so
users can compare computing time across fixed versus
automated-search approaches for determining M. Fac-
tors that can affect computing time for either approach,
but are more consequential for the automated-search
approach, include a greater presence of nonconverged
solutions.

More broadly, however, there are two othermain issues
to consider when weighing these approaches. First, what
may seem to be a sufficient rule-of-thumb M based on
the models/data in Table 2 may be too small in other
model/data contexts. For example, Sterba and Rights (in
press) demonstrated that in the context of misspecifi-
cation of the structural model, there is the potential
for greater parcel-allocation variability, which can imply
greater necessaryM. Themodels in Table 2 have saturated
structural models. If we instead misspecified the struc-
tural portion of the four-factorCFA inTable 2 such that all
four factors are treated as lower-order factors loading on a

http://www.vanderbilt.edu/psychological_sciences/bio/jason-rights
http://www.vanderbilt.edu/peabody/sterba/
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single higher-order factor (structural df = 2), the average
number of allocations required is M = 378 rather than
M = 217. Second, an advantage of employing the algo-
rithm is that it gives the researcher empirical information
about the local stability of results at the final M, whereas
no such information is furnished under a fixed-rule-of-
thumb approach. From a broader perspective, note that
the pros and cons of a search-algorithm approach ver-
sus those of a rule-of-thumb approach are not unique to
the topic of picking the number of allocations. Similarly,
there are pros and cons of using such approaches in pick-
ing the number of imputations in themissing data context
(Bodner, 2008; Royston, 2004). Researchers should weigh
these options based on their research objectives, comput-
ing time constraints, and model/data conditions.

Generalizability

Throughout, we have suggested that our pooling
approach be used when researchers are interested in
using random allocations and are comfortable assuming
unidimensional items on a given factor (an assump-
tion made in most applications of parceling; Bandalos
2002, 2008; Bandalos & Finney, 2001; Hagtvet & Nasser,
2004; Hall et al., 1999; Hau & Marsh, 2004; Landis et al.,
2000; Little et al., 2002; Marsh & O’Neill, 1984; Marsh
et al., 2013; Matsunaga, 2008; Meade & Kroustalis, 2006;
Nasser-Abu &Wisenbaker, 2006; Plummer, 2000; Rogers
& Schmitt, 2004; Sass & Smith, 2006;Williams &O’Boyle,
2008; Yang et al., 2010). Prior to considering parceling,
researchers may want to test unidimensionality of items
on each factor—in the context of a fitted model with all
factors included (Lengua, West, & Sandler, 1998)—as
recommended by, for example, Marsh et al (2013) and
Matsunaga (2008). There are many available sources on
procedures for testing unidimensionality (e.g., Bollen,
1989; Embretson & Reise, 2000; Marsh et al., 2015;
McDonald & Ho, 2002; Stucky et al., 2012). If there are
known sources of multidimensionality and a researcher
desires to use a purposive parceling strategy specifically
designed for multidimensional items, the researcher may
not want to adopt our particular pooling approach for
the purposes of making inferences. In the latter setting,
researchers should explicitly acknowledge in their results
section that their conclusions are conditional; that is,
conclusions hold for a single substantively chosen allo-
cation, and changing the allocation could likely lead to
different results (including for structural parameters).
Furthermore, if there are multiple alternative ways to
implement a researcher’s chosen purposive strategy, the
researcher should acknowledge that their reported results
have not quantified uncertainty in the selection of one
out of many possible allocations that could be generated
by that purposive parceling strategy.

Conclusions

When investigating parcel-allocation variability in
parameter estimates, previous practice had involved
using an arbitrarily selected number of repeated random
allocations and reporting distributions of results for each
parameter. This approach did not yield a single inferen-
tial decision per parameter, making it difficult to draw
substantive conclusions. To address these limitations,
here we developed an algorithm for choosing the number
of allocations, M, that was shown in simulations to be
sensitive to model and data conditions leading to less or
more parcel-allocation variability. Further, we combined
sources of sampling and parcel-allocation variability to
create pooled estimates and standard errors that allow a
single inferential decision per parameter. The develop-
ments in this article can aid researchers in accounting
for parcel-allocation variability of parcel-level results in
practice. We encourage researchers to continue to con-
sider the existence and implications of parcel-allocation
variability when fitting parcel-level models.
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Appendix: Parcel-level measurement parameters
that are the subject of inference using Rubin’s
rules

Suppose we are interested in parcel-level measurement
parameters for the jth parcel indicator of a particular

factor. Let i denote item, s denote sample, a denote allo-
cation, j denote the parcel of interest, and r denote the
number of item indicators of that factor. Here we assume
unidimensional items on a given factor; researchers typ-
ically use parceling in situations where they are comfort-
able assuming unidimensionality. Let λis be an item load-
ing for item i in sample s, εis be the residual for item i in
sample s, and θis be an item residual variance for item i
in sample s; Iija is an indicator function (0,1) determining
whether item i is allocated to parcel j, in allocation a. We
can also think of Iija as a Bernoulli variable with param-
eter q j/r, where qj is the number of items per parcel j.
Es() denotes expected value across samples; Ea() denotes
expected value across allocations within sample.

The factor loading for parcel j that is the subject of
inference using Rubin’s (1987) rules is as follows:
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The residual variance for parcel j that is the subject of
inference using Rubin’s rules is as follows:
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Note also that Ea() = Eallocset (Ea|allocset ()) where alloc-
set refers to a set ofM allocations. That is, one would get
the same expectation across allocations as across alloca-
tion sets.
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