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Popular longitudinal models allow for prediction of growth trajectories in alternative ways.
In latent class growth models (LCGMs), person-level covariates predict membership in dis-
crete latent classes that each holistically define an entire trajectory of change (e.g., a high-stable
class vs. late-onset class vs. moderate-desisting class). In random coefficient growth models
(RCGMs, also known as latent curve models), however, person-level covariates separately pre-
dict continuously distributed latent growth factors (e.g., an intercept vs. slope factor). This
article first explains how complex and nonlinear interactions between predictors and time
are recovered in different ways via LCGM versus RCGM specifications. Then a simulation
comparison illustrates that, aside from some modest efficiency differences, such predictor
relationships can be recovered approximately equally well by either model—regardless of
which model generated the data. Our results also provide an empirical rationale for integrating
findings about prediction of individual change across LCGMs and RCGMs in practice.

Keywords: group-based trajectory model, interaction, latent curve model, latent class growth
model, person-oriented methods, prediction, random coefficient growth model

Two popular methods for modeling change in the social
sciences are latent curve models—also called random coeffi-
cient growth models (RCGMs; e.g., Bollen & Curran, 2006;
Goldstein, 2003; Raudenbush & Bryk, 2002) and latent class
growth models (LCGMs; also called semiparametric groups-
based trajectory models; e.g., Muthén, 2001; Nagin, 1999).
These models are most commonly distinguished based on
how they describe interindividual differences in intraindivid-
ual change. LCGMs allow variation in developmental change
across discrete, homogenous person-groups (latent classes),
whereas RCGMs allow variation in developmental change
across continuously distributed growth factors.

These models can also be distinguished based on how
they use observed characteristics of the individual to predict
his or her growth trajectory. In RCGMs, person-level covari-
ates can predict one or more continuously distributed growth
factors. Prediction of the intercept factor entails a main
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effect; prediction of slope factors entails implicit interac-
tions with time (Curran, Bauer, & Willoughby, 2004). On the
other hand, in LCGMs, person-level covariates predict a dis-
cretely distributed latent classification variable. Effects of
these covariates differ across categories of the latent clas-
sification variable to implicitly accommodate a variety of
predictive relations of unspecified functional form.

This article compares how well LCGM and RCGM meth-
ods can recover complex, potentially nonlinear interactions
between person-level characteristics and time. Recovery of
such interactions is often a central aim of developmental
research—particularly in person-oriented (e.g., Bergman &
Trost, 2006; Cairns, Bergman, & Kagan, 1998; Sterba &
Bauer, 2010a, 2010b) and interactional (Magnusson, 1985,
1990) research paradigms. One line of thinking is that
LCGMs should have an inherent advantage for recovering
such effects. More generally, classification-based methods
(that extract discrete classes or groups of people, such as
LCGMs) have historically been thought inherently advan-
tageous for recovering nonlinear or highly interactive pre-
dictive relationships, compared to their non-classification-
based counterparts (such as RCGMs; Bergman, 2001;
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PREDICTIONS OF INDIVIDUAL CHANGE 343

Bergman & Magnusson, 1997; Bergman & Trost, 2006;
Connell, Dishion, & Deater-Deckard, 2006; Laursen &
Hoff, 2006; Moffitt, 2006, 2008; Muthén, 2001, 2004;
Nagin & Tremblay, 2005b; Pastor, Barron, Miller, & Davis,
2007; Segawa et al., 2005). Anticipated advantages of
classification-based methods such as LCGMs have been
attributed to the perspective that models like RCGMs can
only accommodate linear predictive relationships (e.g., Hill,
White, Chung, Hawkins, & Catalano, 2000; Kriesman, 2003;
Shaw & Liang, 2012; Torppa, Poikkeus, Laakso, Eklund,
& Lyytinen, 2006) or attributed to the greater flexibility of
classification methods such as LCGMs in accounting for
complex predictor relationships (Muthén, 2004; Pastor et al.,
2007). For instance, regarding flexibility differences, variants
of RCGMs are considered to have more difficulty recovering
a “nonmonotonic intervention effect that exists for children
of medium-range aggression and is absent for the most or
least aggressive children” and more generally when “the
effect of a covariate is not strong or even present except in
a limited range of the growth factor or outcome” (Muthén,
2004, p. 353).

Alternatively, observed differences in predictive relation-
ship recovery across the two models might have more to do
with conventions for how the models are applied in prac-
tice, than with inherent capabilities of the models. Restrictive
specifications of RCGMs are common that, for instance,
do not include nonlinear or higher order interactions (e.g.,
Chen & Cohen, 2006; Farrell & Sullivan, 2004; Hirsh-Pasek
& Burchinal, 2006; Hox, 2007; Kerr & Michalski, 2007;
Peugh, 2010; Siller & Sigman, 2008; Singer, 1998; van Oort,
Greaves-Lord, Verhulst, Ormel, & Huizink, 2009). These
specifications thus preclude the possibility of accommodat-
ing complex, nonlinear interactions. On the other hand, very
unrestricted and flexible specifications of LCGMs are com-
mon, with all predictors having effects varying across all
classes (e.g., Dush, Taylor, & Kroeger, 2008; Gross, Shaw,
Burwell, & Nagin, 2009; Lacourse et al., 2006; Muthén &
Muthén, 2000; Nagin, 2005; Paciello, Fida, Tramonatano,
Lupinetti, & Caprara, 2008; Pickles & Croudace, 2010;
Wiesner & Kim, 2006; Zhang, Mitchell, Bambauer, Jones,
& Prigerson, 2008). This specification implicitly accom-
modates a wide variety of complex nonlinear interactions.
Nonetheless, methodology exists for incorporating nonlin-
ear and/or interactive predictor effects in RCGMs (Aiken
& West, 1991; Curran et al., 2004, 2006). Although these
strategies are still routinely viewed as limited (e.g., Bergman,
2001; Bergman & El Khouri, 2003; Laursen & Hoff, 2006;
Magnusson, 1998; Pastor et al., 2007), their capability for
recovering complex, potentially nonlinear interactions in
RCGMs has not been subject to careful empirical compar-
ison with LCGMs.

Two concerns motivate our comparison of the ability of
LCGMs and RCGMs to recover the effects of predictors
on individual trajectories. First, researchers might want to
know how well they can predict how a person’s behavior

changes over time when the unobserved discrete or contin-
uous nature of individual differences in growth is potentially
misspecified (e.g., Butler & Louis, 1992; Cudeck & Henly,
2003; Raudenbush, 2005). This misspecification possibility
is salient because existing selection criteria and diagnostics
for empirically discriminating between continuous and dis-
crete individual differences have been shown to effectively
do so under relatively narrow conditions without robust-
ness to various real-world data characteristics (Bauer, 2007;
Bauer & Curran, 2003a, 2003b, 2004; Lubke & Neale, 2006,
2008). Furthermore, substantive theory might be nonspe-
cific or incorrect about whether individual differences are
discrete (trajectory classes) or continuous (growth factors).
Second, previous comparisons involving models similar to
LCGMs and RCGMs have been rare and have suffered from
two limitations. Comparisons have been impeded by a lack
of common criteria for model evaluation and have involved
conditions that unduly favor one method. To resolve uncer-
tainties about the relative ability of LCGMs and RCGMs for
predictive relationship recovery in a manner that overcomes
these limitations, this article addresses three questions:

1. What metric can be used for comparing predictive
relationships, and their recovery, across LCGMs and
RCGMs?

2. Can the same predictive relationships be recovered
regardless of the match between fitted model (LCGM
or RCGM) and generating model (LCGM or RCGM)?

3. Are there particular data conditions under which only
one model (LCGM or RCGM) can accurately recover
predictive relationships?

The first question is addressed following a brief review of
the LCGM and RCGM. The second question is addressed in
Study 1, and the third in Study 2.

MODEL SPECIFICATIONS

Random Coefficient Growth Model

A conditional RCGM is given as

yi = Xiβ i + εi (1)

β i = Wiγ + ui (2)

Considering first Equation 1, yi is a T × 1 vector of per-
son i’s repeated measures for time points t = 1 . . . T; Xi

is a T × p matrix of Level 1 predictors (here, including
a vector of 1s, vector of time scores, time1i . . . timeTi, and
potentially, vectors of powered time scores);1 and β i is a p ×
1 vector of growth factors interpretable as intercept, linear,

1Adding time-varying predictors is also possible but is not the focus of
this article.
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344 STERBA AND BAUER

and higher order slope growth coefficients for each person.
εi denotes a T × 1 vector of time-specific residuals where
εi ∼ N(0, �) and usually � = σ 2I. The growth coefficients
in β i can each then be regressed on person-level predictors,
as shown in Equation 2. Wi is a p × p(1 + m) block diag-
onal matrix containing Level 2 (person-level) predictors in
each block. γ denotes a p(1 + m) × 1 vector of fixed effects
(i.e., conditional means of growth coefficients and effects
of person-level predictors on growth). ui is a p × 1 vector
of random effects2 (e.g., individual differences in growth)
where ui ∼ N(0, T) and T is an unstructured p × p covari-
ance matrix of random effects. Substituting Equation 2 into
Equation 1 yields the reduced form:

yi = XiWiγ + Xiui + εi (3)

The multiplication of Wi with Xi introduces potential
interaction effects between person-level predictors and func-
tions of time. For example, consider a special case of the
reduced form model, expressed for person i at time t, where
we have one person-level predictor wi and linear growth:

yti = (γ00 + γ01wi + u0i) + (γ10 + γ11wi + u1i)timeti + εti

(4)

This expression clarifies that wi affecting the intercept coef-
ficient constitutes a main effect, whereas wi affecting a slope
coefficient constitutes a cross-level product interaction (here
γ11witimeti).

Latent Class Growth Model

A conditional LCGM for person i in class k is given as

yi|ci=k = Xiγ
(k) + εi (5)

π
(k)
i (wi) = exp(δ(k)

0 + δ′(k)wi)
K∑

k=1
exp(δ(k)

0 + δ′(k)wi)

(6)

In Equation 5, ci is a categorical latent variable that can take
on values k = 1 . . . K. εi is again a T × 1 vector of time-
specific residuals where εi ∼ N(0, �) and � = σ 2I. γ (k) is
a p × 1 vector of class-specific growth coefficient values.
If, for instance, intercept, linear, and quadratic aspects of
change are desired for Class 1 but only intercept and linear
aspects for Class 2, the third element of γ (k) could be fixed
to 0 in Class 2. In Equation 6, the proportion of individuals
in class k, π

(k)
i (wi), is modeled as a function of covariates

using a multinomial logistic regression. Here, δ
(k)
0 is a scalar

multinomial intercept; wi is an m × 1 vector of person-level

2In this notation, all Level 1 time scores have random effects; setting
elements of ui to 0 would allow some time scores to only have fixed effects.

predictors of class membership; and δ′(k) is a 1 × m vector
of multinomial slopes capturing effects of these person-level
predictors on class membership.

A reduced form LCGM is given as:

yi =
K∑

k=1

cik(Xiγ
(k) + εi) (7)

cik is a class indicator label3 that can take on values of 0 or 1
(cik = 1 if a member of class k; else cik = 0). The expected
value of the class indicator label is the proportion of persons
in class k, E(cik|wi) = Pr(cik = 1|wi) = π

(k)
i (wi).

Comparison of Model Specifications

Person-level covariates separately predict continuous
variability in each aspect of change in the RCGM
(Equation 2). Residual associations between aspects of
change are captured within T. Consequently, this model
readily provides specific details on which main or inter-
action effects of predictors are statistically significant and
more versus less important. However, the onus is on the
researcher to reintegrate this information to obtain a holistic
understanding of predictive relations (Magnusson, 1998).
On the other hand, person-level covariates predict the
entire trajectory as a whole in the LCGM (Equation 6).
Consequently, this model readily provides a coherent overall
depiction of predictive relationships—but at the expense of
indicating whether these relationships entail main effects or
interaction effects with time.

Comparison of Equation 3 with Equations 5 and 6
indicates that to accommodate more complex (higher order,
nonlinear) person-level predictor relations, RCGM and
LCGM need different things. Generally, the LCGM needs
more classes, higher order growth coefficients within class,
and more class-varying growth and multinomial coefficients;
allowing differing predictor effects across class-varying time
trends indirectly captures complex interactions of predictors
and time. On the other hand, the RCGM needs higher order
product and power terms (e.g., witime2

ti, w2
i timeti).

Furthermore, Equations 6 and 7 show that person-level
covariates enter the model nonlinearly in the LCGM, in
contrast to the RCGM. For any given data set, the functional
form for the predictor effects must be misspecified for at
least one of the two models. In other words, fitting an RCGM
when LCGM is the true model (or vice versa) not only repre-
sents a misspecification of distributional form (the discrete or
continuous nature of individual differences) but also implies
a different functional form (i.e., the nature of relationships
of predictors to the growth trajectories). Consequently, in

3A vector consisting of all K class indicator labels ci1 . . . ciK conforms
to a multinomial distribution consisting of 1 draw on K categories with
probabilities π

(1)
i (wi) . . . π

(K)
i (wi) (McLachlan & Peel, 2000).
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PREDICTIONS OF INDIVIDUAL CHANGE 345

theory all moments could be misspecified. This point is
important because if only the distributional form of individ-
ual trajectories is misspecified, the fixed effect and variance
component estimates of the model are consistent, when
repeated measures are conditionally normally distributed
(Verbeke & Lessafre, 1997). Circumstances minimizing the
extent and consequences of functional form misspecification
are discussed and investigated later.

WHAT METRIC CAN BE USED FOR
COMPARING PREDICTIVE RELATIONSHIPS,
AND THEIR RECOVERY, ACROSS LCGMS

AND RCGMS?

Prior studies comparing recovery of predictor effects using
longitudinal classification-based versus non-classification
methods (that are more restrictive relatives of RCGMs;4

e.g., repeated measures analysis of variance) have had key
limitations. Sometimes empirical data comparisons took
place without including key higher order effects in the
nonclassification model (e.g., von Eye & Bogat, 2006; see
also Magnusson, 1998). Because classification-type models
like LCGMs do not require the inclusion of explicit power or
product terms to account for certain nonlinearities or inter-
actions, but models like RCGMs do, such comparisons are
weighted in favor of the former. Other times, predictive rela-
tionship recovery was not assessed on a comparable metric
across fitted models (Bogat, 2009; von Eye & Bogat, 2006;
von Eye, Bogat, & Rhodes, 2006).

An inclusive, non-model-specific metric is needed to
compare RCGM and LCGM performance. An obstacle is
that the coefficients estimated to capture the effects of
person-level predictors lack a one-to-one correspondence
across the models. Calculating and comparing predicted tra-
jectories from each model overcomes this obstacle. Predicted
trajectories are in the scale of the repeated measure. Thus,
they are directly comparable even though the individual
parameter estimates from which they were computed are
not. Previously, predicted profiles have been calculated for
related cross-sectional models in a single-sample setting
(Bauer & Shanahan, 2007). In a longitudinal context, pre-
dicted trajectories have been calculated for one model or the
other, not both.

Predicted Trajectories for RCGMs

In the RCGM literature, it is increasingly common to depict
predictive relationships by plotting predicted trajectories

4Non-classification models that only include linear relationships and
do not allow individual differences in change over time have been called
variable-oriented methods; we do not use that term for RCGMs because
they are not subject to those limitations (see Sterba & Bauer, 2010a).

obtained as the expected value of Equation 3 at chosen values
of person-level predictor(s) (Curran et al., 2004; 2006):

E(yi|Wi) = XiWiγ (8)

This follows the logic of plotting predicted regression lines
to aid in visualizing complex interaction effects in multiple
regression (Aiken & West, 1991).

Predicted Trajectories for LCGMs

In the LCGM literature, in contrast, predictive relationships
are commonly interpreted by exponentiating multinomial
slopes in Equation 6 to indicate the multiplicative change in
the odds of belonging to class k versus the reference class per
a one unit increment in the predictor. Recently, Nagin and
Tremblay (2005a, pp. 883, 885) stated “grave reservations”
about this practice because “even if the groups are thought
of as real entities, it is not possible to assign individuals
definitively to a specific trajectory ex ante based on number
of risk factors. It is possible to construct only an expected
trajectory.” Hence, they suggested computing predicted tra-
jectories by taking the expected value of Equation 7, at
particular predictor values:

E(yi|wi) =
K∑

k=1

π
(k)
i (wi)(Xiγ

(k)) (9)

These predicted trajectories can be plotted to better
undertand how predictors influence individual change over
time. Nagin and Tremblay (2005a) and Bauer and Shanahan
(2007) emphasized that such predictions are interpretable
whether discrete classes are literally thought to exist, or are
construed only as an approximation. However, this procedure
is currently underused in LCGM applications.

STUDY 1: CAN THE SAME PREDICTIVE
RELATIONSHIPS BE RECOVERED

REGARDLESS OF THE MATCH BETWEEN
FITTED MODEL (LCGM OR RCGM) AND

GENERATING MODEL (LCGM OR RCGM)?

The previous section proposed using predicted trajectories to
overcome one limitation of prior research: lack of an inclu-
sive, non-model-specific metric for comparing predictive
relationship recovery across LCGMs and RCGMs. Another
limitation of prior research is that the models’ performance
has not been evaluated with respect to a gold standard that
is (a) known, and (b) equally difficult for both models (e.g.,
von Eye & Bogat, 2006). Regarding (a), prior comparisons
of predictive relationship recovery across models related to
LCGMs and RCGMs have used empirical data. Simulating
data from a population model provides the opportunity for
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346 STERBA AND BAUER

a known gold standard against which to compare predicted
relationship recovery for each fitted model. Regarding (b),
however, using simulated data raises the issue of which
model to choose as a generating model. If certain kinds
of predictor relationships are more easily recovered by one
model than the other, choosing LCGM as the generating
model could disadvantage RCGM—and vice versa. To over-
come this issue, in Study 1 we used both LCGM and RCGM
as generating models, and related these generating models
in a special way so that (a) indices such as bias and mean
squared error are on the same metric regardless of generating
model, and (b) model misspecification is equated regard-
less of whether LCGM is fit to data generated from RCGM
(or RCGM is fit to data generated from LCGM). This spe-
cial relatedness, here termed reversibility, is accomplished in
the following manner. The fitted RCGM, when classes exist,
becomes the generating model, when continua exist. Also,
the fitted LCGM, when continua exist, becomes the generat-
ing model, when classes exist. Details are provided later.

In sum, we overcome prior limitations by (a) com-
paring predicted relationship recovery using an inclu-
sive, non-model-specific metric (predicted trajectories), and
(b) employing an equally difficult, known gold standard
(“reversibility” conditions). Study 1 uses this approach to
investigate relative accuracy and efficiency of LCGM and
RCGM predictive relationship recovery.

Hypotheses

As mentioned previously, the LCGM and RCGM imply dif-
ferent functional forms for the effects of predictors and thus
they cannot both represent these effects with perfect accu-
racy. In a simulation, the true model then should have some
advantage regarding bias because it contains no approxima-
tion error. But, practically speaking, with sufficiently many
classes and class-varying coefficients, Equation 9 could
approximate Equation 8 with little bias, even if RCGM
is generating. Similarly, with sufficiently many power and
product terms included, Equation 8 could approximate
Equation 9 with little bias, even if LCGM is generating.

Hypothesis 1. Predicted trajectories should be
recoverable with little bias, regardless of which of the two
models actually generated the data.

Irrespective of bias, the more parsimonious model (e.g.,
that with fewer estimated parameters) should have an advan-
tage with respect to sampling variability. The RCGM speci-
fications used in our simulations, which include higher order
terms, have as many or more parameters than those com-
monly encountered in practice (e.g., Hox, 2007). In contrast,
LCGM specifications used in our simulations are parame-
terized like those commonly encountered in practice (e.g.,
Nagin, 2005). Nevertheless, these RCGMs still had fewer
parameters than the corresponding LCGMs (see Table 1).
To balance potential differences in both sampling variabil-
ity and bias, we examine the mean squared error (MSE).
When neither the true nor misspecified model results in large
bias, sampling variability can dominate MSE. This favors the
more efficient model, particularly at smaller N (Cattin, 1978;
Einhorn & Hogarth 1975).

Hypothesis 2. (a) For RCGM-generated data, pre-
dicted trajectory estimates from LCGM should have higher
MSE than corresponding estimates from RCGM. (b) For
LCGM-generated data, predicted trajectory estimates from
RCGM need not exceed the MSE from LCGM estimates,
depending on N.

Hypothesis 2 implies that, if there is a risk of model
misspecification, misspecifying continua as classes may
have some greater MSE cost than misspecifying classes as
continua.

Methods

The Study 1 simulation has 24 cells from four crossed con-
ditions: generating model (LCGM or RCGM), fitted model
(LCGM or RCGM), number of predictors (1-predictor or 2-
interacting predictors), and N (250, 500, 1,000). The range
of Ns is representative of most LCGM applications (Sterba,

TABLE 1
Number of Free Parameters in LCGM and RCGM Fitted Models

Generating Model Fitted LCGM Fitted RCGM

Study 1
LCGM one-predictor 19 (four-class) 10
LCGM two interacting predictors 25 (four-class) 16
RCGM one-predictor 14 (three-class) to 29 (six-class) 10
RCGM two interacting predictors 18 (three-class) to 32 (five-class) 16

Study 2
LCGM with higher order nonlinear interactions and highly

nonmonotonic growth trajectories
45 (six-class) 35

RCGM with growth factor correlations not in concert with
factor-specific predictor effects

44 (six-class) to 116 (15-class) 18

Note. LCGM = latent class growth model; RCGM = random coefficient growth model.
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PREDICTIONS OF INDIVIDUAL CHANGE 347

Baldasaro, & Bauer, 2012). Five hundred samples per cell
were generated in SAS 9.2. Models were fit in Mplus
5.2 with maximum likelihood—using 200 sets of random
starting values for LCGM.

Population Generating and Fitted Models

One-predictor LCGM. The one-predictor LCGM,

yti|ci=k = γ
(k)
00 +γ

(k)
10 timeti+γ

(k)
20 time2

ti + εti (10)

π
(k)
i (ri) = exp(δ(k)

0 + δ
(k)
1 ri)

K∑
k=1

exp(δ(k)
0 + δ

(k)
1 ri)

where εti ∼ N(0, σ 2), had generating parameters based on
the aggressive behavior empirical application from Nagin
and Tremblay (2005a), in which T = 7 and K = 4 (shown
in Figure 1). An environmental risk variable ri ∼ BIN (8,
.36) predicted class membership. See Online Appendix Table
A.1 for generating parameters and implied conditional class
probabilities. Among LCGM applications, similar patterns
of unconditional trajectories are found in Cote, Tremblay,
Nagin, Zoccolillo, and Vitaro (2002); Dodge, Du, Saxton,
and Ganguli (2006); Laub, Nagin, and Sampson (1998);
Séguin et al. (2007); and Shaw, Lacourse, and Nagin (2005).
Similar cumulative risk predictor processes are seen in Jones
and Nagin (2007) and Nagin (2005). Data generated from
this LCGM were fit with the true four-class LCGM in
Equation 10 as well as the following RCGM:

Ph
ys

ic
al

 A
gg

re
ss

io
n

0

1

2

3

4

Time

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1

2

2 2 2
2

2
2

3
3

3
3

3

3

3

4 4 4 4 4 4 4

FIGURE 1 Study 1 unconditional latent class growth model trajectories
(modeled after Nagin & Tremblay, 2005a). Note. Class 1 = Low; Class
2 = Moderate-declining; Class 3 = High-declining; Class 4 = Chronic.
Figure 1 is based on our generated data, and is not a reproduction from
the original empirical application.

yti = γ00 + γ01ri + u0i + (γ10 + γ11ri + u1i)timeti

+ (γ20 + γ21ri)time2
ti + εti

(11)

where εti ∼ N(0, σ 2) and ui ∼ N (0, T). Relevant product
terms were included (cross-level interactions of risk with
time and time2). The quadratic coefficient was fixed because
its random effect variance was not estimable.

One-predictor RCGM. To fulfill the reversibility
criteria mentioned earlier, the generating parameters for the
one-predictor RCGM were taken from average estimates
obtained from fitting Equation 11 to the LCGM data. These
parameters are given in Online Appendix Table A.2. In turn,
the data generated from the one-predictor RCGM were fit
with the generating RCGM in Equation 11 and with the
LCGM in Equation 10, with various numbers of classes.

Two-interacting-predictors LCGM. The generating
one-predictor LCGM was expanded to include not only an
environmental risk, ri, predicting class membership, but also
a binary genetic marker, gi∼BIN(1, .25), which interacts
with ri, to constitute a gene × environment interaction.

yti|ci=k = γ
(k)
00 +γ

(k)
10 timeti+γ

(k)
20 time2

ti + εti (12)

π
(k)
i (ri, gi, rigi)= exp(δ(k)

0 + δ
(k)
1 ri + δ

(k)
2 gi + δ

(k)
3 rigi)

K∑
k=1

exp(δ(k)
0 + δ

(k)
1 ri + δ

(k)
2 gi + δ

(k)
3 rigi)

Here, εti ∼ N(0, σ 2). Specifically, when the protective allele
is present, gi = 1, it reduces the negative effect of envi-
ronmental risk on aggression, such as described by Caspi
et al. (2002). When gi = 0, the protective allele is absent,
as depicted in the conditional class probabilities and gener-
ating parameters in Online Appendix Table A.3. Recovery
of such interactive effects is highly important to social sci-
ence researchers. Data generated from this two-interacting-
predictor LCGM were fit with the true four-class LCGM
(Equation 12) and the RCGM in Equation 13:

yti = γ00 + γ01ri + γ02gi + γ03rigi + u0i

+ (γ10 + γ11ri + γ12gi + γ13rigi + u1i)timeti

+ (γ20 + γ21ri + γ22gi + γ23rigi)time2
ti + εti

(13)

where εti ∼ N(0, σ 2) and ui ∼ N (0, T). Relevant product
terms were included (cross-level interactions of risk, and
gene, and rigi with time and time2). Again, the quadratic
coefficient was fixed because its random effect variance was
not estimable.
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348 STERBA AND BAUER

TABLE 2
Best Fitting Numbers of Classes When the Latent Class Growth Model Was Fitted to data generated by the Random Coefficient Growth Model

Study 1
One-Predictor

Study 1
Two Interacting Predictors

Study 2
Growth Factor Correlations Not in

Concert With Factor-Specific
Predictor Effects

Best No. Classes N = 250 N = 500 N = 1,000 N = 250 N = 500 N = 1,000 N = 250 N = 500 N = 1,000

3 35% 2% 63% 14%
4 62% 85% 39% 36% 83% 75%
5 3% 13% 59% 1% 3% 25%
6 2% 5%
7 23% 2%
8 46% 26% 2%
9 22% 43% 17%
10 3% 23% 35%
11 1% 5% 35%
12 1% 9%
13 2%

Two-interacting-predictors RCGM. To fulfill the
reversibility criteria mentioned earlier, the generating param-
eters for the two-interacting-predictor RCGM were aver-
age estimates obtained from fitting Equation 13 to the
LCGM data. These parameters are given in Online Appendix
Table A.4. In turn, the data generated from the two-
interacting-predictors RCGM were fit with the true RCGM
(Equation 13) and the LCGM in Equation 12, with various
numbers of classes.

Data Analysis

Predicted trajectories per sample were calculated by substi-
tuting estimates into Equation 8 or Equation 9, depending on
whether RCGM or LCGM was fit. Bias in predicted trajec-
tories is depicted graphically by overlaying true conditional
trajectories versus those averaged across samples. True con-
ditional trajectories were obtained by substituting population
parameters into either Equation 8 or Equation 9, depending
on whether RCGM or LCGM was generating. MSE is tabled
for each cell as

MSE = 1

500
× 1

N
× 1

7

×
500∑
s=1

N∑
i=1

7∑
t=1

(
E(ytis|wis, xtis; θ̂s) − E(ytis|wis, xtis; θtrue)

)2

(14)

where s denotes sample (replication); N denotes sample
size; θtrue and θ̂s denote generic vectors of generating
and estimated parameter values, respectively, for sample
s; and wis generically denotes the values of the set of
predictor(s) included. The special reversibility relationship
between the generating RCGM and LGCM gave their depen-
dent variables approximately the same marginal variance.

Thus, MSEs can be directly compared across or within gen-
erating model. Standardized root MSEs,

√
MSE/SD(y), were

also calculated to allow MSE differences to be interpretable
in units of standard deviation of the outcome variable.

Results

Convergence and class selection. Convergence was
≥ 97.8%. Regarding class selection, when LCGM was gen-
erating, the fitted LCGM had the true K (i.e., K = 4),
but when RCGM was generating, the fitted LCGM had the
best Bayesian Information Criteria (BIC) K for that sam-
ple, shown in Table 2.5 BIC was chosen for class selection
because, in a recent survey, 100% of LCGM applications
used BIC for class selection; 78% used it as the sole selection
index (Sterba et al., 2012).

Bias. Because bias plots showed a similar pattern
regardless of N, only plots for N = 500 are provided (plots
for other Ns are available in the Online Appendix). In each
plot in Figures 2 and 3, dashed lines are true and solid lines
are average model-implied predicted trajectories. The lowest
pair of dashed and solid predicted trajectories is for risks =
1; higher pairs of predicted trajectories are for risks = 3, 5,
and 7, respectively. The disparity between the dashed and
solid trajectories in each pair indicates bias. Figure 2 con-
tains four plots, corresponding with the four combinations
of generating and fitted one-predictor models. Overall, for
one-predictor models, predicted trajectories are recovered
with little bias regardless of generating or fitted model, in

5An alternative strategy to using the per-sample best fitting number of
classes would be to use the across-samples average best fitting number of
classes in these calculations. Both strategies yielded the same overall pattern
of findings regarding hypotheses.
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LCGM Generating/ LCGM Fitted LCGM Generating/ RCGM Fitted

RCGM Generating/ RCGM Fitted RCGM Generating/ LCGM Fitted
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FIGURE 2 Study 1 predicted trajectories for one-predictor models. Note. LCGM = latent class growth model; RCGM = random coefficient growth model.
Dashed = true; solid = model-implied. The lowest pair of dashed and solid trajectories is for risks = 1; higher pairs are for risks = 3, 5, and 7, respectively.

line with Hypothesis 1. Some small bias is only found for
high (rare) values of the risk predictor when a misspeci-
fied model is fit. This bias for extreme risk values is slightly
worse when misspecifying continuous individual differences
as classes than when misspecifying classes as continua. Still,
such small bias is unlikely to alter a researcher’s overall con-
clusions, as the general pattern of predicted trajectories is
always recovered.

In Figure 3, each row of plots corresponds with a design
cell for the two-interacting-predictor models. Now predicted
trajectories are not only provided by number of risks, but
also by genetic status (left column = protective allele absent;
right column = protective allele present, which suppresses
aggression). Figure 3 results are largely similar to those in
Figure 2. That is, regardless of generating or fitted model, lit-
tle bias occurs, in line with Hypothesis 1. The little amount
of bias again is observed for extreme (uncommon) predic-
tor configurations and arises more often when misspecifying
continuous individual differences as classes (fourth row)
than classes as continua (second row). In contrast to the
one-predictor case, some bias is also observed for extreme
predictor values when fitting a correctly specified LCGM
(first row).

MSE. Table 3 depicts MSE for predicted trajectories
in all cells, using Equation 14. Within a given generating
model, MSE was not always better when fitting a cor-
rectly specified model, compared to a misspecified model.
Specifically, when RCGM was the generating model, fitting
a misspecified LCGM resulted in worse MSE at all N, in

line with Hypothesis 2a. In contrast, when LCGM was the
generating model, fitting a misspecified RCGM resulted
in 4% to 14% better MSE than a correct LCGM at low
N, but resulted in worse MSE at high N, in line with
Hypothesis 2b. At low N, the better MSE when fitting a
misspecified RCGM is due to its relatively smaller sampling
variability (particularly for extreme predictor values, as
depicted in Figure 4) overshadowing its slightly larger bias.
As N increases, sampling variability for both fitted models
decreases, but bias differences remain, so MSE increasingly
favors the correct model. Still, from a practical perspective,
both models provided good fit. Also, MSE differences
across fitted models were small (≤ .01 SD in y, in the far
right column of Table 3).

Summary

Study 1 hypotheses were supported in that, for the one- and
two-interacting predictor conditions considered, a researcher
can compute predicted trajectories from either a fitted
RCGM or LCGM, regardless of the true distribution of
individual differences, and anticipate little bias. At large N,
predicted trajectories tend to be slightly more efficient when
fitting the true generating model. At smaller Ns, however,
there is not a consistent efficiency advantage associated with
fitting the true generating model. Given documented diffi-
culties associated with properly specifying the discrete or
continuous nature of individual differences in practice (e.g.,
Bauer, 2007), a researcher might be seeking a model that,
even when incorrect, will have the lowest MSE for predicted
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LCGM Generating/ LCGM Fitted

LCGM Generating/ RCGM Fitted

RCGM Generating/ RCGM Fitted

RCGM Generating/ LCGM Fitted
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FIGURE 3 Study 1 predicted trajectories for two-interacting-predictor models. Note. LCGM = latent class growth model; RCGM = random coefficient
growth model.
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PREDICTIONS OF INDIVIDUAL CHANGE 351

TABLE 3
Study 1 Mean Squared Error Results

MSE

% MSE Increase or Decrease
Compared With Fitting True

Modela
Difference in Standardized

Root MSEb

One Predictor
Generating Model = LCGM

N Fit RCGM Fit True LCGM

250 .00829 .00968 −14% −.0052
500 .00493 .00495 −.04% −.0001
1,000 .00284 .00243 +17% .0028

Generating Model = RCGM

N Fit True RCGM Fit LCGM

250 .00911 .01159 +27% .0089
500 .00472 .00691 +46% .0103
1,000 .00222 .00441 +99% .0137

Two Interacting Predictors
Generating Model = LCGM

N Fit RCGM Fit True LCGM

250 .01637 .01707 −4% −.0019
500 .00944 .00875 +8% .0026
1,000 .00462 .00362 +28% .0056

Generating Model = RCGM

N Fit True RCGM Fit LCGM

250 .01709 .02098 +23% .0102
500 .00879 .01272 +45% .0137
1,000 .00450 .00814 +81% .0167

Note. MSE = mean squared error; LCGM = latent class growth model; RCGM = random coefficient growth model.
a[(misspecified model MSE/true model MSE) ×100 – 100]. bStandardized root MSE = √

MSE/SD(y). In one-predictor models SD(y) =
1.406. In two-interacting-predictor models SD(y) = 1.389. Difference in standardized root MSE is for (misspecified model – true model).

trajectories at modest N. In this regard, RCGM is slightly
preferable to LCGM. The major finding, however, is that
both models can do about equally well at recovering complex
predictive relationships.

STUDY 2: ARE THERE DATA CONDITIONS
UNDER WHICH ONLY ONE MODEL (LCGM OR

RCGM) CAN ACCURATELY RECOVER
PREDICTIVE RELATIONSHIPS?

Study 1 demonstrated that fitting either LCGM or RCGM
could recover the same predicted trajectories with little
bias, regardless of generating model. However, the focus
of Study 1’s generating conditions was neutrality (the
reversibility conditions). It is possible that greater bias
and/or MSE differences could be observed under more
extreme data conditions targeted to pose more difficulty

for one fitted model in particular. Study 2 is a generaliz-
ability study for the robustness of predicted trajectories to
specific suboptimalities that might be encountered in the
real world where the true nature of individual differences is
unknown.

Hypotheses

Predictor relations most difficult for RCGM to recover, and
do so parsimoniously, could involve nonlinear, higher order
interactions in a generating LCGM. These interactions can
be implied by nonmonotonic conditional class probabilities
and highly nonmonotonic growth trajectories.

Hypothesis 1. When a generating LCGM has
implicitly nonlinear, interacting predictor relationships and
highly nonmonotonic growth trajectories, RCGM could
incur bias as well as efficiency loss compared to LCGM
predicted trajectories. Bias would occur if the RCGM’s
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LCGM Generating/LCGM Fitted N = 250 LCGM Generating/RCGM Fitted N = 250

LCGM Generating/LCGM Fitted N = 500 LCGM Generating/RCGM Fitted N = 500

LCGM Generating/LCGM Fitted N = 1000 LCGM Generating/RCGM Fitted N = 1000

FIGURE 4 Sampling variance under the Study 1 one-predictor LCGM generating condition at N = 250, 500, and 1,000. Note. LCGM = latent class growth
model; RCGM = random coefficient growth model.

product terms cannot fully recover the LCGM’s implicit
nonlinear interactions.

LCGM might have more difficulty recovering predictor
effects from a generating RCGM in which growth factor
correlations are not in concert with factor-specific predictor
effects. One example of this situation would be if growth
factors are positively correlated in the population RCGM,
but predictor effects have different signs for different

growth factors (e.g., Bauer & Curran, 2003a).6 To com-
pensate for LCGM’s lack of growth-coefficient-specific

6Because LCGM requires prediction of the entire trajectory as a whole,
in this situation LCGM classes could tend to be extracted that have both
high, or both low, intercepts and slopes. Then an increment in the predictor
could be associated with an increased probability of membership in the high-
intercept, high-slope class. Yet, in the population the predictor influences
intercepts positively but slopes negatively.
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PREDICTIONS OF INDIVIDUAL CHANGE 353

prediction, additional LCGM classes would likely need to
be extracted—to indirectly allow more varied predictor–time
relations.

Hypothesis 2. When a generating RCGM has growth
factor correlations not in concert with factor-specific pre-
dictor effects, LCGM may incur bias as well as efficiency
loss compared to RCGM predicted trajectories. Bias would
occur if LCGM cannot support enough classes to ade-
quately approximate growth-factor-specific patterns of pre-
dictor relationships.

Methods

The Study 2 simulation to test these two hypotheses has
12 cells. For each generating model (LCGM or RCGM)
there are 6 cells defined by crossing fitted model (prop-
erly specified or misspecified) and N (250, 500, 1,000).
LCGM and RCGM generating models are intentionally no
longer “reversible” as in Study 1 because Study 2’s focus
is on tailoring generating conditions to be unfavorable to
one model in particular. Software, replications, and starting
values paralleled Study 1.

Population Generating and Fitted Models

LCGM with implicitly nonlinear, interacting predictor
relationships and highly nonmonotonic growth
trajectories. Although many LCGM applications con-
tain roughly monotonic unconditional class trajectories,
as in Study 1, in some applications they are markedly
nonmonotonic (e.g., Bushway, Thornberry, & Krohn, 2003;
Eggleston, Laub, & Sampson, 2004; Stewart, Livingston, &
Dennison, 2008). A modified version of Bushway et al.’s
(2003) unconditional class trajectories of offenses, in
Figure 5, was used as our six-class, 20-time-point gen-
erating LCGM in Study 2. Nagin and Tremblay (2005b,
p. 101) suggested Bushway et al.’s (2003) trajectory pat-
tern was consistent with a taxonomic distinction between
desisters and offenders—referring to the fact that there
are three desisting, two persisting, and one unaffected
trajectory. Although Bushway et al. included no predictors,
we added gene and environmental predictor effects that
could be consistent with a taxonomic distinction. In the
absence of the gene, the effect of risk has similar, severe
effects for the two persister trajectories, and similar, milder
effects for the three desister trajectories. In the presence
of the gene, however, the effects of risk on aggression are
suppressed for those in a desister class, but not for those
in a persister class. The conditional class probabilities (in
Online Appendix Table A.5), and highly nonmonotonic
unconditional trajectories in Figure 5 imply highly nonlinear
interactions in this generating LCGM:
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FIGURE 5 Study 2 highly nonmonotonic unconditional latent class
growth model trajectories (simulated after Bushway et al., 2003). Note.
Class 1 = Low; Class 2 = Early-desisters; Class 3 = Middle-desisters; Class
4 = Late-desisters; Class 5 = Medium-chronic; Class 6 = High-chronic.
Figure 5 is based on generated data using parameters from Bushway et al.
(2003), with the exception that two nearly identical, low-stable classes were
collapsed into one, and time scores were recentered and rescaled.

yti|ci=k = γ
(k)
00 +γ

(k)
10 timeti+γ

(k)
20 time2

ti + γ
(k)
30 time3

ti + εti

π
(k)
i (ri, gi) = exp(δ(k)

0 + δ
(k)
1 ri + δ

(k)
2 gi + δ

(k)
3 rigi)

K∑
k=1

exp(δ(k)
0 + δ

(k)
1 ri + δ

(k)
2 gi + δ

(k)
3 rigi)

(15)

Here εti ∼ N(0, σ 2). Online Appendix Table A.5 lists all gen-
erating parameters. Distributions of ri and gi were the same
as in Study 1, but ri was now grand mean centered. Data gen-
erated from the Equation 15 LCGM were fit either with the
true six-class LCGM or the following RCGM:

yti = γ00 + γ01ri + γ02gi + γ03rigi + γ04r2
i + γ05r2

i gi + u0i

+ (γ10 + γ11ri + γ12gi + γ13rigi + γ14r2
i + γ15r2

i gi

+ u1i)timeti + (γ20 + γ21ri + γ22gi + γ23rigi

+ γ24r2
i + γ25r2

i gi + u2i)time2
ti + (γ30 + γ31ri + γ32gi

+ γ33rigi + γ34r2
i + γ35r2

i gi + u3i)time3
ti + εti

(16)

where εti ∼ N(0, σ 2) and ui ∼ N (0, T). In Equation 16 non-
linear terms involving the risk predictor and the risk ×
gene interaction were used to try to capture nonlinear-
ities induced by nonmonotonic effects of predictors on
class, and nonmonotonic descriptive trajectories. At 35 free
parameters, this RCGM is still parsimonious relative to the
generating LCGM (with 45 free parameters).
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354 STERBA AND BAUER

RCGM with factor-specific predictor relations not
in concert with growth factor correlations. The Study
2 generating RCGM is:

yti = γ00 + γ01si + γ02ei + γ03ai + γ04hi + u0i+
(γ10 + γ11si + γ12ei + γ13ai + γ14hi + u1i)timeti

+ (γ20 + u2i)time2
ti + εti

(17)

where εti ∼ N(0, σ 2) and ui ∼ N(0, T)) . Growth coefficients
and signs of growth factor correlations were taken from
the antisocial behavior RCGM in Bollen and Curran (2006,
chap. 5). The signs of predictor effects and the predictor dis-
tributions were taken from the two covariates used by Bollen
and Curran as well as two other covariates from the same
data set (sex si ∼ BIN(.52); home emotional environment
ei ∼ N(9.29, 5.15); mother age ai ∼ N(25.60, 3.38); home
cognitive environment hi ∼ N(9.13, 5.85)). Total growth fac-

tor correlations were

[ 1
.24 1

−.25 −.43 1

]
. Some predictors

(ei and hi) had signs that did not follow from these total cor-
relations. That is, despite the positive correlation between
intercepts and linear slopes, ei had a negative effect on inter-
cepts and a positive effect on linear slopes, whereas hi had
a negative effect on intercepts and a positive effect on lin-
ear slopes.7 Other predictors’ effects were of the same sign
for both intercepts and linear slopes. No predictors affected
the quadratic slope. Parameter values for the generating
RCGM in Equation 17 are in Online Appendix Table A.6.
Data generated from the Equation 17 RCGM were either fit
with the true RCGM or the following LCGM, with various
numbers of classes:

yti|ci=k = γ
(k)
00 +γ

(k)
10 timeti+γ

(k)
20 time2

ti + εti (18)

π
(k)
i (si, ei, ai, hi)

= exp(δ(k)
0 + δ

(k)
1 si + δ

(k)
2 ei + δ

(k)
3 ai + δ

(k)
4 hi)

K∑
k=1

exp(δ(k)
0 + δ

(k)
1 si + δ

(k)
2 ei + δ

(k)
3 ai + δ

(k)
4 hi)

Data Analysis

Data analysis paralleled Study 1, except MSEs are only com-
pared within generating model. Study 2 generating models

7Another example of factor-specific predictor relationships that are not
in concert with growth factor correlations is as follows. A predictor has
all-positive or all-negative effects on growth factors, but growth factors are
negatively correlated.

are intentionally not reversible, and have different marginal
y variances. Hence, MSEs are not comparable between them.

Results

Convergence and class selection

Convergence was ≥ 93.6%. When LCGM was generating,
the fitted LCGM had the true K (i.e., K = 6). When RCGM
was generating, the fitted LCGM had the best-BIC K, shown
in Table 2.

Bias

As in Study 1, bias plots are shown here for N = 500; plots
for other Ns are in the Online Appendix. In Figure 6—where
LCGM is generating—risk and allele were moderators.
In Figure 7—where RCGM is generating—home emotional
environment was chosen as the moderator. Because it is a
continuous predictor, it yields an infinite number of possi-
ble predicted trajectories. We conventionally chose to plot it
at +1 SD, mean, –1 SD; other predictors were held at their
means.8 Solid lines are average model-implied and dashed
lines are true predicted trajectories.

When LCGM was generating (condition with complex
nonlinear interactions), RCGMs with all desired product and
power terms were estimable; if not, this could have been a
source of bias. When RCGM was generating (condition with
growth factor correlations not in concert with factor-specific
predictor effects), sufficiently many classes could be esti-
mated to recover predictive relationships. More classes than
needed to minimize BIC were estimable at all Ns. Had few
classes been estimable or selected (as can occur at low N;
Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders,
2007) then this could have been a source of bias. That is, the
two hypothesized culprits for inducing bias remained at bay
when fitting misspecified models in Study 2. Hence, when
fitting misspecified models, Figures 6 and 7 show similar or
just slightly more bias than in the milder Study 1 conditions.
As in Study 1, this bias occurred at extreme predictor val-
ues. When fitting correctly specified models, RCGMs never
results in bias (Figure 7). But correctly specified LCGMs can
result in small bias at modest N (Figure 6).

MSE

Study 2 MSE results are shown in Table 4. At N = 250,
under conditions previously deemed unfavorable to RCGM
(complex nonlinear interactions condition), fitting a misspec-
ified RCGM still unexpectedly provided better MSE (but
merely by 3%) than fitting a true LCGM. By N = 500 or
1,000, however, fitting a misspecified RCGM provided the
expected increase in MSE (by 19%–47%). This pattern of

8A similar pattern of bias results occurs if each of the other predictors is
considered as the moderator (not shown).
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LCGM Generating/ LCGM Fitted
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FIGURE 6 Study 2 generalizability checks: Predicted trajectories for the LCGM generating condition with implied higher order nonlinear interactions and
highly nonmonotonic growth trajectories. Note. LCGM = latent class growth model; RCGM = random coefficient growth model.

results resembled Study 1 and again occurred because of
relatively worse efficiency for fitting the true LCGM, par-
ticularly at low N (see Online Appendix plot of sampling
variance.) Yet, in practical terms, standardized MSE differ-
ences in Table 4 remained trivial (e.g., .01 SD(y)), as in
Study 1. Now consider the conditions deemed unfavorable
to LCGM by prior theory (growth factor correlations not
in concert with factor-specific predictor effects). There, at
all Ns, fitting a misspecified LCGM provided worse MSE
(by 244%–312%) than fitting a true RCGM. Given the little
bias in Figure 7, LCGM’s MSE gain for the latter con-
dition is likely due to the inefficiency associated with the
many classes (6–13) that were required to compensate for
LCGM’s lack of growth-coefficient-specific prediction. (If
few classes were extracted, more bias was observed.) These
relative MSE differences translate to .05 to .08 SD(y) (see
the far right column of Table 4); whether such differences
are substantively consequential is considered in the next
section.

Summary

Study 2 sought to generalize Study 1’s results to conditions
that could be unfavorable for recovering predicted trajecto-
ries if a misspecified model were fit. Study 2 conditions had
greater potential for inducing bias in predicted trajectories,
but this potential was not borne out.

Under conditions widely perceived as unfavorable to
methods like RCGM, RCGM’s relevant product and power

terms were estimable, and little more bias in predictive rela-
tionships was observed than if the true LCGM were fit.
Moreover, the fewer parameters required by RCGM gave it
an MSE advantage over the true LCGM, particularly at lower
N. Under conditions perceived as unfavorable to LCGM,
enough LCGM classes were estimable to compensate for the
lack of growth-factor-specific predictions, leading to little
bias. But as a consequence of extracting many classes (often
8–11), LCGM used many more parameters than the true
RCGM, leading to efficiency loss. To communicate the prac-
tical meaningfulness of this efficiency loss (the largest docu-
mented across Study 1 or 2 conditions), power analyses were
conducted for fitted models in this condition at N = 250. For
fitted LCGMs, power was conducted for joint (multivariate
Wald) tests of the effect of each predictor on class member-
ship as a whole. For fitted RCGMs, power was conducted for
joint (multivariate Wald) tests of the effect of each predictor
on both intercept and linear growth factors. Note that, in this
condition’s RCGM generating model, variance in growth
explained by the four predictors differed. Unique variance in
intercepts and slopes was explained by sex (16% and 13%,
respectively), home emotional environment (5% and 44%),
mother age (4% and 7%), and home cognitive environment
(.05% and 1%.) Hence, power would not be expected to
be the same across predictors in a given fitted model. For
sex, home emotional environment, and mother age, power
for RCGM was 100% and for LCGM (where estimable)
was 99% to 100%. For home cognitive environment, power
for RCGM was 24% and for LCGM (where estimable)
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FIGURE 7 Study 2 generalizability checks: Predicted trajectories for the
RCGM generating condition where predictors have factor-specific effects
not in concert with factor correlations. Note. RCGM = random coefficient
growth model; LCGM = latent class growth model. Dashed = true; solid =
average model-implied.

was 11%. Hence, standardized root MSE differences of .08,
from Table 4, translate into trivial to modest power dif-
ferences for corresponding hypotheses tests, depending on
effect sizes.

In sum, even under Study 2 conditions it is possible to
recover predicted trajectories on average by fitting growth
models that misspecify both the functional form of predic-
tor relationships and distribution of individual differences.
Efficiency loss is again slightly greater when misspecifying
continua as classes than when misspecifying classes as
continua.

GENERAL DISCUSSION

Certain kinds of complex interactive, nonmonotonic, or
class-specific/class-varying predictor relationships have
been considered difficult to recover with power and product
terms in RCGMs, unless classes are explicitly extracted, as in
LCGM (Connell et al., 2006; Laursen & Hoff, 2006; Moffitt,
2006, 2008; Muthén, 2004; Nagin & Tremblay, 2005b;
Segawa et al., 2005). Use of methods that allow recovery

and investigation of such relations is central to the increas-
ingly discussed person-oriented research paradigm (Ialongo,
2010; Mun, Bates, & Vaschillo, 2010; Sterba & Bauer,
2010a, 2010b; von Eye, 2010). Some prior research has com-
pared classification-based methods with methods related to
RCGMs based on their ability to recover predictive relation-
ships when the true distribution of individual differences is
unknown (Bogat, 2009; Magnusson, 1998; von Eye & Bogat,
2006; von Eye et al. 2006). This study overcame impor-
tant limitations of prior research. Specifically, comparisons
of prediction results across fitted models used a non-model-
specific metric for comparison and were unconfounded
by the nature of individual differences in the generating
model.

Despite the misspecifications introduced by crossing fit-
ted and generating models, the same predictor relationships
were recovered with either RCGM or LCGM. Predictor
relationships that are characterized as class-varying or class-
specific using LCGM exhibit some kind of nonlinear effects
or interactions with time, which can be specified in RCGM as
well. For instance, differential effects of school environment
on membership in good or poor reading trajectory classes
can likely be recovered with a (possibly nonlinear) interac-
tion of school environment and time in a reading RCGM. The
results of this study suggest that predicted trajectories from
such an RCGM might very well portray the same effects as
an LCGM. Indeed, even for high-risk, low-prevalence indi-
viduals (“superpredators” in Sampson, Laub, & Eggleston,
2004), predicted trajectories could still be recovered with
equivalent or slightly lower bias and variability by RCGM.

In practice, just as in the simulations performed
here, researchers’ theoretically posited distribution of indi-
vidual differences might be incorrect. Although such
misspecification could interfere with describing the nature
of individual differences in change (Sterba et al., 2012),
under conditions studied here, it did not necessarily interfere
with another concrete and important goal: recovering rela-
tionships between individual growth and predictors. Others
have similarly emphasized the importance of establishing
whether “predictions can be stable even if latent structure is
uncertain” (Butler & Louis, 1992, p. 1990; see also Cudeck
& Henly, 2003; Raudenbush, 2005).

Recommendations for Practice

If a researcher is going to fit one particular model, whether
LCGM or RCGM, applying that model in a manner sim-
ilar to what was done here can maximize the potential
to equivalently recover predictor relations. For example,
a researcher could retain the best-BIC K for LCGM and
include hypothesized higher-order and potentially nonlinear
interaction terms for RCGM. Suppose, for interpretational
simplicity, researchers select fewer classes in LCGMs than
the K preferred by model selection indices (e.g., Beyers &
Seiffge-Krenke, 2007; Brame, Nagin, & Tremblay, 2001;
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TABLE 4
Study 2 Mean Squared Error Results

MSE

% MSE
Increase or Decrease

Compared With Fitting
True Modela

Difference in Standardized
Root MSEb

Higher Order Nonlinear Interactions and Highly Nonmonotonic Growth Trajectories
Generating Model = LCGM

N Fit RCGM Fit True LCGM

250 .75124 .77532 −3% −.0018
500 .41452 .34698 19% .0071
1,000 .24306 .16497 47% .0112

Growth Factor Correlations Not in Concert With Factor-Specific Predictor Effects
Generating Model = RCGM

N Fit True RCGM Fit LCGM

250 .06484 .22306 244% .0769
500 .03333 .12065 262% .0582
1,000 .01685 .06961 312% .0474

Note. MSE = mean squared error; LCGM = latent class growth model; RCGM = random coefficient growth model.
a[(misspecified model MSE/true model MSE) × 100 – 100). bStandardized root MSE = √

MSE/SD(y). The Study 2 LCGM
generating model had SD(y) = 7.760; the Study 2 RCGM generating model had SD(y) = 2.830. Difference in standardized root
MSE is for (misspecified model – true model).

Gross et al., 2009; Petitclerc, Boivin, Dionne, Zoccolillo, &
Tremblay, 2009). This might erode the accuracy of estimated
predictor effects. Extended simulation results (not shown)
evidenced deterioration of predictive relationship recovery
as retained K decreases below best BIC K. Likewise, if
researchers choose very restrictive predictive relationship
specifications for RCGMs (e.g., neither nonlinear terms nor
nonlinear and higher order interactions), recovery of pre-
dictive relationships could be eroded (von Eye & Bogat,
2006). The onus is on the researcher to build up RCGMs
to include realistically complex predictive relationships.
Examples given here show potential for this to be done with
fewer estimated parameters than typical LCGMs.

Calculation of predicted trajectories is also recommended
to aid the goal of synthesizing LCGM and RCGM results
across and within studies. This goal has been of increas-
ing interest (Connell et al., 2006; Reinecke, 2006; Romens,
Abramson, & Alloy, 2009) because in many research areas
such as substance abuse, antisocial behavior, or educa-
tional achievement, numerous applications of RCGMs and
LCGMs now exist. Predicted trajectories can be obtained
from LCGM studies regardless of the number of classes
extracted. They can be compared to those from RCGM,
across and/or within studies, so long as similar predic-
tor sets were used. Predicted trajectories can be calculated
from estimates already provided in published articles, using
Equations 8 and 9. It should be reemphasized that Nagin
and Tremblay (2005a, pp. 883–885) recommended calcu-
lation of predicted trajectories for interpreting conditional

LCGMs regardless of whether a direct or indirect interpreta-
tion of classes is desired, so they are general in that respect.
Our results on recoverability of predicted trajectories across
diverse generating and fitted LCGMs and RCGMs provide
the first empirical justification for comparing predicted tra-
jectories in practice when the true discrete or continuous
nature of individual differences is unknown.

Limitations and Future Directions

Several limitations of this study provide opportunities for
future work. First, no time-varying predictors were included;
they are often not included in LCGMs. Predicted trajectories
involving interactions among time-varying predictors could
be plotted as well (see Sterba, in press). Second, we used
only conditionally normal repeated measures (the most com-
mon outcome in Sterba et al.’s [2012] review); generalizabil-
ity of results to binary or count outcomes is a topic for future
research. Third, one measure of predicted relationship recov-
ery was used that assesses predictive accuracy in the popula-
tion at large. Predicted trajectories could also be conditioned
on individual factor scores (for RCGM) or posterior prob-
abilities of class membership (for LCGM). Fourth, future
research could compare bias and efficiency of predicted
relationships using growth mixture models, LCGM, and
RCGM. Fifth, future studies could consider whether other
misspecifications differentially affect predicted relationship
recovery in RCGM versus LCGM (e.g., measurement error,
or restricted-range predictors; Aguinis, 1995).
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Conclusions

This study related and evaluated alternative strategies for
predictive relationship recovery in two popular longitudi-
nal models. Counter to current thinking in applied research,
both LCGMs and RCGMs were shown to recover predicted
trajectories under a variety of different data generating con-
ditions. These conditions implied somewhat different mean
structures and distributions of individual differences. In prac-
tice, the true generating model is unknown; hence, it is
relevant for researchers to note that the anticipated nature
of such relationships (even if complex and class-varying)
need not preclude use of either model for prediction. Finally,
this study provided an empirically supported rationale for
synthesizing results on predictor–time relations across stud-
ies and across methods, using predicted trajectories.
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