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Handling Missing Covariates in Conditional Mixture
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Mixture modeling is a popular method that accounts for unobserved population heterogeneity
using multiple latent classes that differ in response patterns. Psychologists use conditional
mixture models to incorporate covariates into between-class and/or within-class regressions.
Although psychologists often have missing covariate data, conditional mixtures are currently
fit with a conditional likelihood, treating covariates as fixed and fully observed. Under this
exogenous-x approach, missing covariates are handled primarily via listwise deletion. This
sacrifices efficiency and does not allow missingness to depend on observed outcomes. Here
we describe a modified joint likelihood approach that (a) allows inference about parameters of
the exogenous-x conditional mixture even with nonnormal covariates, unlike a conventional
multivariate mixture; (b) retains all cases under missing at random assumptions; (c) yields lower
bias and higher efficiency than the exogenous-x approach under a variety of conditions with
missing covariates; and (d) is straightforward to implement in available commercial software.
The proposed approach is illustrated with an empirical analysis predicting membership in
latent classes of conduct problems. Recommendations for practice are discussed.

Mixture models are frequently applied in the social and
behavioral sciences. Recent reviews indicate hundreds of
mixture modeling applications by psychologists in the last
decade alone (e.g., Fontaine, Carbonneau, Vitaro, Barker, &
Tremblay, 2009; Sterba, Baldasaro, & Bauer, 2012). Mixture
models accommodate population heterogeneity in the form
of discrete, unobserved groups or latent classes. A partic-
ular model is specified to hold within each class, and pa-
rameters may differ across classes. Beyond selecting a best-
fitting number of classes, primary goals of mixture modeling
studies involve incorporating covariates into between- and/or
within-class regressions to explain between- and/or within-
class variation. When exogenous covariates are included in
such a manner, these models have been called conditional
mixture models. Popular examples of conditional mixtures in-
clude mixtures of regression models, conditional latent class
models, conditional mixtures of structural equation mod-
els, and conditional mixtures of growth trajectories (e.g.,
Collins & Lanza, 2010; Dayton & Macready, 1988; DeSarbo
& Cron, 1988; Dolan, 2009; Jedidi, Ramaswamy, DeSarbo,
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& Wedel, 1996; Lubke & Muthén, 2005; Muthén, 2002;
Nagin, 2005; Vermunt, Tran, & Magidson, 2008; Wedel,
2002).

Currently, conditional mixture models are fit using a con-
ditional likelihood specification, treating x’s as fixed.1 This
approach is here termed an exogenous-x approach and is
the default in mixture modeling software used by psycholo-
gists (Jones, Nagin, & Roeder, 2001; Lanza, Dziak, Huang,
Xu, & Collins, 2011; Muthén & Muthén, 1998–2014; Ver-
munt & Magidson, 2005). Conditional nonmixture models
are also typically fit using an exogenous-x approach. Exam-
ples of conditional nonmixture models include single-level
and multilevel regression models (Draper & Smith, 1998;
Raudenbush & Bryk, 2002), generalized linear models
(McCullagh & Nelder, 1989), conditional structural equation
models (e.g., Muthén & Asparouhov, 2009), and conditional
growth models (e.g., Bollen & Curran, 2006).

A defining characteristic of conditional (mixture or non-
mixture) models is that they allow inferences about a condi-
tional distribution of outcomes given covariates, and these
inferences are unaffected by the shape of the covariate
distribution (e.g., DeSarbo & Cron, 1988; Dolan, 2009;
Jedidi et al., 1996; Lubke & Muthén, 2005; Muthén &

1Throughout we use x as shorthand for “covariate.”
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 615

Shedden, 1999; Nagin, 2005; Vermunt, 2010b). In the mix-
ture modeling context, this defining characteristic requires
that conditional mixture models not allow nonnormality of
covariates to determine class structure. Researchers consider
this characteristic of conditional mixtures substantively de-
sirable; it allows the use of external covariates to help assess
the construct validity of a typology where, crucially, the ty-
pology is not defined based on distributions of the covariates
themselves (see Bakk, Oberski, & Vermunt, 2014; Bauer &
Curran, 2003; Collins & Lanza, 2010; Dayton & Macready,
1988; Muthén, 2003; Odgers et al. 2008; Petras & Masyn,
2010).2

One problem with which psychologists often are con-
fronted when fitting conditional (mixture or nonmixture)
models is missing covariate data. Because the exogenous-
x approach assumes covariates are fully observed, cases with
missing covariates are by default listwise deleted. This sac-
rifices efficiency and can induce bias if, for instance, miss-
ingness depends on observed outcomes (Little, 1992; Little
& Zhang, 2011). For psychologists fitting conditional mix-
ture models with missing covariates, listwise deletion is cur-
rently the status quo (e.g., Castelao & Kroner-Herwig, 2012;
Chung, Flaherty, & Schafer, 2006; Greenbaum, Del Boca,
Darkes, Wang, & Goldman, 2005; Hepworth, Law, Lawlor, &
McKinney, 2010; Li & Hser, 2011; Lubke & Muthén, 2005;
Petras & Masyn, 2010; Schaeffer et al., 2006; Scharoun-Lee
et al., 2011; Sterba, Prinstein, & Cox, 2007; Van Horn, Jaki,
Masyn, Ramey, & Smith, 2009; Walrath et al., 2004). For
psychologists fitting conditional nonmixture (e.g., multiple
regression) models, two main alternatives to listwise deletion,
described later, are used to retain cases with missing covari-
ates under missing-at-random (MAR) assumptions. Unfor-
tunately, there are obstacles to applying either alternative in
the mixture context.

One alternative used in the nonmixture context is multi-
ple imputation. However, for mixture models, prior research
has shown that multiple imputation of covariates can result
in considerable parameter bias, leading to recommendations
that it should be “avoided altogether” (Enders & Gottschall,

2For instance, Collins and Lanza (2010, Chapter 6) fit a conditional mix-
ture with five outcomes serving as indicators of a discrete latent classifi-
cation variable: eats green vegetables, gets more than 7 hr of sleep, eats
breakfast, exercises vigorously, and eats fruit. The discrete latent construct
was interpreted as a healthy behavior typology. They included two covari-
ates predicting between-class differences (maternal education and gender).
Collins and Lanza wanted to investigate whether the covariates predicted
between-class differences in theoretically consistent ways—but did not want
the covariate distributions to help define the discrete latent construct itself
(this construct would then no longer be interpretable as a healthy behav-
ior typology). Similarly, Nagin (2005, Chapter 7) fit a conditional mixture
with repeated measures of delinquency serving as indicators of class. He in-
cluded covariates predicting delinquency within class (time, grade retention,
and IQ). Nagin fit a conditional mixture because he wanted to interpret the
discrete latent classification variable as a typology of growth trajectories de-
fined only by the conditional distribution of delinquency repeated measures,
not also by the distributions of IQ, time, and grade retention.

2011, p. 50). This is because the number of latent classes,
and thus the nature of class-varying predictor relations, is not
known a priori. Hence, their correct specification in an impu-
tation model in empirical practice would be highly unlikely
(Enders & Gottschall, 2011).

Another alternative used in the nonmixture context is to
employ a multivariate (joint likelihood) approach with ran-
dom regressors in order to recover parameters of a condi-
tional model. In this multivariate model, parameters of the
conditional model of interest are estimated simultaneously
with parameters of the covariates’ marginal distribution,
thus avoiding the need to listwise delete cases with miss-
ing covariates (e.g., Horton & Kleinman, 2007; Horton &
Laird, 1998; Hox & Roberts, 2010; Ibrahim, 1990; Jöreskog
& Sörbom, 1996; Lipsitz & Ibrahim, 1996; Little, 1992).
Under assumptions that (a) parameters of the covariates’
marginal distribution don’t involve parameters of the condi-
tional model and (b) residuals are independent of covariates
(see Bollen, 1989; Johnston, 1984, pp. 281–285; Jöreskog,
1973, Jöreskog & Goldberger, 1975), multivariate nonmix-
ture models recover parameters of conditional nonmixture
models regardless of the shape of the covariate distribution.
However, for mixture models, prior research with complete
case data has shown that conventional multivariate mixtures
do not recover parameters of a conditional mixture regardless
of the shape of the covariate distribution (Arminger & Stein,
1997; Arminger, Stein, & Wittenberg, 1999). In fact, recov-
ery of conditional mixture parameters was so poor using a
conventional multivariate mixture with nonnormal covariates
that Arminger and Stein (1997) exclusively recommended an
exogenous-x approach for drawing inferences about condi-
tional mixture parameters. They stated,

The conditional modeling [here termed exogenous-x] ap-
proach is crucial to obtain consistent parameter estimates in
this stage. One might consider an unconditional modeling
[here termed conventional multivariate] approach in which
the regressor variables xi are stacked below the dependent
variable yi . . . however this approach works only if the regres-
sor variables xi are also multivariate normal. If the regressor
variables are nonnormal, as is the case with dummy variables
such as gender and occupation, then the estimates of the mix-
ing probabilities and other parameters will be inconsistent.
(p. 157)

In sum, alternatives to listwise deletion that are well known
for conditional nonmixture (e.g., multiple regression) mod-
els encounter obstacles when applied to conditional mix-
tures with missing covariates. The objective of this article is
to provide psychologists with an approach that (a) recovers
parameters of a conditional mixture model and (b) accom-
modates missing covariates under MAR assumptions. This
article proposes and evaluates a specification here termed
an endogenous-constrained-x approach that fulfills this
objective.
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616 STERBA

The remainder of the article proceeds as follows. First,
we provide some background details on conditional mix-
ture models. Second, we contrast three likelihood specifi-
cations: the exogenous-x approach currently used for fitting
conditional mixtures, a conventional multivariate mixture,
and the proposed endogenous-constrained-x approach, all
under complete-x data. We explain theoretically why the
proposed approach should recover parameters of the con-
ditional model just as well as the exogenous-x approach
under complete-x data—something the conventional mul-
tivariate mixture cannot be counted on to do. In Study 1 we
demonstrate these points via simulation, under complete-x
data. In Study 2, we employ missing-x data and compare
the exogenous-x and endogenous-constrained-x approaches
across a variety of theoretically relevant simulated condi-
tions. Finally, an empirical illustration involving prediction
of membership in conduct problem classes shows how the
simulation results generalize to other distributions of out-
comes and covariates. We conclude with implications for
practice.

BACKGROUND: CONDITIONAL MIXTURE
MODELS

As background, we review different ways that covariate re-
gressions can be incorporated into conditional mixtures. One
option is to regress class membership on covariates to ex-
plain why certain persons are more likely to be members of
one class than another (e.g., Collins & Lanza, 2010; Dayton
& Macready, 1988; Lubke & Muthén, 2005; Muthén, 2002;
Nagin, 2005; Vermunt et al., 2008; Wedel, 2002).3 Let i in-
dex person, where i = 1,. . .,N. yi is a vector of outcomes for
person i, and xi is a vector of covariates for person i. Persons’
data are assumed to be generated from a mixture of K latent
classes, where classes are indexed k = 1,. . .,K. Let ci de-
note person i’s unobserved class membership. Let p(ci = k)
denote the probability that person i is a member of class k.
Then, via a multinomial logistic regression specification, we
allow xi to predict class membership:

p(ci = k|xi) = exp(α(k) + ω′(k)xi)/
∑K

k=1
exp(α(k) + ω′(k)xi).

(1)
In class k, α(k) is a multinomial intercept and ω(k) is a

vector of multinomial slopes. For identification, α(K) = 0
and ω(K) = 0.

Alternatively, or additionally, we can allow outcomes yi to
be regressed on xi within class (e.g., DeSarbo & Cron, 1988;
Hosmer, 1974; Jansen, 1993; Jedidi et al., 1996; Lubke &
Muthén, 2005; B. O. Muthén, 2002; Nagin, 2005; Vermunt
et al., 2008; Wedel & DeSarbo, 1995). The within-class den-

3This is sometimes termed a “concomitant variable mixture model” (e.g.,
Dayton & Macready, 1988).

sity is denoted f (yi |xi ; ci = k). As an example, in class k we
could have

yi |xi , ci = k ∼ N (μ(k) + �(k)xi ,σ
2(k)I) (2)

In class k, μ(k) is a vector of intercepts and �(k) is a matrix
of regression slopes. σ2(k) is a residual variance (here held
equal across outcomes, although this is not necessary).4 If
there were outcomes other than yi within class, such as latent
factors, then they could also or alternatively be regressed
on xi (e.g., Lubke & Muthén, 2005), although this is not
explicitly represented here.

The next sections cover three approaches for constructing
a likelihood to fit a mixture model with covariates. Reasons
are given for why two of these three approaches can recover
parameters of a conditional mixture model, regardless of
covariate distribution shape, and why one approach cannot.
These approaches are introduced in the context of complete
x′s.

FITTING CONDITIONAL MIXTURES
WITH A CONDITIONAL LIKELIHOOD:

EXOGENOUS-X APPROACH

The exogenous-x approach is the currently used gold stan-
dard for fitting conditional mixtures (see, e.g., Bauer, 2007;
Collins & Lanza, 2010; Dolan, 2009; Feldman, Masyn, &
Conger, 2009; Lubke & Muthén, 2005; Muthén, 2002; Na-
gin, 2005; Pickles & Croudace, 2010; Reinecke, 2006; Ver-
munt, 2010a; Wedel & DeSarbo, 1995). Under this approach,
the sample complete-case conditional likelihood can be con-
structed from the following (where, for simplicity, parame-
ters are not shown):

L = f (y|x) =
N∏

i=1

f (yi |xi) (3)

When covariates are incorporated as in Equation (1) we
would have

f (yi |xi) =
K∑

k=1

p(ci = k|xi)f (yi |ci = k). (4)

Or, when covariates are incorporated as in Equation (2) we
would have

f (yi |xi) =
K∑

k=1

p(ci = k)f (yi |xi ; ci = k). (5)

4In cross-sectional applications, usually with a single yi , this is sometimes
called a “regression mixture model.” In longitudinal applications where yiare
repeated measures and xi also contain time scores, this is sometimes called
a conditional “groups-based trajectory model.”
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 617

When covariates are incorporated as in both Equations (1)
and (2) we would have

f (yi |xi) =
K∑

k=1

p(ci = k|xi)f (yi |xi ; ci = k). (6)

In Equations (3)–(6), xi are fixed and assumed fully ob-
served. In this specification, distributional assumptions are
imposed about outcomes conditional on covariates. For in-
stance, in Equation (5) multivariate normality could be as-
sumed within class for yi |xi . Note that no distributional
assumptions are imposed on the covariates, so cases with
missing covariates would need to be listwise deleted. Us-
ing Equation (4), (5), or (6) the conditional likelihood for
person i is obtained as a weighted sum of class-specific den-
sities. Figure 1 Panels A, B, and C provide heuristic dia-
grams of the Equations (4), (5), and (6) specifications, re-
spectively, for a single outcome yi and single covariate xi .
Squares represent measured variables and a circle represents
the discrete latent classification variable. Directed arrows
extending from xi to ci or xi to yi represent regression re-
lationships (e.g., logistic or linear regression, depending on
the nature of the outcome). A directed arrow extending from
the circle to a square indicates that some parameter(s) associ-
ated with that measured variable are allowed to differ across
class.

FITTING CONVENTIONAL MULTIVARIATE
MIXTURES WITH A JOINT LIKELIHOOD

Conditional mixtures developed separately from multivari-
ate mixtures in the mixture literature. Conventional mul-
tivariate mixtures subject to structural relations5 were im-
plemented by Blåfield (1980); Jedidi, Jagpal, and DeSarbo
(1997a, 1997b); Dolan and van der Maas (1998); Hennig
(2000); Wedel (2002); and Ingrassia, Minotti, and Vittadini
(2012). This approach involves specifying a joint distribu-
tion of outcomes and covariates and then maximizing a joint
likelihood in lieu of a conditional likelihood. This approach
allows parameters of x′s distribution (e.g., means, variances,
and covariances of continuous x) not only to be estimated
but also to vary across class. The joint likelihood under this
approach can be calculated from the following (where pa-
rameters are not shown, for simplicity):

L = f (y, x) =
N∏

i=1

f (yi , xi). (7)

5This approach has also been called “saturated mixture regression”
(Wedel, 2002) or “cluster-weighted modeling” (Ingrassia, Minotti, & Vitta-
dini, 2012).

When covariates are incorporated as in Equation (2), we
would have

f (yi , xi) =
K∑

k=1

f (xi |ci = k)p(ci = k)f (yi |xi ; ci = k).

(8)
The density of xi , f (xi |ci = k), is specific to class k. Con-

ceptually, this specification amounts to treating the x′s as
additional indicators of a latent classification variable, as vi-
sually depicted in Figure 1 Panel D. Here, classes are now
able to be formed on the basis of between-class differences
in means, variances, and covariances of both y′s and x′s.
This specification requires making assumptions about the
joint distribution of outcomes and covariates within class;
often, multivariate normality is assumed. Consequently, un-
like the exogenous-x approach, the conventional multivariate
approach does not require listwise deletion for cases with
missing covariates. However, this conventional multivariate
mixture was not designed to recover parameters of a condi-
tional mixture, and it poses two drawbacks for researchers
with the latter objective.

Drawback 1

From the perspective of researchers desiring to recover pa-
rameters of a conditional mixture such as the regression mix-
ture in Equation (5) (Figure 1 Panel B), a drawback of this
conventional multivariate approach is that the conditional
distribution of inferential interest is not marginally inde-
pendent from the nuisance distributionf (xi |ci = k). Rather,
both mutually depend on the same latent classification vari-
able. This violates one of the earlier stated assumptions (see
Bollen, 1989; Johnston, 1984; Jöreskog, 1973; Jöreskog &
Goldberger, 1975) for using a joint likelihood approach to
recover parameters of a conditional model regardless of the
shape of the covariate distribution. As a consequence, using
a conventional multivariate (e.g., normal) mixture, nonnor-
mality of x can be reproduced, during model estimation, by
an adjustment in class structure. For instance, parameters
of inferential interest—including those of f (yi |xi ; ci = k)
(e.g., μ(k),�(k),σ2(k)) and those defining class proportions
(e.g., α(k))—could change based on the need to accommo-
date higher order moments of nonnormal x’s (e.g., if x is in-
come or number of alcoholic drinks). This was demonstrated
by Arminger et al. (1999) and Arminger and Stein (1997),
which motivated their recommendation for exclusively using
the exogenous-x (conditional likelihood) approach when the
objective is to make inferences about parameters of the con-
ditional mixture. This objective is typical of current mixture
applications (see Dolan, 2009).

Drawback 2

From the perspective of researchers desiring to recover pa-
rameters of a conditional mixture such as Equation (4) or
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618 STERBA

FIGURE 1 Heuristic path diagrams of three model fitting approaches involving one predictor (x). Note. These diagrams are heuristic only. c is the latent
classification variable. When c points to a variable, this indicates that parameters associated with that variable (e.g., mean and variance) can vary across class.
These diagrams depict a single outcome y and a single predictor x (the single predictor x may be incorporated in multiple ways). The dotted line portion
heuristically depicts an alternative way to make the single predictor x endogenous.

(6) (Figure 1 Panel A or C, respectively), another drawback
of the conventional multivariate mixture is that it cannot
incorporate the multinomial regression of class member-
ship on covariates, as in Equation (1). Such a specification
would induce a nonrecursive loop and identification prob-

lems, as discussed in Asparouhov (2013; see also Maddala,
1983). In theory, multinomial regression coefficients from
Equation (4) or (6) conditional mixtures could be derived
from class mean differences on x’s in particular conven-
tional multivariate mixtures. However, this is not a practical
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 619

strategy for overcoming Drawback 2 because these multi-
nomial coefficients can be solved for only under special
case circumstances (see Ingrassia et al., 2012); an exam-
ple is described in Appendix A. There are many situations
in which these example special case criteria will not hold.
For example, they will not hold for exogenous-x generating
processes with x-nonnormality resembling a χ2 distribution
with few degrees of freedom (as in the Study 2 simulation)
and with unbalanced classes. It is important to note that
even if such special case criteria did hold, this conversion of
parameter estimates is inconvenient—more so for increas-
ingly complex within-class specifications. Furthermore, no
conversion of standard errors has been developed. Finally,
note that for researchers desiring to recover parameters of
the Equation (6) conditional mixture, fitting the conventional
multivariate mixture poses a combination of Drawbacks 1
and 2.

In sum, for researchers interested in recovering param-
eters of a conditional mixture with possibly-nonnormal in-
complete covariates, we have reviewed drawbacks of using a
conventional multivariate mixture (in this section) and draw-
backs of using an exogenous-x approach (in the previous
section). Hence, a third approach is necessary.

FITTING CONDITIONAL MIXTURES WITH
A MODIFIED JOINT LIKELIHOOD:
ENDOGENOUS-CONSTRAINED-X

APPROACH

Our alternative is here called an endogenous-constrained-x
approach. For researchers interested in interpreting a con-
ditional mixture, it avoids limitations of the two previously
considered approaches. It (a) avoids the limitations of the
exogenous-x approach by using a joint likelihood to retain
cases with missing covariates, and (b) avoids the limitations
of the conventional multivariate mixture by modifying the
joint likelihood so that the conditional distribution of infer-
ential interest is independent from the nuisance distribution
of the x’s. Specifically, we employ a joint likelihood but con-
strain all parameters of the marginal distribution of the x’s to
be equal across class. Then the joint likelihood can be based
on Equation (9) when covariates predict class, Equation (10)
when covariates directly predict outcomes within class, or
Equation (11) for the combination.

f (yi , xi) = f (xi)f (yi |xi)

= f (xi)
K∑

k=1

p(ci = k|xi)f (yi |ci = k) (9)

f (yi , xi) = f (xi)f (yi |xi)

= f (xi)
K∑

k=1

p(ci = k)f (yi |xi ; ci = k) (10)

f (yi , xi) = f (xi)f (yi |xi)

= f (xi)
K∑

k=1

p(ci = k|xi)f (yi |xi ; ci = k). (11)

Equation (9), (10), or (11) can then be substituted into Equa-
tion (7). These extensions are heuristically depicted in the
dashed-line portion of Figure 1 Panels E, F, and G. Now,
the density of xi is not specific to class k. Because the con-
ditional distribution of inferential interest is marginally in-
dependent from the nuisance distribution,f (xi), the latter
is brought out of the across-class summation in Equations
(9)–(11) for simplicity. The constraint imposed in Equations
(9)–(11) fulfills the earlier stated assumption (e.g., Bollen,
1989; Johnston, 1984) for consistent conditional model in-
ference from a joint likelihood—an assumption violated by
the conventional multivariate mixture. The assumption is that
parameters of the covariates’ marginal distribution are dis-
tinct from parameters of the conditional model. In partic-
ular, constraining all estimated distributional parameters of
the x′s (e.g., their means and (co)variances) to be invari-
ant across class effectively limits the ability of the model to
adjust within-class structure to reproduce nonnormality of
x′s.

For a different purpose—simply improving parsim-
ony—researchers intending to fit and interpret a conventional
multivariate mixture might impose equality constraints on
some parameters of a variable’s distribution (e.g., holding
its variance equal across class while letting its mean vary
across class; McLachlan & Peel, 2000). However, there is
no motivation to impose the particular constraint in Equa-
tions (9)–(11)—that all parameters of the x distribution be
equal across class—for objectives other than those consid-
ered in this article. The reason is that the constraint is unique
in converting a conventional multivariate mixture to instead
have the interpretation of a different model—a conditional
mixture. Only researchers who both (a) have the desire to
interpret a conditional mixture and (b) have incomplete x’s
would be motivated to adopt the proposed approach in prac-
tice. In sum, this constraint lies at the interface of two sep-
arate literatures—the conditional mixture literature and the
conventional multivariate mixture literature—borrowing the
interpretation of the former and the missing data properties
of the latter.

STUDY 1: RECOVERING PARAMETERS
OF A CONDITIONAL MIXTURE

WITH COMPLETE X′S

In the previous sections we explained why the proposed
endogenous-constrained-x approach should have an advan-
tage over the conventional multivariate mixture for recov-
ering parameters of a conditional mixture. Study 1 com-
pares these approaches in the context of complete-x data. The
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620 STERBA

results of Study 1 are used to inform a later Study 2 compar-
ison involving missing-x data.

Hypothesis

Given nonnormal x, only the endogenous-constrained-x ap-
proach will recover the generating parameters of the condi-
tional mixture as well as does the exogenous-x approach.

Methods

To investigate this hypothesis, we generated 500 complete
case data sets of N = 500 from the population model of
Arminger et al. (1999)—the only previous source to com-
pare exogenous-x and conventional multivariate approaches
for recovery of population parameters of a conditional mix-
ture. This population model was a two-class regression mix-
ture model (e.g., DeSarbo & Cron, 1988) using the within-
class model of Equation (2) with one outcome and three
covariates and using the between-class model:p(ci = k) =
exp(ω(k)

0 )/
∑K

k=1 exp(ω(k)
0 ) where ω

(K)
0 = 0. Population pa-

rameters from Arminger et al. are given in Table 1. Fol-
lowing Arminger et al., the three covariates were gen-
erated to be highly nonnormal—χ2(1). Also consistent
with Arminger et al., the three covariates were uncorre-
lated. However, the Study 1 simulation was rerun with
the nonnormal covariates correlated at .60 (see Ruscio &
Kaczetow, 2008, for generation details) and the same pat-
tern of results was obtained (see the Online Appendix
at www.vanderbilt.edu/peabody/sterba/appxs.htm). The co-
variates were all transformed to have means of 0 and vari-
ances of 1.6 Two-class regression mixture models were fit
to the 500 data sets using the three approaches: exogenous-
x, conventional multivariate, and endogenous-constrained-x.
SAS 9.2 was used for generation and Mplus 7.11 (Muthén
& Muthén, 1998–2014) was used for fitting, with 200 sets of
random starting values per sample. Syntax used is provided
in Appendix B.

6Arminger et al. (1999) also considered normal x′s. Trivial bias for their
regression mixture parameters was found when fitting the conventional mul-
tivariate mixture with normal x′s. The reason is as follows. In the context
of their example, normal x′s are a special case in which fitting Equation (8)
(conventional multivariate) closely approximates the results of fitting Equa-
tion (10) (endogenous-constrained-x) in finite samples. In this special case,
the freely estimated class-specific means and (co)variances of the x′s are es-
timated at nearly identical values across class because they are not obliged
to approximate any x-nonnormality using between-class differences in their
values. This is consistent with Ingrassia et al.’s (2012) Proposition 2, which
was derived in a different way. It should be emphasized, however, that even
in the special case of normal x′s in the population, the conventional multi-
variate mixture does not exactly match the exogenous-x approach within a
finite sample of, say, N = 500 (or on average across such finite samples, as
seen in Arminger et al.’s [1999] results). Only the endogenous-constrained-x
approach would provide an exact match.

TABLE 1
Comparison of the Conventional Multivariate,

Endogenous-Constrained-x , and Exogenous-x
Approaches Using Complete-Case Data and

Parameters From Arminger et al. (1999): Results
Averaged Across 498† Repeated Samples of N = 500

Estimate (SE) Averaged Across Samples

Parameter
Gen.
Value

Conventional
Multivariate

Mixture

Conditional
Mixture:

Endogenous-
Constrained-x

Conditional
Mixture:

Exogenous-x

Class 1
Intercept

(μ(1))
−.5 −.029 (.150) −.499 (.056) −.499 (.056)

Slope of y on
x1 (γ (1)

1 )
−1 −.046 (.182) −.999 (.050) −.999 (.050)

Slope of y on
x2 (γ (1)

2 )
−1.5 −.078 (.208) −1.501 (.049) −1.501 (.049)

Slope of y on
x3 (γ (1)

3 )
.5 .043 (.182) .498 (.052) .498 (.052)

Resid. var.
(σ 2(1))

.5 1.164 (.104) .488 (.059) .488 (.059)

Class 2
Intercept

(μ(2))
.5 .000 (.325) .505 (.076) .505 (.076)

Slope of y on
x1 (γ (2)

1 )
1 −.003 (.183) 1.002 (.070) 1.002 (.070)

Slope of y on
x2 (γ (2)

2 )
1.5 .004 (.186) 1.502 (.069) 1.502 (.069)

Slope of y on
x3 (γ (2)

3 )
−.5 −.001 (.182) −.505 (.073) −.505 (.073)

Resid. var.
(σ 2(2))

1 9.263 (1.014) .975 (.107) .975 (.107)

Multinomial
intercept
(α(1))∗

0 .466 (.119) .007 (.127) .007 (.127)

Note. † = convergence achieved for 498/500 samples. ∗ = Generating
multinomial intercept of 0 in Class 1 implies class proportions of .50/.50.
The estimated Class 1 multinomial intercept of .466 implies class propor-
tions of .61/.39. The estimated Class 1 multinomial intercept of .007 implies
proportions .50/.50. Resid. var. = Residual variance. Gen. = generating.

Results and Discussion

Results in Table 1 show that, averaging across converged
repeated samples (99.6% converged), there is accurate re-
covery for the parameters of the conditional mixture un-
der the exogenous-x approach (comparable to Arminger
et al.’s [1999] results) but poor recovery using the conven-
tional multivariate mixture (also comparable to Arminger
et al.’s results). It is important to note that there was also
accurate recovery for the proposed endogenous-constrained-
x approach, despite nonnormality of the x’s. Furthermore,
Table 2 illustrates that, within a given single sample, results
from the endogenous-constrained-x approach exactly match
the exogenous-x results. This is important because in practice
researchers have only a single sample. In sum, only with the
conventional multivariate normal mixture do estimated class
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 621

TABLE 2
Comparison of the Conventional Multivariate,

Endogenous-Constrained-x , and Exogenous-x
Approaches Using Complete-Case Data and

Parameters From Arminger et al. (1999):
Results Shown for a Single Sample of N = 500

Estimate (SE) for a Single Sample

Parameter
Gen.
Value

Conventional
Multivariate

Mixture

Conditional
Mixture:

Endogenous-
Constrained-x

Conditional
Mixture:

Exogenous-x

Class 1
Intercept

(μ(1))
−.5 .066 (.136) −.591 (.064) −.591 (.064)

Slope of y on
x1 (γ (1)

1 )
−1 .012 (.139) −.966 (.064) −.966 (.064)

Slope of y on
x2 (γ (1)

2 )
−1.5 .037 (.204) −1.493 (.049) −1.493 (.049)

Slope of y on
x3 (γ (1)

3 )
.5 .060 (.186) .601 (.067) .601 (.067)

Resid. var.
(σ 2(1))

.5 1.248 (.110) .560 (.072) .560 (.072)

Class 2
Intercept

(μ(2))
.5 .126 (.380) .580 (.077) .580 (.077)

Slope of y on
x1 (γ (2)

1 )
1 .042 (.228) .830 (.075) .830 (.075)

Slope of y on
x2 (γ (2)

2 )
1.5 .216 (.173) 1.400 (.055) 1.400 (.055)

Slope of y on
x3 (γ (2)

3 )
−.5 .040 (.273) −.481 (.096) −.481 (.096)

Resid. var.
(σ 2(2))

1 11.504 (1.361) 1.066 (.112) 1.066 (.112)

Multinomial
intercept
(α(1))∗

0 .668 (.129) −.144 (.132) −.144 (.132)

locations and proportions change based on the need to repro-
duce higher order moments of nonnormal covariates from the
regression mixture. In contrast, the endogenous-constrained-
x approach renders the covariate distribution distinct from
the conditional distribution in the modified joint likelihood.
Note that this inability of the conventional multivariate ap-
proach to recover parameters of this conditional likelihood
for nonnormal x’s is not a sample size issue. To illustrate this
point, the Online Appendix shows that its poor performance
persists at N = 50,000.

Other equivalencies can be noted between the exogenous-
x and endogenous-constrained-x approaches for complete-x
data. With complete-x data, these two approaches can be
shown to yield the same result (e.g., same degrees of free-
dom, likelihood ratio test [LRT] statistic, Bayesian informa-
tion criterion difference [BIC], etc.) for a model comparison
evaluating the within-class and/or between-class effect of x.
To illustrate this, we must explicitly designate the param-
eters of the conditional distribution of inferential interest
here: θ and ϕ. θ contains all parameters of the within-class
model (e.g., θ = [μ(1),..,μ(K),�(1),..,�(K),σ2(1),..,σ2(K)]).

ϕ contains all parameters of the between-class model (e.g.,
ϕ = [α(1), ..., α(K),ω(1), ...,ω(K)]). The parameters of the
nuisance marginal distribution of the x’s are denoted δ. Fur-
ther, suppose θB and ϕB contain parameters of the condi-
tional distribution when x is allowed to predict y in the man-
ner of interest. Also suppose θA and ϕA contain parameters
of the marginal distribution of y when x is not allowed to
predict y in this manner. In Equation (12), the LRT statistic
under the endogenous-constrained-x approach is depicted on
the left and the LRT statistic under the exogenous-x approach
is to the right.

−2 ln

(
L (δ|x) L

(
θA,ϕA|y)

L (δ|x) L
(
θB,ϕB |(y|x)

)
)

= −2 ln

(
L
(
θA,ϕA|y)

L
(
θB,ϕB |(y|x)

)
)

(12)

Within the brackets on the left versus right side, the nu-
merator likelihoods differ, and the denominator likelihoods
differ, but the ratio of likelihoods is equivalent. First con-
sider the left side of the equality. The denominator likeli-
hood corresponds with the endogenous-constrained-x spec-
ification in which x directly predicts y and/or indirectly
predicts y through class (e.g., Equation (9)). In the numer-
ator likelihood, these slope(s) of x predicting y have been
fixed to 0 (e.g., fixing multinomial slopes ω

(k)
1 ...ω(k)

p = 0 for
all k in Equation (9)). However, the constrained marginal
distribution of x is still included, unchanged. Now consider
the right side of the equality. The denominator likelihood
corresponds with the exogenous-x specification in which x
directly predicts y and/or indirectly predicts y through class
(e.g., Equation (4)). In the numerator likelihood, x has been
removed from the model entirely. In Equation (12), parame-
ters describing the marginal distribution of x (denoted δ) are
distinct from those involved in the model comparison (de-
noted θA,ϕA, θB ,ϕB), and L(δ|x) effectively cancels on the
left side.

Here we illustrate the equivalence in Equation (12) in the
context of evaluating whether x predicts y directly within
class. Both LRT statistics in Equation (12) were computed
for the single sample from Table 2 that was simulated after
Arminger et al. (1999).7 The LRT statistic (H0:γ (1)

1 =γ
(1)
2

=γ
(1)
3 =γ

(2)
1 =γ

(2)
2 =γ

(2)
3 =0, i.e., inclusion of x does not

7In this illustration of testing the within-class effect of x, the like-
lihood ratios in Equation (12), considering parameters unknown, are
based on the following probability density function (PDF) ratios:

f (xi |δ)
∑K

k=1 p(ci=k|ϕ(k)
A

)f (yi |ci=k,θ
(k)
A

)

f (xi |δ)
∑K

k=1 p(ci=k|ϕ(k)
B

)f (yi |xi ;ci=k,θ
(k)
B

)
=

∑K
k=1 p(ci=k|ϕ(k)

A
)f (yi |ci=k,θ

(k)
A

)∑K
k=1 p(ci=k|ϕ(k)

B
)f (yi |xi ;ci=k,θ

(k)
B

)
. If

instead we had wanted to test the between-class effect of x, the likelihood
ratios in Equation (12), considering parameters as unknown, would

be based on these PDF ratios:
f (xi |δ)

∑K
k=1 p(ci=k|ϕ(k)

A
)f (yi |ci=k,θ

(k)
A

)

f (xi |δ)
∑K

k=1 p(ci=k|xi ,ϕ
(k)
B

)f (yi |ci=k,θ
(k)
B

)
=

∑K
k=1 p(ci=k|ϕ(k)

A
)f (yi |ci=k,θ

(k)
A

)∑K
k=1 p(ci=k|xi ,ϕ

(k)
B

)f (yi |ci=k,θ
(k)
B

)
. Other possibilities include, for in-

stance, testing the between-class effect of x using a model that already
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622 STERBA

improve fit) for the endogenous-constrained-x approach
in Equation (12): χ2(6) =444.92 = (−2×(−3069.09 +
2846.63)) matches the LRT statistic for the exogenous-
x approach in Equation (12): χ2(6) = 444.92 =
(−2×(−1035.50 +813.04). Neither matches a correspond-
ing LRT statistic for the conventional multivariate mixture
(χ2(6) =1.79). Mplus syntax for both models employed in
this LRT comparison, using the endogenous-constrained-x
approach, is provided in Appendix B. It also would have
been possible to conduct LRTs for each x instead of the set
of three x′s. This illustration shows that an LRT for inves-
tigating effects of covariates within class provides the same
results using endogenous-constrained-x versus exogenous-x
approaches.

Also, information criteria differences (e.g., �BIC) for
model comparisons involving class enumeration will corre-
spond for both approaches under complete-x data.8 For in-
stance, in the simulated example from Table 2, comparing
K = 1 versus K = 2, �BIC = 532.22 = 2226.66–1694.44,
�df = 6 (for exogenous-x) and �BIC = 532.22 = 6349.77-
5817.55, �df = 6 (for endogenous-constrained-x).

Another equivalency between the endogenous-
constrained-x versus exogenous-x approaches for complete-x
data concerns posterior probabilities of class membership.
Posterior probabilities are useful in assessing classification
accuracy and in calculating modal class assignments. The
left side of Equation (13) depicts posterior probabilities
obtained after fitting the modified joint likelihood in Equa-
tion (10) (endogenous-constrained-x). The right side depicts
posterior probabilities obtained after fitting the conditional
likelihood in Equation (5) (exogenous-x). f (xi) cancels on
the left side.

p(ci = k|yi , xi) = f (xi)p(ci = k)f (yi |xi ; ci = k)

f (xi)
∑K

k=1 p(ci = k)f (yi |xi ; ci = k)

= p(ci = k)f (yi |xi ; ci = k)∑K
k=1 p(ci = k)f (yi |xi ; ci = k)

(13)

For instance, a person from the Table 2 sample with yi =
.247, x1i = .833, x2i = −.547, x3i = −.401 has posterior
probabilities of .322 for k = 1 and .678 for k = 2 using either
the exogenous-x or endogenous-constrained-x approach.

In sum, we contrasted two existing approaches and one
new approach for specifying mixture models with covariates.
We discussed that the conventional multivariate approach, al-
though it would accommodate missing x′s, is not applicable
for researchers interested in interpreting a conditional mix-
ture in that it need not recover generating conditional distri-
bution parameters of interest when x′s are nonnormal. We dis-
cussed that the exogenous-x approach is also limited in that

contained the within-class effect of x; corresponding PDF ratios are
f (xi |δ)

∑K
k=1 p(ci=k|ϕ(k)

A
)f (yi |xi ;ci=k,θ

(k)
A

)

f (xi |δ)
∑K

k=1 p(ci=k|xi ,ϕ
(k)
B

)f (yi |xi ;ci=k,θ
(k)
B

)
=

∑K
k=1 p(ci=k|ϕ(k)

A
)f (yi |xi ;ci=k,θ

(k)
A

)∑K
k=1 p(ci=k|xi ,ϕ

(k)
B

)f (yi |xi ;ci=k,θ
(k)
B

)
.

8We assume no local solutions are obtained for either model under com-
parison using either approach.

it does not retain cases with missing x′s. The endogenous-
constrained-x approach recovers parameters of the condi-
tional distribution, LRT and �BIC results, and posterior
probabilities equivalently to the exogenous-x approach, with
complete-x data. Moreover, the endogenous-constrained-x
approach does not require complete-x data. Next, Study 2 ad-
dresses this approach’s performance under missing x′s. Due
to the poor performance of the conventional multivariate mix-
ture at recovering parameters of a conditional mixture—the
objective of not only this article but also of many psychology
applications—the conventional multivariate mixture is not
considered further under missing-x in Study 2.

STUDY 2: RECOVERING PARAMETERS OF A
CONDITIONAL MIXTURE WITH MISSING X ’S

As mentioned earlier, cases with missing covariates are
typically listwise deleted in conditional mixture applica-
tions in order to fit the model by maximizing a conditional
likelihood (exogenous-x approach) using the Expectation-
Maximization algorithm (EM; McLachlan & Peel, 2000).
Under this approach, the EM algorithm accommodates miss-
ing data on measured outcomes (see Lee & Song, 2003) and
on the latent classification variable (i.e., unobserved class
memberships) but not on measured covariates. This approach
is suboptimal for two reasons. First, it results in efficiency
loss. Second, when covariates are MCAR (wherein the prob-
ability of missingness depends on neither unobserved nor
observed variables in the model; Rubin, 1976), it will not
result in parameter bias. But if covariates are a kind of MAR
(wherein the probability of missingness can depend on ob-
served outcomes in the model) listwise deletion can intro-
duce parameter bias (e.g., Little, 1992; Little & Zhang, 2011;
Rabe-Hesketh & Skrondal, 2014).

In contrast, using EM with the endogenous-constrained-x
approach in Equation (9), (10), or (11) to fit conditional mix-
tures allows cases with missing x to be retained under MAR
assumptions for x-missingness. Denoting xi = (xobs

i , xmis
i ),

where xobs
i is the observed portion of xi and xmis

i is the miss-
ing portion, the casewise observed data likelihood can be
expressed by integrating the joint likelihood over the miss-
ing values:

Li =
∫

f (yi |xobs
i , xmis

i )f (xobs
i , xmis

i )dxmis
i (14)

(Ghahramani & Jordan, 1997; Little & Rubin, 1983; see
also Marlin, 2008). Here we do not consider missing y’s
because this has been previously discussed by Lee and Song
(2003) and Chung, Park, and Lanza (2005) and because it
is already widely accommodated in EM implementations for
fitting mixtures.

In contrast to the complete-x context, in the missing-x con-
text nonnormal covariates have the potential to induce some
bias in estimates of conditional distribution parameters, even
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 623

under the endogenous-constrained-x approach. This is be-
cause, in the missing-x context, factorization of the joint like-
lihood in Equation (14) is approximate and no longer holds
precisely (see Schafer, 1997). Hence, a simulation study is
needed to compare the (typical software default) exogenous-
x approach with the endogenous-constrained-x approach for
estimating parameters of a conditional mixture with missing
x′s.

Hypotheses

In Study 2 we compare the performance of the endogenous-
constrained-x approach (which retains all cases and assumes
MAR) with the exogenous-x approach (which involves
listwise deletion of cases9 with missing x10). We compare
these approaches under two missingness proportions, two
mechanisms for x-missingness (MCAR vs. MAR), and two
distributions of x (normal vs. nonnormal). This study asks,
when x-missingness is MAR versus MCAR and when x′s
are normal versus nonnormal, is it preferable to treat x′s as
exogenous or use the endogenous-constrained-x approach?

Hypothesis 1. The exogenous-x approach will show
more bias and less efficiency under MAR missingness (here,
dependent on observed outcomes) and larger missingness
proportions; it will be insensitive to the distribution of x′s.

Hypothesis 2. The endogenous-constrained-x ap-
proach will be insensitive to the missingness mechanism
(MAR vs. MCAR) and the missingness proportion. Whereas
the endogenous-constrained-x approach has the potential to
be sensitive to the distribution of the x′s, we hypothesize that
bias incurred under nonnormal x′s will be relatively small.

Methods

The generating model was a conditional groups-based tra-
jectory model (Nagin, 2005), which is a particularly widely
used conditional mixture (Bauer, 2007; Nagin & Odgers,
2010). Population growth coefficients (see later) were cho-
sen to resemble empirical results from Nagin and Trem-
blay’s (2001) oppositional behavior application. To be con-
sistent with this application, our generating model also had
four classes and seven repeated measures. Note that the
Study 2 simulation was rerun with a different number of
repeated measures (five) and the same pattern of results

9When longitudinal conditional mixtures are specified in multivariate
(wide) format, listwise deletion of cases with missing covariate(s) is re-
quired under the exogenous-x approach. When these models are specified
in multilevel (long) format, listwise deletion of observations with missing
time-varying covariates but cases with missing time-invariant covariates
is required. To simplify presentation, examples used here do not include
time-varying covariates.

10Hereafter, exogenous-x approach refers to its typical implementation:
a conditional likelihood specification using listwise deletion for cases with
missing x’s.

was obtained. In class k, at occasion t,yti |t imeti , ci = k ∼
N (μ(k) + γ

(k)
1 t imeti + γ

(k)
2 t ime2

t i , σ
2(k)). Time scores were

0, 1, 2, 3, 4, 5, 6. Two uncorrelated predictors of class mem-
bership were included as in Equation (1):
p(ci = k|x1i , x2i) = exp(α(k) + ω

(k)
1 x1i + ω

(k)
2 x2i)/

∑K
k=1

exp(α(k) + ω
(k)
1 x1i + ω

(k)
2 x2i). In fitted models, multinomial

coefficients in the last class were fixed to 0 for identification:
α(4) = ω

(4)
1 = ω

(4)
2 = 0.

Residual variances were time and class invariant (σ 2(k) =
σ 2 = 1). Class-specific parameters were as follows:

μ(1) = 4.0; γ
(1)
1 = .10; γ

(1)
2 = −.02; α(1) = −1; ω

(1)
1 = 1; ω

(1)
2 = −.75

μ(2) = 2.7; γ
(2)
1 = −.3; γ

(2)
2 = −.03; α(2) = .1; ω

(2)
1 = .5; ω

(2)
2 = −.25

μ(3) = 1.0; γ
(3)
1 = .25; γ

(3)
2 = .05; α(3) = −.8; ω

(3)
1 = .75; ω

(3)
2 = −.5

μ(4) = .03; γ
(4)
1 = .01; γ

(4)
2 = .00; α(4) = 0; ω

(4)
1 = 0; ω

(4)
2 = 0

.

The multinomial coefficients implied that the marginal
class probabilities were .13, .38, .15, .34.

Recall that the manipulated conditions were two miss-
ingness percentages (15% vs. 35%), two missingness
mechanisms (MCAR vs. MAR, described later), and two
distributions of x’s (normal or nonnormal, described later).
For the normal-x condition, x1 and x2 were standard
normally distributed; for the nonnormal-x condition, they
were distributed as χ2(1)—transformed to have mean 0
and variance 1. Five hundred samples of N = 500 were
generated for these two x-distribution conditions using SAS
9.2. This N was found to be a typical sample size used in
social science mixture applications by Sterba et al. (2012).
For each sample, missingness was generated according to
each of the four combinations of missingness mechanism
and percentage. The two missingness percentages used were
previously considered realistic for practice (Enders & Ban-
dalos, 2001; Merkle, 2011; Wothke, 2000). The probability
that x’s were missing, denoted p(mi = 1), depended on
the score of the first repeated measure. In the MAR 35%
missing condition, p(mi = 1) = exp(−1.55 + .5y1i)/(1 +
exp(−1.55 + .5y1i)) and in the MAR 15% missing condition,
p(mi = 1) = exp(−2.8 + .5y1i)/(1 + exp(−2.8 + .5y1i)).

For each sample, four-class conditional groups-based tra-
jectory models were fit in Mplus 7 with the EM algorithm—
using either the exogenous-x or endogenous-constrained-x
approach. Mixture models can be identified up to an ar-
bitrary ordering of the class labels. The potential for la-
bel switching across samples within cell was addressed us-
ing procedures described in, for instance, Asparouhov and
Muthén (2010) and Cho, Cohen, and Kim, (2011). According
to McLachlan and Peel (2000) and Stephens (2000), these
procedures are most common. The same procedures were
used in each cell. Class separation in the population values
of the intercept parameters (μ(k)) was sufficient to allow con-
sistent label ordering when an inequality on the order of class-
specific intercepts was imposed. It could be satisfied by only
one permutation of the class labels. The order was initialized
with three out of four intercept values in conjunction with
repeated random starts. As a subsequent check, distributions
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624 STERBA

TABLE 3
Comparing the Exogenous-x Approach Versus Endogenous-Constrained-x Approach, With Missing x′s: Percentage Absolute

Relative Bias (%ARB) for Each Parameter Type

Normal x′s Nonnormal x′s

MAR MCAR MAR MCAR

Endog-constr Exog Endog-constr Exog Endog-constr Exog Endog-constr Exog

35% missingness

Growth coefficient∗ 5.61 93.13 5.75 7.99 8.06 82.73 7.99 7.69
Multinomial coefficient∗ 7.13 59.68 7.57 8.98 18.33 59.49 3.87 5.80
Residual variance 0.27 1.01 0.27 0.39 0.27 1.05 0.27 0.48

15% missingness

Growth coefficient∗ 5.57 40.97 5.57 6.17 8.19 28.95 8.08 7.05
Multinomial coefficient∗ 7.58 26.35 8.09 8.48 6.19 25.87 3.52 4.02
Residual variance 0.27 0.71 0.27 0.32 0.27 0.74 0.27 0.33

Note. ∗ = %ARB was calculated separately for each parameter, and then the %ARB’s for parameters of a particular type were averaged. One parameter
type was growth coefficients: classes’ intercept, linear, and quadratic growth coefficients. Another parameter type was multinomial coefficients: multinomial
intercepts and multinomial slopes of x’s that predict class. Endog-constr = endogenous-constrained-x approach; Exog = exogenous-x approach; MCAR =
missing completely at random; MAR = missing at random (here, where missingness depended on observed outcomes). One growth coefficient’s %ARB
was undefined because its population parameter was 0; it was not included in the average %ARB. An Online Appendix provides %ARB for each parameter
individually.

of estimates from fitted solutions were inspected for label
switching. We employed 200 sets of random starting values
per sample to decrease the risk of local solutions.

The outcomes of interest for parameter estimates were
percentage absolute relative bias (%ARB) and relative
efficiency (RE). For a generic parameter ϑ , %ARB =
|(( ¯̂ϑ − ϑ)/ϑ) × 100|. RE is defined as a parameter’s em-
pirical repeated sampling standard deviation (SD) under the
exogenous-x approach divided by its standard deviation un-
der the endogenous-constrained-x approach.

Results and Discussion

Convergence was 99–100%. %ARB and RE were calcu-
lated for each parameter separately. Subsequently, averages
of these %ARB and RE values were calculated and reported
for each type of parameter, in Tables 3 and 4, respectively.
This averaging was done for simplicity and because results
were similar for a parameter type (i.e., for growth coeffi-
cients (μ(k),�(k)), for multinomial coefficients (α(k),ω′(k)),
and for residual variance (σ 2)).11 Tables containing%ARB
results for each individual parameter separately are given in
the Online Appendix. The Online Appendix also contains,
for each parameter separately, the across-samples average of
the estimate, the standard deviation, and the average analytic
standard error of the estimate (SE).

11Similar reporting procedures were used in Lu, Zhang, and Lubke (2011);
Forero, Maydeu-Olivares, and Gallardo-Pujol, (2009); and Reinartz, Echam-
badi, and Chin, (2002).

Table 3 shows that, for nearly every parameter type, the
endogenous-constrained-x approach yielded smaller %ARB
than the popular exogenous-x approach within each cell of
the simulation.

More specifically, in support of Hypothesis 1, Table 3
shows that using the exogenous-x approach, there could be
much greater bias when missingness was MAR (vs. MCAR).
These patterns were more prominent for higher missingness
(35%) and for growth coefficients (i.e., μ(k), �(k)). Whether
the distribution of x was normal or nonnormal did not matter,
as expected. Under the anticipated unfavorable condition
for the exogenous-x approach (i.e., MAR missingness de-
pendent on observed outcomes) at 35% missingness,%ARB
was for growth coefficients (μ(k),�(k)) 82.73–93.13%, for
multinomial coefficients (α(k),ω′(k)) 59.49–59.68%, and
for residual variance (σ 2) 1.01–1.05%. Under the same
MAR condition at 15% missingness,%ARB was for growth
coefficients 28.95–40.97%, for multinomial coefficients
25.87–26.35%, and for residual variance 0.71–0.74%.

In support of Hypothesis 2, Table 3 also shows that, when
using the endogenous-constrained-x approach, there could be
slightly more bias when x was extremely nonnormal (χ2(1)).
Whether missingness was MAR versus MCAR and whether
the missingness proportion was 15% or 35% mattered little,
as expected. Under the anticipated unfavorable condition for
the endogenous-constrained-x approach (i.e., extreme non-
normality)%ARB was for growth coefficients (μ(k),�(k))
7.99–8.19%, for multinomial coefficients (α(k),ω′(k))
3.52–18.33%, and for residual variance (σ 2) 0.27%.

Additionally, Table 4 shows that the exogenous-x
approach generally led to worse efficiency than the
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 625

TABLE 4
Comparing the Exogenous-x Approach Versus

Endogenous-Constrained-x Approach, With Missing
x ′s: Relative Efficiency (RE) for Each Parameter Type

Normal x′s Nonnormal x′s

MAR MCAR MAR MCAR

35% missingness
Growth coefficient∗ 1.38 1.30 1.29 1.41
Multinomial coefficient∗ 1.03 1.03 0.95 1.07
Residual variance 1.27 1.28 1.28 1.24

15% missingness
Growth coefficient∗ 1.12 1.10 1.11 1.14
Multinomial coefficient∗ 1.01 1.01 0.98 1.02
Residual variance 1.10 1.07 1.12 1.08

Note. ∗ = RE was calculated separately for each parameter, and then
the RE’s for parameters of a particular type were averaged. One parameter
type was growth coefficients: classes’ intercept, linear, and quadratic growth
coefficients. Another parameter type was multinomial coefficients: multi-
nomial intercepts and multinomial slopes of x′s that predict class. MCAR
= missing completely at random; MAR = missing at random (here, where
missingness depended on observed outcomes).

endogenous-constrained-x approach. That is, RE ratios were
greater than 1 in 22 out of 24 cells of Table 4. The exogenous-
x approach had particularly worse efficiency under larger
missingness proportions and for growth coefficients (where it
was 29–41% less efficient than the endogenous-constrained-
x approach).

In sum, for conditions examined here, the endogenous-
constrained-x approach emerged as a more attractive option
for handling x-missingness in conditional mixtures. This
approach is particularly attractive when the x-missingness
mechanism is unknown as is the case in real-world settings
(and thus possibly MAR depending on observed outcomes)
and when the proportion of missingness is sizable.

Generalizability of Study 2 Results

The Study 2 simulation involved one chosen MAR mech-
anism and one chosen degree of x-nonnormality. Here we
address how the results would be expected to generalize to
other levels of MAR and nonnormality. Our x-nonnormality
was intentionally chosen to be extreme to provide a conser-
vative evaluation of the proposed endogenous-constrained-
x approach, whereas the MAR condition was chosen to
be moderate to provide a more liberal evaluation of the
exogenous-x approach for comparison purposes, as follows.
The x-nonnormality in Study 2 (and Study 1), χ2(1), implied
kurtosis of approximately 12 and skewness of approximately
3. Such skew and kurtosis can be considered extreme ac-
cording to Micceri’s (1989) survey, which reported that only
8% of psychological variables had kurtosis > 3 and only
10% had skewness > 2. The degree of MAR in Study 2,
on the other hand, could be considered moderate rather than
extreme because it implied an average correlation between
missingness and the observed variable on which missingness

depends (i.e., y1) of r = .38 for the 35% MAR condition
and r = .29 for the 15% MAR condition. This is a medium
effect size according to Cohen (1988, p. 80). Other simula-
tions have considered more extreme MAR mechanisms as
potentially reflective of practice (e.g., r = .60; Yuncel, He,
& Zaslavsky, 2011; r = .45; Allison, 2006; r = .67 and .45;
Graham, 2012). Thus, based on previous studies, we could
have chosen a stronger MAR mechanism (more departure
from MCAR) and/or weaker nonnormality. Either could re-
sult in a greater bias advantage for endogenous-constrained-x
compared with exogenous-x. If the MAR mechanism were
instead chosen to be very weak (regardless of whether x-
nonnormality remained extreme or was reduced), both ap-
proaches should have quite low bias at that point. However,
the exogenous-x approach would still be less efficient. Next,
an empirical example is used to illustrate how the perfor-
mance of the endogenous-constrained-x approach general-
izes to other conditions not considered in the simulations.

EMPIRICAL EXAMPLE

The simulations described earlier used continuous y′s and x′s.
Here we use an empirical example to show how those simu-
lation results generalize to alternative outcome and covariate
distributions. Specifically, this empirical illustration involves
six binary y′s and a combination of two binary x′s and two
nonnormal (continuous) x′s. The empirical illustration sam-
ple consists of 17- to 18-year-olds exiting Midwestern state-
run or foster care facilities (Courtney & Cusick, 2007). These
adolescents are at high risk of conduct problems (McMillen
et al., 2005). The goal of this analysis is to use a condi-
tional latent class analysis model (e.g., Collins & Lanza,
2010) to predict membership in latent classes of conduct dis-
order symptoms. The six binary conduct disorder outcomes
serve as indicators of class membership. These outcomes are
property damage, stealing > $50, breaking/entering, making
threats, group fighting, and weapon use. Four x′s serve as
predictors of class membership. They are gender (binary),
social support (a continuous standardized scale score from
Courtney & Cusick, 2007), employment status (binary), and
physical abuse history (continuous). The two continuous co-
variates were nonnormally distributed. Physical abuse had
skew = 1.73 and kurtosis = 2.14. Social support had skew
= –.84 and kurtosis = .06.

Our interest is in comparing the results of the exogenous-
x and endogenous-constrained-x approaches within sample,
given complete-x versus missing-x data. Hence, we needed
access to a complete-x data set from which we could con-
struct a missing-x data set. Our complete-x data set had
N = 698. Our missing-x data set was created by induc-
ing missingness on two of the four covariates at a rate
(39%) that matched the empirical rate of missingness on the
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626 STERBA

covariates at a follow-up survey (ages 19–20).12 Specifically,
the missing-x data set was created by generating missing
values for two sensitive questions—physical abuse history
and employment status—in the age 17–18 data set under an
MAR process in which adolescents were more likely to re-
spond on the sensitive questions if they had higher social sup-
port: p(mi = 1) = exp(−.5 − .7supporti)/(1 + exp(−.5 −
.7supporti)).13 There was no missingness on y or on the
other two covariates (social support and gender).

First we select K. Under the assumption that covariates
only predict class membership and do not enter the within-
class model, class enumeration can employ an unconditional
mixture, as done here (Bandeen-Roche, Miglioretti, Zeger,
& Rathouz, 1997; Collins & Lanza, 2010; Lubke & Muthén,
2007). The best-fitting number of classes was chosen as K = 2
based on BIC comparisons of unconditional latent class mod-
els with K = 1 (BIC = 3600.85), K = 2 (BIC = 3336.529),
and K = 3 (BIC = 3340.996). One class, containing 17.6% of
adolescents, had higher endorsement probabilities of all con-
duct disorder symptoms, particularly property damage and
fighting. The other, a low-problems class, consisted of 82.4%
of adolescents. Next, conditional latent class models with x’s
predicting class were fit with K = 2 using both approaches
for the complete-x and missing-x data sets.

Results in Table 5 show that, for complete-x data,
the exogenous-x and endogenous-constrained-x results14

match—as was the case in earlier simulations with continu-
ous y’s and x’s. Table 5 also shows that, for missing-x data,
standard errors under the exogenous-x approach are largest
due to the efficiency loss incurred in listwise deletion, which
reduced the sample from 698 to 425.

To interpret the effects of predictors on class member-
ship, we focus on the endogenous-constrained-x approach
results for the missing-x data set and exponentiate multi-
nomial slopes (ω(k)

1 , ω
(k)
2 , ω

(k)
3 , ω

(k)
4 ) for the four predictors.

Doing so indicates that the odds of being in the high conduct
problems class versus the low problems class significantly
increase by a factor of 1.30 for each physical abuse expe-
rience and by a factor of 4.72 for being male, where each

12The follow-up survey was not used in the current analysis of 17- and
18-year-olds; it was just used to gauge an externally valid missing x rate for
the participants when constructing the missing-x data set.

13The endogenous-constrained-x approach accommodates MAR missing-
ness depending on any observed variables in the model (y′s or x′s). Previ-
ous research outside the mixture context has shown that the exogenous-x
approach risks bias when x-missingness depends on y′s rather than x′s (see
Little, 1992, p. 1229). We also generated x-missingness on abuse history and
employment that depended on y1 (the property damage symptom):p(mi =
1) = exp(−.5 + .7propdmgi )/(1 + exp(−.5 + .7propdmgi )). The same
overall pattern of results was found with respect to the comparison of the
endogenous-constrained-x and exogenous-x approaches, though only a sin-
gle sample was used here.

14When comparing parameter estimates across alternative mixture models
fit to the same sample, it is important to ensure (e.g., using starting values)
that the classes retain the same order.

TABLE 5
Empirical Example Results

Parameter

Complete-x
Endogenous-
Constrained

N = 698

Complete-x
Exogenous
N = 698

Missing-x
Endogenous-
Constrained

N = 698

Missing-x
Exogenous
(Listwise
Deletion)
N = 425

Multinomial coefficients
α(1) −2.53∗(.37) −2.53∗(.37) −2.58∗(.43) −2.88∗(.71)
ω

(1)
1 (male) 1.47∗(.31) 1.47∗(.31) 1.55∗(.33) 1.83∗(.56)

ω
(1)
2 (employed) −.67∗(.30) −.67∗(.30) −.90∗(.40) −1.00∗(.43)

ω
(1)
3 (support) −.37∗(.13) −.37∗(.13) −.36∗(.13) −.53∗(.20)

ω
(1)
4 (abuse) .27∗(.07) .27∗(.07) .26∗(.09) .28∗(.10)

Class 1 thresholds†
Prop dmg −.76∗(.27) −.76∗(.27) −.77∗(.28) −.63(.33)
Steal .43(.23) .43(.23) .39(.24) .14(.34)
Break/enter .13(.26) .13(.26) .06(.28) −.37(.47)
Threat .22(.23) .22(.23) .18(.23) −.04(.32)
Group fight −.37(.22) −.37(.22) −.42(.23) −.27(.30)
Weapon .28(.22) .28(.22) .24(.22) .21(.31)

Class 2 thresholds†
Prop dmg 2.15∗(.19) 2.15∗(.19) 2.11∗(.18) 1.87∗(.21)
Steal 3.30∗(.29) 3.30∗(.29) 3.28∗(.28) 3.25∗(.37)
Break/enter 3.43∗(.29) 3.43∗(.29) 3.43∗(.29) 3.46∗(.38)
Threat 3.72∗(.46) 3.72∗(.46) 3.66∗(.46) 3.26∗(.46)
Group fight .85∗(.10) .85∗(.10) .85∗(.10) .80∗(.12)
Weapon 2.80∗(.24) 2.80∗(.24) 2.79∗(.24) 2.76∗(.29)

Note. ∗ = p < .05. †Thresholds can be converted to probabilities; prob-
ability = 1/(1 + exp(threshold)). Prop dmg = property damage.

effect controls for other predictors. On the other hand, the
odds of being in the high versus low problems class are
significantly reduced by a factor of .41 (or 59%) for being
employed and by a factor of .71 (or 29%) for every 1 SD
increase in social support, controlling for other predictors.
The finding that having a prior abuse history and being male
serve as risk factors for membership in the conduct prob-
lems class but having social support and employment serve
as protective factors is consistent with prior theories of risk
and resilience (e.g., Rutter, 1987). The latter finding is also
consistent with social control theories (e.g., Brame, Bushway,
Paternoster, & Apel, 2004; Crutchfield, 2014; Hirschi, 1969).
Nevertheless, causal inferences are not warranted particularly
because social support level and employment status were
measured at the same time as the conduct problems (Shadish,
Cook, & Campbell, 2002). One way to somewhat strengthen
the grounds for inferring causation would be to assess the
effect of employment status at time t-1 on conduct problem
profile at time t, controlling for conduct problem profile at
time t-1.

DISCUSSION

Applications of conditional mixture models are common be-
cause researchers want to predict unobserved individual het-
erogeneity in behavior or in change over time using external
covariates as part of assessing the construct validity of a ty-
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CONDITIONAL MIXTURES WITH MISSING COVARIATES 627

pology (e.g., Bandeen-Roche, Miglioretti, Zeger, & Rathouz,
1997; Chung et al., 2006; Goodman, Crouter, Lanza, Cox,
& Vernon-Feagans, 2011; Jedidi et al., 1996; Muthén, 2002;
Nagin, 2005; Schaeffer et al., 2006; Sterba & Bauer, 2014).
Psychologists currently fit conditional mixtures using a con-
ditional likelihood specification that treats covariates as fixed
and fully observed. Using this exogenous-x approach, miss-
ingness on covariates is most commonly handled with list-
wise deletion, which is inefficient and requires that covariate
missingness not depend on outcomes.

For researchers with incomplete covariates and the objec-
tive of interpreting a conditional mixture, this article consid-
ered a modified joint likelihood approach that could retain all
available cases under more realistic MAR assumptions. Pre-
vious research with complete-x data had shown that one joint
likelihood approach, a conventional multivariate normal mix-
ture, could not meet the objective of recovering conditional
mixture parameters under x nonnormality of arbitrary ori-
gin. This article provided the first explanation of this finding,
showing that the conventional multivariate mixture violates
a necessary assumption for drawing conditional model infer-
ence from a multivariate model with random regressors (e.g.,
Bollen, 1989; Johnston, 1984). A modified joint likelihood
approach—an endogenous-constrained-x approach—avoids
this violation.

After demonstrating that the proposed approach per-
formed well at recovering parameters of the conditional mix-
ture under complete-x, we evaluated its performance more
thoroughly for missing x′s in comparison with the typical
exogenous-x approach. Simulation results with missing x′s
evidenced that treating x′s as endogenous-constrained when
fitting a mixture model was preferable (in terms of lower
bias and better efficiency) to the typical exogenous-x ap-
proach across a variety of conditions. Although this simu-
lation with missing x′s involved only one kind of predictor
effect (i.e., x′s predicting class membership), the same pat-
tern of results was obtained in several simulation checks with
other kinds of predictor effects (e.g., x′s predicting y′s within
class—exclusively or in addition to x′s predicting class mem-
bership). Results are available from the author upon request.
Furthermore, the pattern of results from the simulations was
also obtained in our empirical example on conduct problems,
which involved categorical x′s as well as continuous, nonnor-
mal x′s. Future research can evaluate the performance of the
endogenous-constrained-x approach across other conditions
and other kinds of mixture models.

Other Advantages of the
Endogenous-Constrained-x Approach

Other important advantages of the endogenous-constrained-x
approach are as follows. First, it is straightforward for applied
researchers to implement this approach in existing commer-
cial software for mixture modeling (see Appendix B for an
example). Next, the applicability of this approach is not lim-

ited to situations in which researchers desire to incorporate
covariates directly into the mixture model (called a one-step
or simultaneous estimation strategy). Rather, this approach
can also be used in conjunction with “three-step” estimation
strategies15 for incorporating predictors of class membership
(e.g., Asparouhov & Muthén, 2013; Vermunt, 2010b). These
three-step strategies currently incorporate predictors in Step
3 using an exogenous-x approach. The incorporation of pre-
dictors in Step 3 could instead be changed to an endogenous-
constrained-x approach, under MAR assumptions, to prevent
listwise deletion of cases with missing covariates.

The endogenous-constrained-x approach was demon-
strated here with three illustrative conditional mixtures—a
regression mixture (in Study 1), a conditional groups-based
trajectory model (in Study 2), and a conditional latent class
model (in the empirical example). An important strength of
this approach is that it can also be applied to many other
different kinds of conditional mixtures.

Another advantage is that the number of nuisance pa-
rameters that need to be estimated under the endogenous-
constrained-x approach is relatively small in that the required
number does not grow as K increases. A final advantage over
the exogenous-x approach can be noted. When incomplete
x′s are treated as exogenous, a problem maintaining the same
N arises when comparing mixtures with versus without x′s in
the model using information criteria or an LRT (i.e., Equa-
tion (12), right side). Fitting the latter model allows the full
sample, whereas fitting the former model uses a reduced N
due to listwise deletion. LRTs or information criteria require
using same N across competing models (e.g., Burnham & An-
derson, 2002; Enders, 2010). Researchers often address this
issue by using the reduced N for all fitted models, even un-
conditional models, sacrificing efficiency. In contrast, when
using the endogenous-constrained-x approach (e.g., LRT on
the left side of Equation (12)), the full sample could always
be used. Similarly, the full sample can be used in comparisons
any time x’s are endogenous.

When Is the Endogenous-Constrained-x
Approach Useful?

In nonmixture (e.g., multiple regression) contexts, re-
searchers are accustomed to generally obtaining the same
conditional model inference using a conditional or joint like-
lihood. In mixture contexts, researchers encounter a choice
because conditional mixtures and conventional multivari-
ate mixtures generally lead to different interpretations and

15An example three-step strategy is as follows. First an unconditional
mixture model may be fit, and posterior probabilities as well as modal class
assignments are saved. Second, these, along with estimated model parame-
ters, are used to calculate classification error probabilities (see Asparouhov
& Muthén, 2013; Vermunt, 2010b). Third, a conditional mixture model is
fit with covariates predicting class membership. Modal class assignments
serve as a nominal indicator of class, and the indicator’s K-1 thresholds per
class are fixed to a function of the classification error probabilities.
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628 STERBA

inferences. As stated previously, a fitted conventional multi-
variate normal mixture typically cannot recover parameters
of a conditional mixture (see our Study 1’s results and see
Arminger et al., 1999). Conversely, a fitted conditional mix-
ture typically cannot recover parameters of a conventional
multivariate normal mixture (see simulation results of In-
grassia et al., 2012).16 Hence, the researcher needs to decide
which model’s parameters are of substantive and inferential
interest and specify their fitted model accordingly.

This article assumed interest in recovering conditional
mixture parameters. Hence, both the Study 1 and 2 simula-
tions used exogenous-x conditional mixtures as population-
generating models (similar to Arminger et al., 1999, who
shared the same goal). This means that, first, x′s are gener-
ated. Next, class memberships are generated potentially as
a function of x′s. Finally, y′s are generated as a function of
class membership and potentially x′s. The reason for our fo-
cus on conditional mixtures is that, currently, empirical and
methodological articles in psychology concerning mixtures
with covariates largely choose to fit conditional mixtures
(rather than conventional multivariate mixtures) for substan-
tive reasons (e.g., Bauer, 2007; Collins & Lanza, 2010; Day-
ton & Macready, 1988; Dolan, 2009, Feldman et al., 2009;
Goodman et al., 2011; Lubke & Muthén, 2005; Muthén &
Shedden, 1999; Nagin, 2005; Pickles & Croudace, 2010;
Reinecke, 2006; Vermunt, 2010a; Wedel & DeSarbo, 1995).
Researchers also make this choice so they can distinguish be-
tween outcomes whose (conditional) distributions are used
to define the typology and covariates that can be used to val-
idate the typology but whose distributions do not define it.
According to Shadish et al. (2002), part of construct valida-
tion is deciding what variables are not definitional of a con-
struct so as to prevent what they call “construct confounding”
(p. 75). Similarly, in our empirical example we did not want
the distribution of covariates (e.g., gender and social sup-
port) to help define class structure—as the categorical latent
construct would then no longer be interpretable as a conduct
behavior symptom typology.

Should our interest have been in recovery of parameters
of a conventional multivariate mixture, that model could in-
stead have served as a generating model (e.g., Ingrassia et al.,
2012). Doing so would have required first generating class
membership, then generating x-distributions as a function of
class membership, and then generating y’s as a function of
class and potentially x’s. If researchers are interested in inter-
preting a conventional multivariate mixture (e.g., Equation
(8)) or a related multivariate mixture such as a parallel pro-
cess mixture (e.g., Sterba, 2013), there is no need to employ
the endogenous-constrained-x approach.

16Although Ingrassia et al. (2012) fit conditional mixtures using one ap-
proach (exogenous-x), their findings should hold using the other approach
(endogenous-constrained-x).

Limitations

Several limitations deserve mention. First, the simulation
held the sample constant at 500. Smaller sample sizes to-
gether with substantial proportions of missing data could
lead to high rates of estimation problems and empirical un-
deridentification for small classes (McLachlan & Peel, 2000),
which were not a focus here. Second, only one illustrative
MAR mechanism was used here in Study 2; generalizability
of the pattern of results under alternative levels of MAR was
discussed earlier. Third, there could be other ways to include
a saturated, class-invariantf (xi) in a modified joint likeli-
hood that were not explored here. Nevertheless, the method
considered here is simple to implement, generally applica-
ble, and was effective in the simulations conducted. Fourth,
Appendix A provided one kind of parameter transformation;
different kinds of model transformations are used in other
literatures for a variety of purposes (e.g., see von Oertzen
[2010] and von Oertzen & Brandmaier [2013] in the con-
text of power equivalence in structural equation modeling).
Fifth, although we considered only MAR mechanisms, co-
variates could be missing-not-at-random (MNAR). MNAR
covariates are addressed by Cai, Song, and Hser (2010)
within a Bayesian framework. Finally, if missingness propor-
tions were trivial—not considered here—the choice between
exogenous-x and endogenous-constrained-x approaches may
be of little empirical consequence.

Conclusions

We recommend the endogenous-constrained-x approach over
the typical exogenous-x approach for handling covariate
missingness when parameters of a conditional mixture model
are of inferential interest. Even for highly nonnormal x′s, this
approach can outperform an exogenous-x approach. The ad-
vantage of the endogenous-constrained-x approach in terms
of bias and efficiency was most notable for larger missing
data proportions and MAR mechanisms depending on ob-
served outcomes.
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APPENDIX A

Here an example set of special case criteria (Ingrassia,
Minotti, & Vittadini, 2012) is reviewed under which pa-
rameters of a particular conditional mixture (e.g., Figure 1
Panel C) could be solved for from parameters of a particular
fitted conventional multivariate (here, normal) mixture, as-
suming both models have the same within-class specification
off (yi |xi ; ci = k) and the same number of predictors, p.
These criteria are as follows:

1. Within class, yi and xi are multivariate normally dis-
tributed.

2. The covariance matrix of xi is class invariant (here
denoted �(k) = �). Note this is an assumption about
the data, not a parameter constraint.

3. Class proportions are balanced (i.e.,p(ci = k) =
(1/K)).

It is important to note that these criteria would have to
hold exactly in a given sample data set for this conver-
sion to be accurate using actual parameter estimates. Hence,
the conversion in Appendix A is of theoretical rather than
practical interest. To see why the aforementioned three cri-
teria are required for this conversion, we may start with
Equation (8):

f (yi , xi) =
K∑

k=1

f (yi |xi ; ci = k)f (xi |ci = k)p(ci = k)

= f (xi)
K∑

k=1

f (yi |xi ; ci = k)
f (xi |ci = k)p(ci = k)

f (xi)

(15)

The remaining steps do not concernf (yi |xi ; ci = k); under
the assumption of within-class multivariate normality, its pa-
rameters in Equation (2) would be unchanged.

Using Bayes’s rule (see also Li & Hser, 2011),

p(ci = k|xi) = f (xi |ci = k)p(ci = k)

f (xi)

= f (xi |ci = k)p(ci = k)∑K
k=1 f (xi |ci = k)p(ci = k)

.

Elaborating a sketched proof from Ingrassia et al. (2012,
Proposition 4), under the assumptions of p(ci = k) = (1/K)
and within-class normality, we have

p(ci = k|xi) = f (xi |ci = k)(1/K)

(1/K)
∑K

k=1 f (xi |ci = k)
= f (xi |ci = k)∑K

k=1 f (xi |ci = k)

=
1

(2π )p/2|�(k)|1/2 exp
{− 1

2

[
(xi − μ(k))′(�(k))−1(xi − μ(k))

]}
∑K

k=1
1

(2π )p/2|�(k)|1/2 exp
{− 1

2

[
(xi − μ(k))′(�(k))−1(xi − μ(k))

]}
Under the assumption �(k) = � we may simplify as follows:

p(ci = k|xi) =

exp
{− 1

2

[
(xi − μ(k))′�−1(xi − μ(k))

]}
∑K

k=1 exp
{− 1

2

[
(xi − μ(k))′�−1(xi − μ(k))

]} .

For shorthand, let ν(k) = − 1
2 [(xi − μ(k))′�−1(xi − μ(k))].

Consider the illustrative situation of K = 2. For the second
class, the conditional probability of class membership is

p(ci = 2|xi) = exp(ν(2))

exp(ν(1)) + exp(ν(2))
= 1

1 + exp(ν(1))
exp(ν(2))

= 1

1 + exp(ν(1) − ν(2))
, (16)
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where ν(1) − ν(2) is equal to

−1

2

([
(xi − μ1)′�−1(xi − μ1)

]− [
(xi − μ2)′�−1(xi − μ2)

])
= −1

2

(
x′

i�
−1xi − x′

i�
−1xi + μ1′�−1μ1 − μ2′�−1μ2

−x′
i�

−1μ1 − μ1′�−1xi + x′
i�

−1μ2 + μ2′�−1xi

)
= −1

2

(
μ1′�−1μ1 − μ2′�−1μ2 − x′

i�
−1μ1 − μ1′�−1xi

+ x′
i�

−1μ2 + μ2′�−1xi

)
= −1

2

(
μ1′�−1μ1 − μ2′�−1μ2 + (μ1′�−1μ2 − μ2′�−1μ1)

− μ1′�−1xi − μ1′�−1xi + μ2′�−1xi + μ2′�−1xi

)
= −1

2

(
(μ1′ − μ2′)�−1μ1 − (μ2′ − μ1′)�−1μ2

−2(μ1′�−1xi − μ2′�−1xi)
)

= −1

2

(
(μ1′ − μ2′)(�−1μ1 + �−1μ2) − 2(μ1 − μ2)′�−1xi

)
= −1

2

(
(μ1 − μ2)′�−1(μ1 + μ2) − 2(μ1 − μ2)′�−1xi

)
= −1

2

(
(μ1 − μ2)′�−1(μ1 + μ2)

)+ (
(μ1 − μ2)′�−1) xi .

Letting α
(1)
0 = − 1

2

(
(μ1 − μ2)′�−1(μ1 + μ2)

)
and

ω(1)′ = (
(μ1 − μ2)′�−1

)
substituting back in to Equa-

tion (15) yields p(ci = 2|xi) = 1
1+exp(α(1)

0 +ω(1)′xi )
and

p(ci = 1|xi) = exp(α(1)
0 +ω(1)′xi )

1+exp(α(1)
0 +ω(1)′xi )

and thus we have solved for

the multinomial regression coefficients from Equation (1)
under the three special case criteria mentioned earlier.

Thus far, Appendix A has described three special case cri-
teria under which multinomial coefficients of the conditional
mixture in Figure 1 Panel C could be computed from param-
eters of a conventional multivariate normal mixture. Suppose
that a researcher had instead wanted to solve for multinomial
coefficients of the conditional mixture in Figure 1 Panel A. In
the aforementioned proof,f (yi |xi ; ci = k) would need to be
replaced byf (yi ; ci = k) and the three special case criteria
mentioned earlier would again need to hold.

APPENDIX B

This appendix provides the Mplus syntax for the
exogenous-x, conventional multivariate, and endogenous-
constrained-x mixture approaches in the Table 1 illustration.

!Syntax for Exogenous-x Approach
MODEL:
%overall%
y on x1 x2 x3;
%class#1%
[y]; y; y on x1 x2 x3;
%class#2%
[y]; y; y on x1 x2 x3;
!Syntax for Conventional multivariate Approach
MODEL:
%overall%
y on x1 x2 x3;
%class#1%
[y]; y; y on x1 x2 x3;
x1 (1); x2 (2); x3 (3); [x1] (4); [x2] (5); [x3] (6);
x1 with x2 (7); x1 with x3 (8); x2 with x3 (9);
%class#2%
[y]; y; y on x1 x2 x3;
x1 (11); x2 (12); x3 (13); [x1] (14); [x2] (15); [x3] (16);
x1 with x2 (17); x1 with x3 (18); x2 with x3 (19);
!Syntax for Endogenous-constrained-x Approach
MODEL:
%overall%
y on x1 x2 x3;
%class#1%
[y]; y; y on x1 x2 x3;
x1 (1); x2 (2); x3 (3); [x1] (4); [x2] (5); [x3] (6);
x1 with x2 (7); x1 with x3 (8); x2 with x3 (9);
%class#2%
[y]; y; y on x1 x2 x3;
x1 (1); x2 (2); x3 (3); [x1] (4); [x2] (5); [x3] (6);
x1 with x2 (7); x1 with x3 (8); x2 with x3 (9);

Mplus syntax for the likelihood ratio test (LRT) illustra-
tion evaluating the effect of x on y within class using the
endogenous-constrained-x approach.

!Syntax for Model A (no effect
of x on y within class)

!Syntax for Model B (effect of x
on y within class allowed)

MODEL: MODEL:
%overall% %overall%
%class#1% y on x1 x2 x3;
[y]; y; x1 (1); x2 (2); x3 (3); %class#1%
[x1] (4); [x2] (5); [x3] (6); [y]; y; y on x1 x2 x3;
x1 with x2 (7); x1 with x3 (8); x2

with x3 (9);
x1 (1); x2 (2); x3 (3); [x1] (4);

[x2] (5); [x3] (6);
%class#2%
[y]; y; x1 (1); x2 (2); x3 (3);
[x1] (4); [x2] (5); [x3] (6);
x1 with x2 (7); x1 with x3 (8); x2

with x3 (9);

x1 with x2 (7); x1 with x3 (8); x2
with x3 (9);

%class#2%
[y]; y; y on x1 x2 x3;
x1 (1); x2 (2); x3 (3); [x1] (4);

[x2] (5); [x3] (6);
x1 with x2 (7); x1 with x3 (8); x2

with x3 (9);
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