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Individually randomized treatments are often administered within a group setting.

As a consequence, outcomes for treated individuals may be correlated due to

provider effects, common experiences within the group, and/or informal processes

of socialization. In contrast, it is often reasonable to regard outcomes for control

participants as independent, given that these individuals are not placed into groups.

Although this kind of design is common in intervention research, the statistical

models applied to evaluate the treatment effects are usually inconsistent with

the resulting data structure, potentially leading to biased inferences. This article

presents an alternative model that explicitly accounts for the fact that only treated

participants are grouped. In addition to providing a useful test of the overall

treatment effect, this approach also permits one to formally determine the extent to

which treatment effects vary over treatment groups and whether there is evidence

that individuals within treatment groups become similar to one another. This

strategy is demonstrated with data from the Reconnecting Youth program for high

school students at risk of school failure and behavioral disorders.

Methods for analyzing data from randomized experiments have been widely

disseminated for the case where the unit of randomization matches the unit
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to which treatment is administered. Approaches for analyzing data in which

individuals are randomly assigned to individually administered treatments (e.g.,

individual therapy) are found in standard univariate and multivariate texts (e.g.,

Maxwell & Delaney, 2004; Neter, Kutner, Nachtsheim, & Wasserman, 1996).

Approaches for analyzing data in which preexisting (intact) groups (e.g., clinics,

classrooms, or neighborhoods) are randomly assigned to group-administered

treatments, as in cluster-randomized designs, are also readily available (see

Murray & Blitstein, 2003; Murray, Varnell, & Blitstein, 2004; Raudenbush,

1997). These latter approaches account for lack of independence of observations

within group to protect the nominal Type I error rate, either through adjustments

of the test statistic and degrees of freedom (e.g., Baldwin, Murray, & Shadish,

2005) or by use of a mixed-effects (multilevel) model (e.g., Janega et al., 2004).

A third type of design is also common in practice yet has received com-

paratively little methodological attention. Under this design, randomization to

treatment is done on an individual basis; however, the treatment is administered

in a group setting so that multiple individuals receive the treatment together.

The groups are not preexisting but rather are formed by the investigator solely

for the purpose of treatment provision. To avoid confusing treatment conditions

and treatment groups, we use the term arm to refer to the treatment or control

conditions and the term group to refer to a particular group of participants

receiving treatment together (where many such groups may exist that receive the

same form of treatment). For example, participants suffering from depression

might be assigned to one of two study arms: cognitive-behavioral group therapy

(CBT) or control. Individuals assigned to CBT are administered treatment within

small groups. Control participants, in contrast, are not placed into groups and

have no particular relationship to one another. We refer to the data structure

generated by this kind of design as partially nested to indicate that participants

are nested within groups in at least one arm of the study, whereas in another

arm of the study they are not.

To ascertain the prevalence of this kind of design, we conducted a literature

review of all randomized experiments .N D 94/ in four representative public

health and clinical research journals: the American Journal of Public Health

(2003–2005), Evaluation Review (2004–2005), Journal of Consulting and Clini-

cal Psychology (2004–2005), and Prevention Science (2003–2005). This review

indicated that partially nested designs (N D 30; 32%) were more common than

group-randomized (fully nested) designs (N D 26; 27%) and almost as common

as individually randomized (nonnested) designs (N D 38, 40%). A prototypical

example of a partially nested design is provided by Carey et al. (2004), who

randomized drug rehabilitation outpatients to group therapy for HIV prevention

or no-treatment control.

The grouping of participants within the treatment arm but not the control arm

complicates the evaluation of treatment effects. On one hand, observations within
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the control arm can reasonably be assumed to be independent and hence do not

require adjustment for grouping effects. On the other hand, observations within

the treatment arm will likely be correlated within groups. This correlation could

arise because group members promote preventative behaviors via social support,

because the fidelity of the treatment implementation differs across groups, or

because the effectiveness of treatment providers varies across groups. Some

group interaction effects may even interfere with treatment; for instance, through

contagion of tactics for needle sharing (see Weiss et al., 2005, for discussion

of such iatrogenic effects). Thus when participants within the treatment arm are

clustered into groups, the independence assumption of conventional statistical

methods for individually randomized designs will be violated.1 Yet, at the same

time, models developed for fully nested (group-randomized) designs are also not

optimal, given the lack of a grouping structure in the control arm of the study.

Despite their common occurrence, very few methodological papers have

directly addressed how applied researchers can appropriately evaluate treatment

effects when using a partially nested design. In an important exception, Hoover

(2002) provided an adjustment for the independent samples t test for the case

when one sample consists of individuals within groups and the other consists of

ungrouped individuals. This method can be used to contrast outcome measures

for treated and control participants, but it does not generalize straightforwardly

to accommodate multiple treatment or control arms, pretest scores or other

covariates, additional follow-up measures, or nonnormal outcomes. Nor does

it provide direct information on the nature of the dependence in the data (e.g.,

variability in treatment effects, homogenization of group behavior, etc.). Drawing

on another suggestion made by Hoover, a pair of papers recently appeared in

Clinical Trials offering an alternative approach for the analysis of partially

nested data using mixed-effects models (Lee & Thompson, 2005; Roberts &

Roberts, 2005). The latter approach is more flexible, overcoming the limitations

of the more specific analysis suggested by Hoover. Even in the latter two papers,

however, several key issues that arise specifically with partially nested designs

were left unaddressed (e.g., obtaining unbiased standard errors and appropriate

degrees of freedom, what to do with group-level covariates, and the validity of

causal inferences).

In light of the recency of these methodological contributions, it is unsurprising

that our literature review identified no cases of partially nested data structures

that were analyzed with either of the two aforementioned approaches. Of the

30 studies that fit this design, 87% used analyses appropriate for individually

1A separate but related issue is the need to account for correlated observations generated by

shared therapist effects. This issue has been explored at length in a recent series of papers (see

Crits-Cristoph & Mintz, 2001; Crits-Christoph, Tu, & Gallop, 2003; Serlin, Wampold, & Levin,

2003; Siemer & Joormann, 2003a, 2003b; Wampold & Brown, 2005; Wampold & Serlin, 2000) and

can arise in either individually randomized trials, group randomized trials, or partially nested trials.
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randomized (nonnested) designs and the other 13% used analyses developed

for group-randomized (fully nested) designs. None of the studies in our sample

reported analyses specifically tailored to reflect the partially nested study design.

In contrast, 65% of the fully group-randomized studies in our review properly ac-

counted for the grouping structure. The latter result corroborates Bland’s (2004)

finding that the proportion of group-randomized trials properly accounting for

clustering increased sharply from 1993 to 2003. We submit that this increase

reflects the publication of a number of methodological papers addressing the

analysis of group-randomized trials (e.g., Murray, 1998; Raudenbush, 1997).

Although intervention researchers appear to be increasingly aware of the

need to account for dependence of observations in group-randomized trials,

they remain unaware of methods to account for dependence in partially nested

designs. Indeed, under the impression that their partially nested design could

not be analyzed properly, Fromme and Corbin (2004) lamented that “it was

not possible to assess the impact of group composition on treatment outcomes

because there was no group setting for control participants who did not complete

the classes. However, it is possible that the group composition may have had

an impact on the effectiveness of the intervention : : : ” (p. 1046). Other authors

have similarly echoed frustration at the gap between the complex experimental

designs utilized in practice and the simplified experimental designs presented as

examples in the methodological literature. For instance, Livert, Rindskopf, Saxe,

and Stirratt (2001) remarked, “Although multilevel models are increasingly being

utilized : : : actual application of such models to program assessment is complex

and there are few examples (p. 155).”

In response, this article has four primary goals. Our first goal is to bet-

ter explicate the logic of the mixed-effects (multilevel) modeling approach of

Roberts and Roberts (2005) and Lee and Thompson (2005) for partially nested

data. To do so, we juxtapose this approach with models that are currently

being applied to partially nested data but that assume a parallel structure in

both the treatment and control arms (either nonnested or fully nested). This

allows us to clarify why models originally developed for nonnested or fully

nested data are nonoptimal for partially nested data. Because both Roberts and

Roberts and Lee and Thompson considered relatively simple analysis scenarios,

our second goal is to extend this modeling approach to accommodate some

of the more complex partially nested study designs that commonly occur in

practice, such as those that include covariates at the individual and group

levels, multiple treatment arms, and discrete outcome variables. In particular,

the incorporation of group-level covariates into models for partially nested data

has not been discussed elsewhere, despite its importance for elucidating sources

of variability in treatment effects. Our third goal is to demonstrate the application

of these models to partially nested data arising from an effectiveness study of

the Reconnecting Youth program for adolescents at risk of school failure and

behavioral disorders. Finally, our last goal is to provide a general discussion of
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the issue of causal inference in partially nested intervention studies, a topic that

has heretofore been neglected in other papers concerned with this type of study

design. We now address each of these goals in turn.

APPROACHES TO THE ANALYSIS OF PARTIALLY

NESTED DATA

In this section we first discuss the limitations of the two ways that partially nested

data are currently being analyzed, followed by an introduction to the basic model

of Roberts and Roberts (2005) and Lee and Thompson (2005). We specifically

define partially nested data to have the following structure: One subset of the data

exhibits a hierarchical structure such that individuals are clustered into groups,

whereas another subset of the data consists of independent individuals (with no

clustering structure). Of interest is the particular case in which participants in

the treatment arm of a study are placed into groups by the experimenter, but

participants in the control arm of the study are not. To clarify the assumptions and

limitations of the analysis approaches, it is necessary to present exemplar models

in equation form. Very simple models, involving a single grouping variable

(treatment vs. no treatment) and a single posttest outcome, will suffice for these

purposes, but in the sections to follow we consider more complex (and more

realistic) analysis scenarios. In the equations presented here and throughout the

remainder of the article, we use notation consistent with Raudenbush & Bryk

(2002), denoting individuals with the subscript i and denoting groups with the

subscript j. For the subset of individuals who are not grouped, each individual

comprises their own “group” of one.

Approach 1: Pretend No Observations Are Grouped

The first approach to analyzing partially nested data that we consider is a

standard single-level regression model. A simple example of such a model might

be

Yij D ˇ0 C ˇ1TREATij C rij (1)

where Y is the outcome variable at posttest; TREAT is an indicator variable

scored 0 for members of the control arm and 1 for members of the treatment

arm; ˇ0 is the regression intercept, interpretable as the mean of Y in the control

arm; and ˇ1 is the regression slope, interpretable as the expected difference

in Y associated with being a member of the treatment group (relative to the

control group). The final term in the equation, the residuals r, are assumed to
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be independent and normally distributed with constant variance,2 or

rij � N.0; �2/:

This implies that the (conditional) variance of Y in both the treatment and control

arms of the study is the same, with a value of �2. In particular, the indepen-

dence assumption is highly problematic because the Y values for individuals

within treatment groups will likely be positively correlated. Incorrectly assuming

independence for the data will then lead to higher than nominal Type I error

rates for tests of parameter estimates (e.g., treatment effects), increasing the

risk of identifying spurious effects. Conversely, in the presumably less common

situation that the observations are negatively correlated within groups (i.e., group

members differentiate from one another), the Type I error rate will instead be

too low, depressing the power to detect a true effect.3

Approach 2: Pretend All Observations Are Grouped

A second approach to analyzing partially nested data is to specify a multilevel

model for the data. Multilevel models differ from traditional regression models

in that they explicitly include sources of variability at both the individual and

group level. Traditionally, model equations are written for each level of the data

structure (i.e., individuals and then groups). Recall that, for modeling purposes,

each participant in the control arm is viewed as being a member of their own

“group” of one.

At Level 1 (the individual level), we specify a model similar to the one

presented previously in Equation (1):4

Yij D ˇ0j C ˇ1j TREATij C rij : (2)

There is, however, one key difference between Equations (1) and (2): the re-

gression intercept and slope have now been subscripted by j. This indicates that

the values of these coefficients potentially differ across groups. We now express

2Note that under these assumptions this model is equivalent to a standard two-sample t test.

Formulating this test within the general linear model will, however, facilitate the expression of later

models.
3The models we discuss throughout are designed to account for positive correlations among

group members. Multilevel models for observations that are negatively correlated are discussed in

Kenny, Mannetti, Pierro, Livi, & Kashy (2002).
4Because treatment is assigned at the individual level, we treat this as an individual-level

predictor, despite the fact that the value of this predictor is constant for all individuals within a

particular group. This deviates from cluster-randomized designs in which treatment is assigned at

the cluster level and treated as a cluster-level predictor.
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the potential variability in these coefficients across groups with the Level 2

(group-level) model:

ˇ0j D 00 C u0j (3)

ˇ1j D 10: (4)

Equation (3) indicates that the intercept of Equation (2) varies across groups.

The average intercept is 00 and the term u0j indicates the extent to which group

j deviates from this average. As we will see, it is the random variability in u0j

that will ultimately account for the correlation of observations within clusters.

In contrast, Equation (4) includes no random deviation term, indicating that the

treatment effect in this model is assumed to be constant (fixed) over treatment

groups with a value of 10.

The grouping effect can also be seen in the combined model equation for the

outcome, obtained by substituting Equations (3) and (4) into Equation (2):

Yij D 00 C 10TREATij C u0j C rij : (5)

The combined equation clarifies that this model posits two sources of unex-

plained variability. There are the usual individual level residuals .rij /, but there

is also a second disturbance due to groups .u0j /. This second disturbance implies

that the individuals in some groups have generally higher or lower values for Y

than in other groups.

As in the standard regression model, we must make assumptions about the

nature of the unexplained variability in the model. Customarily, we assume that,

within groups, the individual residuals are normally distributed with constant

variance over individuals (regardless of arm), or

rij � N.0; �2/: (6)

Similarly, the group-level disturbance is assumed to be normally distributed with

constant variance over groups (regardless of arm), or

u0j � N.0; �00/: (7)

The variances of these two types of residuals are sometimes referred to as the

variance components of the model. Finally, we assume that the two sources

of unexplained variability are independent, that is, that there is no correlation

between rij and u0j .

Based on these assumptions, we can express the within-arm variance in Y as

V.Y jTREAT / D �00 C �2: (8)
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Further, the correlation in Y between any two members of the same group

(intracluster correlation or ICC) can be expressed as

ICC D
�00

�00 C �2
: (9)

The ICC thus captures the degree of similarity of participants who are members

of the same group within the treatment arm. For controls, the ICC is irrelevant

because each control participant is the sole member of their group.

Overall, this analysis approach appears to accomplish what we would like:

the group-level variance component .�00/ allows us to model the dependence of

the observations within groups in the treatment arm, but the model continues

to allow for independence in the control arm of the study because each control

participant is a member of their own group. However, the model is inconsistent

with the design of the study in an important way: the variance of Y within the

control arm is decomposed in precisely the same way as the variance of Y in

the treatment arm. Specifically, Equation (8) implies that

V.Y jTREAT D 0/ D �00 C �2 (10)

V.Y jTREAT D 1/ D �00 C �2: (11)

Equation (11) is sensible: variation in Y within the treatment arm is partly due

to differences between treatment groups and partly due to differences among

individuals within treatment groups. Equation (10), on the other hand, is not

sensible—the same decomposition of variance does not apply because there is

no grouping structure for participants in the control arm of the study.5 As it turns

out, this inconsistency will not matter much for testing the fixed effects (e.g., the

test of the overall treatment effect) in the special circumstance that the variance

in Y within the control and treatment arms is identical (as implied by Equations

(10) and (11)). However, there is often reason to believe that this variance

will differ between the treatment and control arms. If such heteroscedasticity is

present, Roberts & Roberts (2005) have shown that this model will then generate

biased tests of the treatment effect. What is needed is a more flexible approach

that is more consistent with the study design.

5This decomposition could still make sense even for groups with one member under certain

circumstances where preexisting intact groups are used rather than groups formed during the

treatment study. Consider, for instance, the case of data on siblings nested within families. In

this case, the two variance components would correspond to variance due to unexplained child

influences on Y and variance due to unexplained family influences on Y. Clearly family influences

operate even on only children (though they could not be separately estimated from child influences

unless multiple sibling families were also included in the analysis).
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Approach 3: Explicitly Model Partial Nesting Design

As an alternative to the two aforementioned approaches, Roberts and Roberts

(2005) and Lee and Thompson (2005) provide a third approach to the analysis

of partially nested data that better matches the data structure. Aside from being

more consistent with the design that produced the data, this approach also

provides model estimates that have appealing interpretations. Again, for purposes

of model specification, participants within the control arm are viewed as the sole

members of their own “groups.”

The Level 1 model for this approach is identical to the preceding case:

Yij D ˇ0j C ˇ1j TREATij C rij : (12)

The difference between Approach 2 and Approach 3 arises in the specification

of the Level 2 model equations. Here we specify that the slope of this equation

varies over groups and that the intercept term is constant over groups:

ˇ0j D 00 (13)

ˇ1j D 10 C u1j : (14)

The combined model for the data, obtained by substituting Equations (13) and

(14) into Equation (12), is now

Yij D 00 C 10TREATij C u1j TREATij C rij : (15)

The motivation for this model specification follows from several observations.

The ˇ0j term of Equation (12) represents the group mean for participants in

control group j (i.e., where TREAT D 0). However, in the control arm there

is only one participant per group, so the group “mean” and the individual

observation are identical. That is, we cannot separate group-level variation from

individual-level variation, as these are one and the same. Because there is no

need for a group-level residual for the control participants, no random component

for ˇ0j is included in Equation (13). As such, in the previously mentioned

model, variability in the outcome variable for the control participants is sensibly

decomposed into the mean of all participants in the control arm, captured by

00, and an individual residual rij , as shown here:

Yij j.TREATij D 0/ D 00 C rij : (16)

The ˇ1j parameter of Equation (12) reflects the difference between the mean

for group j within the treatment arm and the overall mean for the control arm.

As expressed in Equation (14), the present model permits the treatment group
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mean to vary across groups within the treatment arm through the inclusion of the

term u1j . Such differences reflect differential treatment outcomes across groups,

due to the particular composition of the group, the fidelity of implementation

of the treatment protocol, the effectiveness of the treatment administrator for

the group, or other factors. Thus, for treated participants (when TREAT D 1),

Equation (15) can be rewritten as

Yij j.TREATij D 1/ D 00 C 10 C u1j C rij ; (17)

so that there are both individual- and group-level residuals. Comparing equations

(16) and (17) we see that the average treatment effect across groups within the

treatment arm is represented by the 10 parameter, whereas differences across

groups in the treatment effect are captured by the u1j term.

As in Approach 2, we assume that the individual- and group-level residuals

are independent and normally distributed as

rij � N.0; �2/ (18)

u1j � N.0; �11/: (19)

Unlike Approach 2, however, the model-implied variance of Y now differs

across the arms of the study. That is, the model explicitly accounts for potential

heteroscedasticity across the two arms of the study. For control participants, this

variance is simply

V.Y jTREAT D 0/ D �2; (20)

whereas in the treatment arm it is

V.Y jTREAT D 1/ D �11 C �2: (21)

Further, we can express the ICC within the treatment arm as

ICCTREAT D
�11

�11 C �2
: (22)

There is no corresponding ICC for the control arm because there is no between-

group variance estimated for that arm. Note that the ratio of the variance in the

control arm to the variance in the treatment arm is

�2

�11 C �2
D 1 � ICCTREAT : (23)
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Thus the ICC in Equation (22) provides a measure of heteroscedasticity across

the two study arms. Equation (23) implies that the degree of heteroscedasticity

between the treatment and control arms is a direct function of the ICC in the

treatment arm.

In comparing Equations (20) and (21) we see that the model implies that this

heteroscedasticity takes a special form, that there is added variance in Y due to

group influences. As such, in contrast to Approaches 1 and 2, which assumed

equal variance for Y for the treatment and control arms, the model formulated

earlier assumes that the variance in the treatment arm exceeds the variance in

the control arm (so long as �11 ¤ 0). This may not always be the case: Group

processes may actually increase the similarity of group members to one another,

thereby decreasing within-group differences. Given this possibility, Roberts &

Roberts (2005) noted that we can (and in many cases should) allow the variance

of rij to differ across arms of the study by modifying the assumption in Equation

(18) to instead be

rij j.TREAT D 0/ � N.0; �2
C ontrol/ (24)

rij j.TREAT D 1/ � N.0; �2
T reatment /: (25)

With this modification, we permit heteroscedasticity between the treatment and

control arms but do not constrain the form of heteroscedasticity. Specifically,

there need not be added variance within the treatment arm. Further, when

�2
T reatment ¤ �2

C ontrol , the ratio of variances between the two arms will no

longer obey the relationship in Equation (23). Not only does this modification

make the model potentially more realistic, it also offers the exciting possibility

to formally test the hypothesis that participants within a treatment group become

similar to one another in their attitudes and behavior, in which case we should

find that �2
T reatment < �2

C ontrol .

To summarize, of the three approaches, only Approach 3 is fully consistent

with a partially nested design. Approach 1 ignores the grouping structure in

the treatment arm, potentially leading to inflated Type I errors and spurious

treatment effects. Approach 2 assumes a parallel grouping structure in both the

control and treatment arms; however, the implied decomposition of variance for

the control participants is then nonsensical. Both Approach 1 and Approach 2

assume equal variance in the treatment and control conditions, which may often

be unrealistic. In contrast, by taking explicit account of the partially nested

study design, Approach 3 offers the appealing benefits that it can account for

dependence within treatment groups, capture variability in treatment outcomes

across treatment groups, model heteroscedasticity, and reveal whether individuals

become more homogeneous in their attitudes and behavior as a function of

treatment group membership.
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TESTING TREATMENT EFFECTS

(AND OTHER FIXED EFFECTS)

Using the model outlined earlier in Approach 3, we are primarily interested in

testing the significance of the estimate for 10, or the average treatment effect.

However, we encounter two difficulties in doing so. First, obtaining an unbiased

standard error for the effect estimate is not straightforward. Second, the reference

distribution for testing the ratio of the estimate to its standard error is unknown.

These difficulties are not unique to models for partially nested data, occurring

for any mixed-effect (or multilevel) model with a complex covariance structure

and/or unbalanced group sizes. We explain each obstacle and then discuss a

combined corrective that handles both.

For contrast, let us first consider an ideal situation. If the population values of

the variance components of the model (in this case �11 and �2, or �2
T reatment and

�2
C ontrol ) were known, then the variance-covariance matrix of the fixed effects

estimates, designated † O , could be calculated directly from these values. The

square root of the diagonal of this matrix would provide standard errors for the

fixed-effect estimates and the ratio of each estimate to its standard error would

follow a standard normal distribution, permitting z tests of the estimates.

In practice, however, the population values of the variance components are

unknown. Accordingly, the sample estimates of these variance components must

be used in place of their population values to form an estimate of † O , designated

O† O . The standard errors for the fixed effects are then typically calculated as the

square root of the diagonal of O† O . Unfortunately, these standard errors are

negatively biased, presenting our first difficulty for testing the fixed effects of

the model (Dempster, Rubin, & Tsutakawa, 1981). One source of bias arises

because the variance component estimates are subject to their own sampling

variability, and treating them as known fails to account for the imprecision of

these estimates. A second source of bias is that, in small samples, O† O is a biased

estimator of † O . Corrections for these two sources of bias were developed in

a series of influential papers by Kacker & Harville (1984), Harville and Jeske

(1992), and Kenward and Rogers (1997) and have been implemented in some

software programs capable of fitting multilevel models.

The second difficulty we face in evaluating the overall treatment effect in

partially nested designs is that the reference distribution for the fixed effect

estimates is unknown. This difficulty does not arise for designs in which all

subjects are independent and there are no grouping effects (for which Approach

1 would be adequate). In that case, only one variance parameter .�2/ is estimated

and the reference distribution for testing the fixed effects is an exact t distribution

with known degrees of freedom. A few other special cases also exist where

exact tests can be obtained (Elston, 1998, p. 1086; Maxwell & Delaney, 2004,
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p. 479). Unfortunately, for models with unbalanced group sizes and/or complex

covariance structures, like the model considered in Approach 3, exact tests for

fixed effects cannot be obtained. In practice, it is assumed that the reference

distribution can be approximated by a t distribution. Kenward and Rogers (1997)

suggest estimating the degrees of freedom for the t distribution by a method-

of-moments approach with origins in the work of Satterthwaite (1941; see also

Schaalje, McBride, & Fellingham, 2002, pp. 515–517).

Overall, the Kenward-Rogers (1997) method for testing the fixed effects

entails combining the bias correction for the standard errors (for handling the

first difficulty) and the Satterthwaite (1941) method for computing degrees of

freedom (for handling the second difficulty). In simulations comparing differ-

ent methods for testing fixed effects in mixed models, Schaalje et al. (2002)

found that the Kenward-Rogers method performed better than several competing

methods, particularly for complex covariance structures and unbalanced designs.

Based on these results, we recommend using the Kenward-Rogers method for

testing treatment effects in partially nested study designs.6 This issue is applica-

ble also to the testing of other fixed effects in more complex models for partially

nested data. It is to these extended models that we now turn.

EXTENSIONS OF THE MODEL

In this section we consider how Approach 3 can be extended to some of the

more complex situations commonly encountered in evaluation research. In the

subsections that follow we discuss how to include pretest measures in the model

as covariates, incorporate other individual- and/or group-level covariates into

the model, simultaneously evaluate multiple treatment or control arms, and

test treatment effects on discrete outcome measures. Of these topics, Roberts

and Roberts (2005) provide a short discussion on the use of individual-level

covariates in the model (which could include pretest measures). Additionally,

Lee and Thompson (2005) discuss binary outcomes and also briefly touch on

the issues of multiple treatment arms and group-level covariates, though only

in the context of a fully nested design. The other extensions of Approach 3

described here have not, to our knowledge, been presented previously. Each

topic is addressed in a separate section, allowing the reader to skim sections of

less interest.

6SAS code demonstrating this method with the demonstration data is available online at

http://www.unc.edu/�dbauer. SPSS code providing Satterthwaite (1941) degrees of freedom, but

not corrected standard errors, is also provided. The importance of correcting the standard errors is

not known at this time, but failure to do so may result in a higher than nominal rate of Type I errors

for tests of fixed effects.
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Pretest as Covariate

One common approach for modeling treatment effects is to include pretest

measures of the outcome as a control covariate in the statistical model, adjusting

for preexisting differences among participants. Denoting the pretest measure as

X and the posttest measure as Y, our Level 1 model will then be

Yij D ˇ0j C ˇ1j TREATij C ˇ2j Xij C rij ; (26)

and our Level 2 model will be

ˇ0j D 00 (27)

ˇ1j D 10 C u1j (28)

ˇ2j D 20: (29)

Note that the only new feature of this model is the coefficient associated with the

pretest measure. Here we have assumed that the relation of the pretest measure

to the posttest measure is constant over treatment groups and equivalent across

arms of the study, assumptions that seem reasonable for most applications. Under

these assumptions, the combined model will be

Yij D 00 C 10TREATij C 20Xij C u1j TREATij C rij : (30)

Adjusting for pretest measures, the conditional variance in the posttest for the

control arm continues to have only one component (individual-level variance

only), whereas the conditional variance for the treatment arm again has two

components (one for the individual-level variance and one for the group-level

variance). These (now conditional) variances continue to be given by Equations

(20) and (21).

It is also worth noting that, for the treatment arm, pretest measures may differ

both across and within groups, as shown by decomposing X into a group mean

and an individual deviation from the group mean:

Xij D X :j C PXij ; (31)

where X :j is the mean of the pretest values for treatment group j, and PXij

is the individual deviation from X :j . Substituting Equation (31) into Equation

(30) shows that, when we include pretest scores in the model, we are implicitly

adjusting for both preexisting differences among individuals and preexisting

differences among treatment groups:

Yij D 00 C 10TREATij C 20.X :j C PXij / C u1j TREATij C rij ; (32)
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or

Yij D 00 C 10TREATij C 20
PXij C 20X :j C u1j TREATij C rij : (33)

Note that there is an implicit equality constraint for within- and between-group

effects of the pretest measure. Although often quite reasonable, it may at times be

necessary to relax this assumption. Different within- and between-group effects

might be expected if there is a compositional effect of the group above and

beyond the individual effect of the covariate. For instance, if X represented a

pretest measure of antisocial behavior, we might expect that treatment groups

that happen to have higher than average baseline levels of antisocial behavior

might be particularly difficult to manage and more resistant to treatment than

groups that have lower than average levels of antisocial behavior. Fortunately,

the assumption of equal within- and between-group effects can be removed

quite easily by including the pretest means for the treatment groups (X :j / in

the model as an additional predictor (see Kreft, DeLeeuw, & Aiken, 1995, for

further details on the decomposition of within- and between-group effects). We

discuss the inclusion of group-level covariates in the next section.

Adding Individual- and Group-Level Covariates

Other covariates at the individual level can be included in the model in the same

fashion as the pretest scores. Specifically, suppose X1 is a pretest measure of the

outcome and X2 is a background characteristic of the individual (e.g., gender),

then the Level 1 model can be modified accordingly to be

Yij D ˇ0j C ˇ1j TREATij C ˇ2j X1ij C ˇ3j X2ij C rij : (34)

Similarly, group-level covariates, such as treatment fidelity or perceived group

cohesiveness, can be incorporated into the model at Level 2 to explain why some

groups fare better than others in response to treatment (as called for by Weiss

et al., 2005). There is, however, the additional consideration that such group-

level variables pertain only to the treatment arm of the study and are, in essence,

undefined for participants in the control arm. As an example, suppose that W

is a variable that reflects some aspect of the group composition. Our Level 2

model for the coefficients in Equation (34) would then be

ˇ0j D 00 (35)

ˇ1j D 10 C 11Wj C u1j (36)

ˇ2j D 20 (37)

ˇ3j D 30: (38)
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The combined model is then

Yij D 00 C 10TREATij C 11.TREATij � Wj / C 20X1ij

C 30X2ij C u1j TREATij C rij :
(39)

The interaction term reflects the fact that the effect of W is necessarily conditional

on treatment. The omission of a main effect of W in the combined model may

appear unusual, but this is intentional given that W is undefined for control

participants. Due to the absence of a main effect for W, for control participants

the model reduces to the following:

Yij .TREAT D 0/ D 00 C 20X1ij C 30X2ij C rij ; (40)

whereas for treated participants the model is

Yij j.TREAT D 1/ D 00 C 10 C 11Wj C 20X1ij C 30X2ij C u1j C rij : (41)

Thus, the group-level predictor W only affects Y for participants in the treatment

arm and does not affect Y for participants in the control arm, who are ungrouped.

Practically speaking, to incorporate group-level predictors into the model,

W must be set to an arbitrary nonmissing value for the control participants. If

W is set to a missing value for the control participants, these participants will

be deleted from the analysis, which is nonoptimal for obvious reasons. The

value that is chosen for W for the control participants (e.g., �999, 2, 127) is,

however, irrelevant as this variable will “zero out” of the prediction equation for

participants in this arm of the study, as indicated in Equation (40).

Additionally, there may be some individual level predictors that are relevant

only for grouped participants. For instance, one might wish to incorporate a

measure of treatment exposure or “dosage” to evaluate whether this impacts

individual outcomes. Similar to the approach described earlier for group-level

covariates, the interaction between this predictor and the treatment indicator

would then be included in the Level 1 equation, omitting the main effect. For

ungrouped participants, the predictor would again need to be set to an arbitrary

value to avoid the deletion of these participants from the analysis.

Multiple Treatment or Control Arms

It is of course also possible to evaluate multiple treatments and/or multiple

control groups using the same basic approach indicated here. Specifically, in-

dicator variables would be constructed for each arm of the study, and each of

these indicator variables would be included as individual-level predictors. For

any study arm that contains groups, the effect of the corresponding indicator

variable would be permitted to vary randomly over groups.
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Let us first consider a simple case in which one wishes to contrast the

efficacy of a group-based treatment (Treatment 1) relative to an individually

based treatment (Treatment 2). Additionally, there is a control arm in which

participants are not grouped. Extending the simple two-arm model formulated

previously in Equations (12) through (14), we can write the Level 1 model for

this three-arm study design as follows:

Yij D ˇ0j C ˇ1j TREAT1ij C ˇ2j TREAT2ij C rij ; (42)

where TREAT 1 and TREAT 2 are indicator variables scored 1 if the individual

participated in treatment 1 or 2, respectively, and are scored 0 otherwise.

At Level 2, we indicate that only the effect of the group-based intervention

has a random component due to groups:

ˇ0j D 00 (43)

ˇ1j D 10 C u1j (44)

ˇ20 D 20: (45)

Note that the individually based treatment does not include a grouping effect.

As in the two-arm case, we can allow the variance of the Level 1 residuals (r) to

vary across study arms to reflect differential effects of treatment on individual

variability.

Now suppose that both treatments were group based, but the control arm

consisted of ungrouped individuals. The Level 1 equation remains as in Equation

(42), but the effect of the grouping structure is then expressed at Level 2 as

follows:

ˇ0j D 00 (46)

ˇ1j D 10 C u1j (47)

ˇ2j D 20 C u2j : (48)

Note that both group-based treatments have effects that depend partly on the

individuals’ treatment group. Assuming that individuals in the two treatment

arms are independent (e.g., randomly assigned to treatment groups), we can

reasonably assume that the u1j and u2j terms are also independent. Following

Lee and Thompson (2005), we thus express their distribution as

�

u1j

u2j

�

� N

��

0

0

�

;

�

�11 0

0 �22

��

: (49)
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In practice, it is worth noting that many multilevel modeling software programs

include a covariance between u1 and u2 by default, in which case this covariance

must be manually set to zero.

Discrete Outcomes

For simplicity, we have thus far described each of the aforementioned models

for a continuous outcome variable Y that could reasonably be assumed to have

a conditional normal distribution. However, dichotomous, ordinal, and count

outcomes are also quite common in intervention and prevention research. For-

tunately, great strides have been made in the past decade in the estimation

of multilevel generalized linear models, permitting the extension of all of the

models presented earlier to discrete outcome variables. As a basic example, we

show how the model in Equations (12) through (14) could be reformulated as

a generalized linear model. Although the Level 2 equations remain unchanged,

we must rewrite the Level 1 equation as

�ij D ˇ0j C ˇ1j TREATij ; (50)

where �ij is referred to as the linear predictor and is related to the expected value

(or conditional mean) of Y though the equation �ij D f .�ij /, where f is known

as the link function. The purpose of the link function is to map the possibly

continuous values of the linear predictor onto the logical range of the expected

value for the outcome. For continuous outcomes that have a broad range, an

identity link is typically used: �ij D �ij . In contrast, for count outcomes, the

expected value has a lower bound of zero, but no upper bound, and hence the

log link is often used: �ij D log.�ij /. For dichotomous outcomes the value of

the linear predictor must be mapped onto the [0,1] interval and hence the logit

link is a natural choice: �ij D log.�ij =.1 � �ij //. Other common choices for

dichotomous outcomes are the probit and complementary log-log link functions.

Another important feature of Equation (50) is that there is no Level 1 residual.

This is because this equation only provides information on the expected value of

Y and not the variation around this expected value. To account for this variation,

we must also specify a conditional distribution for Y. For continuous outcomes,

the conditional distribution is often specified as normal, such that Yij j�ij �
N.�ij ; �2/. In combination with the identity link, this specification gives rise to

the models previously presented. For count outcomes, the conditional distribution

might instead be specified as Poisson, or Yij j�ij � Poisson.�ij /. Alternatively,

for dichotomous outcomes, the conditional distribution would be specified as

Bernoulli, or Yij j�ij � Bernoul li.�ij /.

As for this most basic of models, appropriate choices for the link function

and conditional distribution could be made for any of the models discussed

previously for the case where Y is discretely distributed.
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To summarize, the analysis of partially nested data can be extended be-

yond the relatively simple expository examples provided by Lee and Thompson

(2005) and Roberts and Roberts (2005) to the more complex situations that are

encountered in much intervention and prevention research. Although the model

extensions delineated earlier are far from exhaustive, we believe they cover

many of the possible analysis scenarios that investigators encounter when using

partially nested designs. We now turn to a demonstrative application of these

models.

AN EMPIRICAL DEMONSTRATION OF THE ANALYSIS

OF PARTIALLY NESTED DATA

For our demonstration, we evaluate an effectiveness trial of the Reconnecting

Youth (RY) preventive intervention program that employed a partially nested

design. This RY trial involved a large sample of adolescents from five high

schools in an urban school district in the Southwest and four high schools in an

urban school district on the Pacific coast. The goals, methods, and recruitment

procedures for the RY program have been described in Eggert, Thompson,

Herting, Nicholas, and Dicker (1994), and prior analyses of the current sample

may be found in Hallfors et al. (2006), Cho, Hallfors, and Sanchez (2005), and

Sanchez et al. (2007). Briefly, an initial screened sample was stratified on risk

status (based on criteria including highest 25% for truancy and bottom 50%

for grade point average (GPA), or referred for treatment by a schoolteacher or

counselor). High-risk children were oversampled .N D 1370/ and low-risk chil-

dren were randomly sampled .N D 598/. High-risk children were individually

randomly assigned to either the intervention arm .N D 695/ or to the control

arm .N D 675/. Of those assigned to the intervention, 47% did not participate,

usually because of scheduling issues or other external constraints (remaining

N D 370). The participation rate varied across schools and participation was

negatively related to age, unrelated to gender or ethnicity, and inconsistently

related to baseline measures of deviancy.7

High-risk participants in the intervention arm received RY treatment adminis-

tered in groups (i.e., RY classes), whereas high-risk participants assigned to the

control arm were left ungrouped. The number of RY classes in the intervention

arm totaled 41, with 2 to 7 classes per school, 5 to 15 students per class, and an

7Unlike many treatment studies, in this study noncompliance was typically dictated by third

parties (e.g., guidance counselors) largely as a function of external constraints (e.g., classes needed

for graduation) rather than being an active choice of the participant assigned to treatment. Compliance

is thus unlikely to be related to differential motivation, openness to treatment, or treatment

effectiveness. For this reason, and to simplify the presentation of the example, we chose to exclude

noncompliers from the present analyses (i.e., using an “on treatment” approach). Parallel analyses

using an “intent to treat” approach produced broadly similar results (not shown here).
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average class size of 9 students. Additionally, the low-risk children constituted

a second ungrouped control arm—representing “typical” adolescents from their

respective schools. Thus, this is a multiple-control-arm, partially nested design—

features that we will now address using the analytic strategy advocated in the

prior sections.

The RY trial is particularly suited for this demonstration because modeling

RY’s partial nesting is shown to shed important light on some earlier results.

Specifically, in previous analyses of the data, Hallfors et al. (2006) found that

the intervention program did not have the anticipated positive effects. Instead,

it appeared to exacerbate some problem behaviors, particularly when measured

one semester posttreatment. Here, we reevaluate the negative effect of treatment

on one outcome variable, deviant peer bonding (DPB). DPB was measured as

the average of eight 5-point items (e.g., How many of your close friends skip

school, drink alcohol, have gotten into physical fights with other kids, etc.). With

the methods proposed in this article, we are able to estimate a series of models

that systematically examine whether, concomitant with the negative mean shift

in DPB for RY participants, there is (a) within-class homogenization of DPB

suggestive of an iatrogenic “contagion” effect, (b) there are differences across RY

classes in treatment outcomes suggestive of iatrogenic compositional or provider

effects, and (c) whether these effects persist when controlling for preexisting dif-

ferences in DPB and demographic characteristics. Without the methods proposed

in this article, these hypotheses could not be precisely examined.

In total, we estimated a sequence of three models. Our goals in fitting the

first model were (a) to evaluate whether mean DPB differed across the three

conditions at one semester posttreatment, with particular attention to the effect

of RY relative to control; (b) to ascertain whether there was variability across

RY classes in the magnitude of the treatment effect; and (c) to determine the

intraclass correlation among RY students attending the same class. To satisfy

these goals, we also needed to control for the effects of school-based clustering.

Because only nine schools were included in the study and these schools were

nonrandomly selected based on urbanicity and demographic composition, we

chose to model school as a fixed factor. Although this is consistent with the study

design and controls for school-based clustering, we must limit our inference

space to these schools (i.e., we cannot speculate as to what the effects might be

in other schools). With a larger, random sample of schools it would be possible

to move to a three-level model with a random effect of school, and this would

permit inferences to the larger population of schools from which the sample was

drawn.8

8In response to reviewer concerns, we also ran these models with a random effect of school

rather than including school as a fixed factor. The results were highly similar to those presented

here.
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For our first model, we thus included the treatment condition as the primary

predictor of DPB and school as a control factor. Because only the RY condition

was grouped, the Level 1 and 2 equations are similar to those shown in Equations

(42) to (45), with the addition of eight dummy variables to represent the nine-

level school factor. The Level 1 Equation is thus

DPBij D ˇ0j C ˇ1j RYij C ˇ2j Typicalij

C

8
X

cD1

ˇ.2Cc/j School.c/ij C rij ;
(51)

where School(c)ij is a dummy variable indicating whether the participant i is a

student in school c (coded 1) or not (coded 0). In turn, the Level 2 Equations

are

ˇ0j D 00

ˇ1j D 10 C u1j

ˇ2j D 20

ˇ.2Cc/j D .2Cc/0

(52)

The combined model equation is then

DPBij D 00 C 10RYij C 20Typicalij

C

8
X

cD1

.2Cc/0School.c/ij C u1j RYij C rij :
(53)

We begin by assuming homoscedasticity for the residual variance r, then go on

to test this assumption by allowing the residual variance to differ between the

RY study arm and the other two arms. This model and all of those to follow

were estimated using the MIXED procedure in SAS with the REML estimator

and the Kenward-Rogers (1997) method of testing the fixed effects (both SAS

and SPSS code and annotated output for this analysis are provided in online

supplementary material posted at http://www.unc.edu/�dbauer).

The results from the homoscedastic model, reported in the first column

of Table 1, indicated that the three conditions did differ significantly from

one another in levels of DPB, with RY students displaying higher DPB than

controls and controls displaying higher DPB than typical students. A significant

school effect was also detected, indicating that DPB levels vary across schools.

Planned contrasts revealed that the school effect was due almost entirely to site

differences. Controlling for the school effects, the variance component for the

RY classes, .053, was relatively small in magnitude. In relation to the residual

variance, .79, this value yields an intraclass correlation of .06, indicating that the
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TABLE 1

Estimates From Analysis of Iatrogenic Effects in Reconnecting Youth (RY) Effectiveness Trial on Posttest Measures of Deviant Peer Bonding

Model 1 Model 2 Model 3

Predictor Estimate Test Estimate Test Estimate Test

Fixed Effects

Condition F (2, 132) D 39.48��� F (2, 149) D 8.48��� F (2, 123) = 8.39���

RY .19 t (68.3) D 2.63� .14 t (79.4) D 2.43� .14 t (64.7) D 2.42�

Typical �.37 t (1432) D �6.99��� �.11 t (1428) D �2.19� �.11 t (1405) D �2.20�

School F (8, 891) D 15.95��� F (8, 781) D 3.03�� F (8, 778) D 3.06��

Site F (1, 936) D 80.75��� F (1, 1133) D 12.49��� F (1, 1113) D 12.62���

Baseline deviant peer bonding .50 t (1444) D 21.31��� .49 t (1413) D 20.97���

Age �.03 t (1450) D �1.40 �.03 t (1419) D �1.07

Male .06 t (1455) D 1.57 .06 t (1409) D 1.35

Ethnicity F (4, 1452) D 4.07�� F (4, 1425) D 3.88��

RY � Absences .002 t (662) D .51

RY � Mean Age �.14 t (33.4) D �1.02

RY � Percentage Female �.001 t (34.7) D �.48

Variance Components

Level 1 .�2/ .789 z D 26:73��� .593 z D 26:63��� .591 z D 26:41���

Level 2, RY .�11/ .053 z D 1:51 .014 z D :71 .012 z D :56

�p < :05. ��p < :01: ���p < :001.

2
3
1
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DPB scores of students attending the same RY class were positively correlated

(as expected) but not highly. When the residual variance was permitted to differ

between the RY arm and the other two study arms, the obtained estimates

were .81 and .78, respectively. The direction of this difference is counter to

the hypothesis of within-group homogenization due to iatrogenic effects in the

RY arm, and the difference itself was not statistically significant by the likelihood

ratio test (�2.1/ D :20, p D :65). In total, there is little evidence of “contagion”

effects for DPB and only modest evidence of compositional or provider effects.

The second model that we fit extended the model in Equation (53) to include

several additional Level 1 covariates measured in all three groups. Specifically,

we controlled for baseline DPB (measured pretreatment), age, sex, and eth-

nicity. As shown in the second column of Table 1, the differences among the

three experimental conditions were diminished but still statistically significant

following the inclusion of the control variables. Of the control variables, baseline

DPB and ethnicity were statistically significant. The ethnicity effect was largely

due to Asian students having lower DPB scores. Notably, after the inclusion

of these covariates, the variance component for the RY classes dropped to .01

and the residual intraclass correlation dropped to .02. In other words, much of

the variability in the effects of RY on DPB could be explained on the basis of

preexisting individual factors that were unevenly distributed across RY classes.

Finally, in Model 3, we extended Model 2 by including several covariates

relevant only to the RY condition (as discussed in the “adding individual- and

group-level covariates” section). This allowed us to evaluate whether charac-

teristics of the individual or classroom moderated the effect of treatment on

participants. First, we considered whether students attending more RY classes

(absent less) showed greater negative effects (i.e., a dosage effect). Second, we

assessed whether two aspects of class composition moderated treatment effects:

the average age of the students within the class and the percentage of female

students in the class. Because these three variables were only definable for

students assigned to the RY condition, they were set to –999 for students in the

control and typical conditions (i.e., following the strategy outlined previously).

To test the effects of these predictors, three interaction terms were then added

to the model, RY � Absences, RY � Mean Age, and RY � Percentage Female.

The results, shown in the third column of Table 1, indicated that students who

were absent from more classes had slightly higher levels of DPB, as did students

attending classes composed of mostly younger, male students; however, none of

these effects was statistically significant. These null findings were consistent

with the results of Model 2, which indicated that there were few differences

among RY classes left to be explained following the inclusion of the control

covariates.

To summarize, these analyses provide one demonstration that data obtained

from a partially nested design can be appropriately analyzed using specifically
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tailored multilevel models. To match the complexity of real evaluation research,

we have shown how pretest measures, “common” covariates, and covariates

relevant only for the grouped condition can be included in the model. Many

other extensions of the analytic model could also be contemplated, such as the

inclusion of multiple pre- or posttest measures. At this point, however, we turn to

a more fundamental epistemological question that has, to date, gone unaddressed:

To what extent can valid inferences about treatment effects be made using data

obtained from a partially nested study design?

ASSESSING TREATMENT EFFECTS WITH PARTIALLY

NESTED DATA

A fundamental difficulty with partially nested study designs is that the structure

of the data is not parallel between the treatment and control arms, and thus

treatment effects may be conflated with grouping effects. Specifically, the act

of placing participants into groups may have either positive or negative effects,

and if only treated participants are grouped then treatment effects cannot be

disentangled from these grouping effects. At its core, this is an issue of internal

validity: Does a partially nested study design allow for strong tests of the

theoretical model guiding treatment? Unfortunately, the answer must be “No,”

given that one cannot ascribe effects, either positive or negative, uniquely to

the theoretically motivated aspects of treatment. That is, these effects may be a

consequence simply of grouping participants together, regardless of treatment.

Thus, we cannot say with certainty that the negative effects observed in the

RY effectiveness trial were due to an inadequacy of the theoretical model that

motivated the intervention. It may simply be that the intended positive effects of

the manipulation were overwhelmed by the negative effects of grouping high-

risk youth together. Put simply, with partially nested designs, it is not possible

to make definitive statements regarding the causal effects of the intervention.

This is not to say that partially nested study designs are without merit.

Although the internal validity of the partially nested study design is not as strong

as would be afforded by a design with parallel structure for treatment and control

arms, in many instances the external validity is stronger. For instance, to assess

the public health benefits of the RY program, the ungrouped controls provide the

most appropriate contrast condition, as they reflect the true condition of high-risk

students when no intervention is implemented. Constructing untreated groups of

high-risk adolescents for comparison to the treatment groups might be more

internally valid for theory evaluation but would not provide a good indication

of what could be gained (or lost) by implementing this intervention in like

schools. Additionally, for many studies, there would be ethical limitations to the

construction of groups within the control arm. For instance, it would probably be
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unwise to intentionally congregate high-risk youth into groups without providing

some sort of directed intervention or treatment. Thus, partially nested study

designs have a clear place in prevention and intervention research and in the

investigation of treatment effects more broadly. The limitations of these designs

for evaluating theoretical models of treatment effects have, however, gone largely

unappreciated.

CONCLUSIONS

Partially nested study designs are a common and necessary presence in pre-

vention and intervention research. Until recently, analytic methods for properly

evaluating treatment effects with these kinds of designs have been unavailable.

By extending three recent publications on this topic (Hoover, 2002; Lee &

Thompson, 2005; Roberts & Roberts, 2005), this article explicated a general

approach to the analysis of data with a partially nested structure using multilevel

(or mixed-effects) models. This approach not only provides estimates with

appealing interpretations, it is also amenable to the inclusion of covariates

and predictors at both the individual and group levels. We demonstrated the

features analytically and then empirically with RY trial data. Although this

approach solves many of the data-analytic challenges associated with partially

nested designs, it does not resolve the basic question of whether and when valid

inferences about treatment effects can be made with these designs. In our view,

these designs often increase external validity at the expense of internal validity,

due to the conflation of treatment and grouping effects. Investigators should be

aware of this trade-off when selecting a partially nested design for their research

and take appropriate precautions in interpreting their findings.
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