

# Surrogate-enhanced higher order eigenstrain-based reduced order homogenization for polycrystal plasticity

Aslan Nasirov and Caglar Oskay\*

Department of Civil and Environmental Engineering  
Vanderbilt University  
Nashville, TN

## 1 **Abstract**

2 Reduced-order models (ROMs) are frequently employed within concurrent multiscale frame-  
3 works to enhance the efficiency of nonlinear simulations and to mitigate the substantial com-  
4 putational expense associated with direct nonlinear homogenization schemes. Among these,  
5 transformation field analysis (TFA)-based ROMs have gained particular prominence due to  
6 their reliance on linear elastic simulations for model construction and their characteristically low  
7 dimensionality. However, extensive studies have demonstrated that these models often exhibit  
8 an artificially stiff response when applied across a broad spectrum of materials. In the present  
9 study, a higher order eigenstrain homogenization scheme is presented to mitigate the overly stiff  
10 response predicted by these models. Another challenge with the incorporation of nonuniform or  
11 higher order basis within models based on TFA is the expensive integration of the constitutive  
12 response due to nonuniform fields. A novel approach to compute these integrals is established  
13 that reduces the number of integration parameters over complex three-dimensional domains  
14 without additional spatial constraints. It is demonstrated that the linear modes can soften the  
15 elasto-plastic response and that the proposed integration method achieves approximately an  
16 order-of-magnitude improvement in computational efficiency compared to brute-force integration  
17 over a background mesh.

18       Keywords: Computational homogenization; Reduced order modeling; Multiscale modeling;  
19       Crystal plasticity

---

\*Corresponding author address: VU Station B#351831, 2301 Vanderbilt Place, Nashville, TN 37235. Email:  
caglar.oskay@vanderbilt.edu

## 20 1 Introduction

21 Accurate modeling of the nonlinear mechanical behavior of structures made of advanced materials  
22 with complex microstructures such as metal alloys, composites, and architected materials requires  
23 the development and application of multiscale methods [1]. A variety of such methods are available  
24 (e.g., computational homogenization [2], variational multiscale enrichment [3], multiscale finite  
25 elements [4, 5]) to address specific classes of problems and material systems. For scale separable  
26 problems, a classical strategy is the computational homogenization (CH) method, which requires  
27 solving coupled nonlinear boundary value problems (BVPs) at both the macroscale and microscale  
28 using finite elements or other numerical techniques [6, 7, 8]. CH has been successfully applied to  
29 investigate various multiscale phenomena, such as the influence of microscale and mesoscale defects  
30 on the multiscale response of additively manufactured composites [9], the role of microstructural  
31 morphology in the response of heterogeneous interfaces [10], among many others.

32 The computational cost of CH implementations is typically high and significant computational  
33 resources for simulating realistic-sized structures are required. This challenge has limited its broader  
34 adoption. To address this limitation, reduced order models (ROMs) are employed by approximating  
35 the microscale response without resorting to full-field methods such as the finite element method  
36 (FEM) or the spectral method. A variety of ROM approaches have been developed in the literature  
37 including transformation field analysis (TFA) [11, 12], nonuniform TFA (NTFA) [13, 14, 15, 16, 17]  
38 and its extensions [18, 19, 20], numerical potentials [21], self-consistent clustering analysis [22], eigen-  
39 deformation methods [23, 24, 25, 26], eigenstrain-based reduced order homogenization (EHM) [27,  
40 28, 29, 30], deep material network [31] and proper orthogonal decomposition (POD) [32, 33, 34], with  
41 continuing developments exploring hybrid physics-informed and machine learning frameworks [35,  
42 36].

43 ROM frameworks generally consist of two distinct stages: (1) “offline” model construction  
44 (or training); and (2) “online” execution. During the offline stage (i.e., prior to the execution of  
45 the multiscale simulation), the ROM is constructed based on a pre-defined set of microstructure  
46 simulations. Model construction for some ROM approaches such as the NTFA, POD, and machine  
47 learning-based surrogate models involves conducting a comprehensive set of nonlinear and history-  
48 dependent microscale simulations subjected to a wide range of loading paths. In EHM, a predefined  
49 set of linear elastic simulations independent of the loading path is needed. During the online stage,  
50 the microscale BVP is replaced by the ROM, a nonlinear algebraic system of equations posed over a  
51 coarse approximation space spanned by a small number of basis functions. This substitution leads  
52 to significant computational efficiency, as the reduced system is of much lower dimension and can be  
53 efficiently coupled with the macroscopic solver.

54 While EHM and other TFA-based ROMs offer significant efficiency gains for nonlinear multiscale  
55 simulations, they can exhibit limitations in capturing inelastic responses for certain loading paths  
56 and microstructures. A common issue is an artificially stiff response compared to direct numerical  
57 simulations, a phenomenon reported in multiple prior studies [37, 28, 38]. The prediction error  
58 is generally more severe in high phase-contrast materials (e.g., carbon fiber reinforced polymer  
59 composites) than in lower phase-contrast materials such as polycrystalline metals. To address this  
60 shortcoming, several strategies have been explored, including ROM refinement based on phase  
61 subpartitioning [23, 39, 40, 22], online ROM reconstruction using instantaneous moduli [37, 30, 41],  
62 and the use of nonuniform basis functions [42, 14, 19, 18]. Incorporating the instantaneous moduli  
63 yields substantial improvement for high-phase-contrast microstructures but offers limited benefit  
64 in low-phase-contrast cases and requires online reconstruction, which is computationally expensive.  
65 A straightforward alternative is to subdivide each phase domain into smaller reduced-order parts,  
66 analogous to  $h$ -refinement in finite element analysis. However, meaningful accuracy gains generally  
67 require many subpartitions, even with advanced algorithms, as shown for both polycrystalline [25]  
68 and composite [43] microstructures. In contrast, the incorporation of nonuniform basis functions has  
69 demonstrated significant performance improvements, particularly when the basis functions are well  
70 chosen.

71 A broad range of basis constructions has been explored for composite materials, including  
72 piecewise-uniform [11, 12], piecewise-polynomial [19], mixed discretizations [15], and globally nonuni-  
73 form bases [14]. Michel and Suquet [14] introduced the use of globally nonuniform basis functions in  
74 the NTFA framework, deriving them from nonlinear full-field microstructure simulations. Similar  
75 strategies were later explored by Fritzen et al. [18] and by Beel and Fish [44] who advocated using a  
76 small set of six unidirectional loading simulations for the construction of the reduced basis. These ap-  
77 proaches generally achieve high accuracy, particularly when the applied loading remains close to that  
78 used in constructing the basis functions. Sepe et al. [19] proposed analytical basis functions to avoid  
79 the cost of such a priori nonlinear simulations, demonstrating their effectiveness for two-dimensional  
80 elastoplastic composites. Covezzi et al. [15] developed a mixed discretization for two-dimensional  
81 elastoviscoplastic composites, employing divergence-free stress bases alongside piecewise-linear strain  
82 and inelastic-strain functions. An additional challenge associated with the use of nonuniform basis  
83 functions is integrating the nonlinear constitutive law efficiently [19]. This challenge has been tackled  
84 by using reduced version of the constitutive model [14], Gauss point clustering [45], evolving Gauss  
85 points [44], second order Taylor expansions [46], and empirical quadrature method [47].

86 The focus of the present study is achieving consistent improvement in ROM accuracy compared to  
87 the classical EHM approach in the context of low-phase-contrast polycrystalline materials regardless

88 of loading and microstructural morphology. We employ polynomial-type higher-order basis functions  
89 to achieve this consistent accuracy improvement and accurately capture intragrain heterogeneity.  
90 First, a set of microscale equilibrium problems for higher-order basis functions is derived to describe  
91 the offline stage. For the online stage, reduced order versions of the constitutive equations are  
92 derived using variational principles which include a computationally intensive integration of the  
93 viscoplastic flow rule. We reformulate the integration problem and propose a machine-learning-based  
94 surrogate model that performs constitutive integration more efficiently. The primary contributions  
95 of this work are twofold: (i) the application of the ROM enhanced with higher-order basis functions  
96 to three-dimensional polycrystal plasticity problems, and (ii) the development of a novel surrogate  
97 approach to significantly reduce integration time.

98 The remainder of this manuscript is organized as follows: The EHM methodology is briefly  
99 summarized and the mathematical formulation for the proposed higher order model is derived and  
100 discussed in Section 2. Starting with a brief reintroduction of the key equations from classical EHM,  
101 Section 2.1 presents the higher-order discretization. Sections 2.2 and 2.3 use this discretization to  
102 derive the reduced constitutive law and evolution equations. Section 2.4 introduces the surrogate  
103 framework, followed by the offline stage comprising the influence-function problems in Section 2.5.  
104 Section 2.6 concludes with the description of the ROM algorithm. Numerical experiments performed  
105 to assess the accuracy of the proposed method are discussed in Section 3. Conclusions are presented  
106 in Section 4.

107 The following notation is used unless otherwise stated. Tensor fields are provided in Cartesian  
108 coordinates and are denoted as italic lightface letters ( $A_{ijkl}$  or  $\sigma_{ij}$ ), in indicial notation, or in boldface  
109 italic, ( $\mathbf{A}$  or  $\boldsymbol{\sigma}$ ), in tensor notation. Scalars are denoted by lightface letters,  $\alpha$  without indices.  
110 Parentheses in the subscript indicate the symmetric part of the tensor. A comma in the indices  
111 indicates partial spatial derivative. The top right superscript is used as a descriptor. The bottom  
112 left subscript denotes time increment. Overbar indicates macroscopic quantity averaged over the  
113 microstructural domain while overhead dot indicates time derivative.  $N_{ph}$  denotes number of grains  
114 in the polycrystal,  $N_m$  the number of modes per grain, and  $N_{Voigt}$  the number of Voigt components  
115 (six in three-dimensional simulations).

## 116 2 Higher order EHM (HEHM)

117 Consider a macroscopic domain,  $\Omega \subset \mathbb{R}^3$ , that is made of a periodic polycrystalline microstructural  
118 volume,  $\Theta \subset \mathbb{R}^3$ . The material constituents that occupy the domain behave in an inelastic manner,

119 which is idealized using the small strain theory and additive decomposition of the total strain

$$\sigma_{ij}(\mathbf{x}, \mathbf{y}, t) = L_{ijkl}(\mathbf{y}) [\varepsilon_{kl}(\mathbf{x}, \mathbf{y}, t) - \mu_{kl}(\mathbf{x}, \mathbf{y}, t)] \quad (1)$$

120 where  $\boldsymbol{\sigma}$  is the stress tensor,  $\mathbf{L}$  the tensor of elastic moduli,  $\boldsymbol{\varepsilon}$  the total strain, and  $\boldsymbol{\mu}$  the inelastic  
121 strain.  $\mathbf{x}$  denotes the macroscopic position vector defined over  $\Omega$ ,  $\mathbf{y}$  is the microscopic position  
122 vector defined over  $\Theta$ , and  $t$  is the time coordinate. The strain field over the microstructural volume  
123 at an arbitrary position  $\mathbf{x}$  of the macroscale structure is decomposed as

$$\varepsilon_{ij}(\mathbf{x}, \mathbf{y}, t) = \bar{\varepsilon}_{ij}(\mathbf{x}, t) + \tilde{\varepsilon}_{ij}(\mathbf{x}, \mathbf{y}, t) \quad (2)$$

124 where  $\bar{\varepsilon}$  is the macroscale strain tensor, and  $\tilde{\varepsilon}$  is the zero-mean microscale strain perturbation over  
125 the microstructural volume. The strain perturbation field is then expanded as follows [28]

$$\tilde{\varepsilon}_{ij}(\mathbf{x}, \mathbf{y}, t) = H_{(i,j)mn}(\mathbf{y}) \bar{\varepsilon}_{mn}(\mathbf{x}, t) + \int_{\Theta} h_{(i,j)mn}(\mathbf{y}, \hat{\mathbf{y}}) \mu_{mn}(\mathbf{x}, \hat{\mathbf{y}}, t) d\hat{\mathbf{y}} \quad (3)$$

126 where  $\mathbf{H}(\mathbf{y})$  and  $\mathbf{h}(\mathbf{y}, \hat{\mathbf{y}})$  are elastic and phase influence functions, respectively.

## 127 2.1 Field-discretization

128 The ansatz in Eq. 3 forms the foundation of the EHM model. In the classical EHM formulation [28],  
129 the spatial distribution of the inelastic strain and the stress fields over the microstructural volume is  
130 approximated as piecewise-uniform over prescribed subdomains of  $\Theta$ . In this section, we propose  
131 an extension of this approximation by including a hierarchy of higher-order basis functions. The  
132 goal of this extension is to monotonically increase the accuracy of a ROM prepared by a given  
133 set of basis functions by including additional higher-order basis functions from the hierarchy. Let  
134  $\{\Theta^{(\alpha)} \in \Theta \mid \alpha = 1, \dots, N_{\text{ph}}\}$  denote a partition of  $\Theta$ . We proceed with the following discretization of  
135 the inelastic strain and stress fields

$$\mu_{ij}(\mathbf{x}, \mathbf{y}, t) = \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{p=1}^{N_{\text{m}}} N^{(\alpha,p)}(\mathbf{y}) \mu_{ij}^{(\alpha,p)}(\mathbf{x}, t) \quad (4)$$

$$\sigma_{ij}(\mathbf{x}, \mathbf{y}, t) = \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{p=1}^{N_{\text{m}}} N^{(\alpha,p)}(\mathbf{y}) \sigma_{ij}^{(\alpha,p)}(\mathbf{x}, t) \quad (5)$$

136 where  $N^{(\alpha,p)}$  is a basis function associated with part  $\alpha$  and mode  $p$ , and  $\boldsymbol{\mu}^{(\alpha,p)}$  and  $\boldsymbol{\sigma}^{(\alpha,p)}$  are the  
137 corresponding eigenstrain and stress coefficients, respectively.

138 In the present study, polynomial basis functions are used following the ideas proposed in  
 139 Ref. [19]. The basis functions are chosen such that they have compact support within their parts,  
 140 i.e.,  $N^{(\alpha,p)}(\mathbf{y} = \Theta \cap \overline{\Theta^{(\alpha)}}) = 0$ . This property of the basis functions enables partial localization of  
 141 the constitutive equations; for instance, the Schmid tensor remains constant within a grain and  
 142 does not require additional treatment. Furthermore, the basis functions are constructed to satisfy  
 143 orthonormality condition given as

$$\int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) N^{(\beta,q)}(\mathbf{y}) d\mathbf{y} = \begin{cases} 0, & p \neq q, \\ 1, & p = q. \end{cases} \quad (6)$$

144 Orthonormalizing the basis functions beforehand simplifies the numerical implementation and  
 145 improves conditioning of the reduced system as elaborated in Section 2.3.

146 Construction of the orthonormal basis functions can be achieved by the Gram-Schmidt orthonor-  
 147 malization procedure. For consistency with the classical EHM formulation, the first basis function  
 148 is constrained to be constant within its corresponding part:  $\tilde{N}^{(\beta,1)} = 1$ . To generate higher-order  
 149 basis functions based on polynomial expansions, we begin by selecting a set of linearly independent,  
 150 non-orthogonal functions. For instance, the set of linear polynomials are

$$\tilde{N}^{(\beta,2)} = y_1, \tilde{N}^{(\beta,3)} = y_2, \tilde{N}^{(\beta,4)} = y_3; \quad \mathbf{y} \in \Theta^{(\beta)}. \quad (7)$$

151 The orthonormalized basis functions are then obtained recursively via the Gram-Schmidt process,  
 152 with the first mode given by

$$N^{(\beta,1)}(\mathbf{y}) = \frac{\tilde{N}^{(\beta,1)}(\mathbf{y})}{\sqrt{\int_{\Theta^{(\beta)}} \tilde{N}^{(\beta,1)}(\mathbf{y}) \tilde{N}^{(\beta,1)}(\mathbf{y}) d\mathbf{y}}} \quad (8)$$

153 and the rest of the modes given by

$$\hat{N}^{(\beta,p)}(\mathbf{y}) = \tilde{N}^{(\beta,p)}(\mathbf{y}) - \sum_{q=1}^{p-1} \left( \frac{\int_{\Theta^{(\beta)}} \tilde{N}^{(\beta,p)}(\mathbf{y}) N^{(\beta,q)}(\mathbf{y}) d\mathbf{y}}{\int_{\Theta^{(\beta)}} N^{(\beta,q)}(\mathbf{y}) N^{(\beta,q)}(\mathbf{y}) d\mathbf{y}} \right) N^{(\beta,q)}(\mathbf{y}) \quad (9)$$

$$N^{(\beta,p)}(\mathbf{y}) = \frac{\hat{N}^{(\beta,p)}(\mathbf{y})}{\sqrt{\int_{\Theta^{(\beta)}} \hat{N}^{(\beta,p)}(\mathbf{y}) \hat{N}^{(\beta,p)}(\mathbf{y}) d\mathbf{y}}}. \quad (10)$$

154 This approach is conceptually analogous to  $p$ -refinement in finite element analysis, where the order  
 155 of interpolation within each element is increased to more accurately capture field nonuniformities. As  
 156 an illustrative example, the functions  $\tilde{N}^{(\beta,1)} = 1, \tilde{N}^{(\beta,2)} = y_1, \tilde{N}^{(\beta,3)} = y_2, \tilde{N}^{(\beta,4)} = y_1^2$  are plotted over

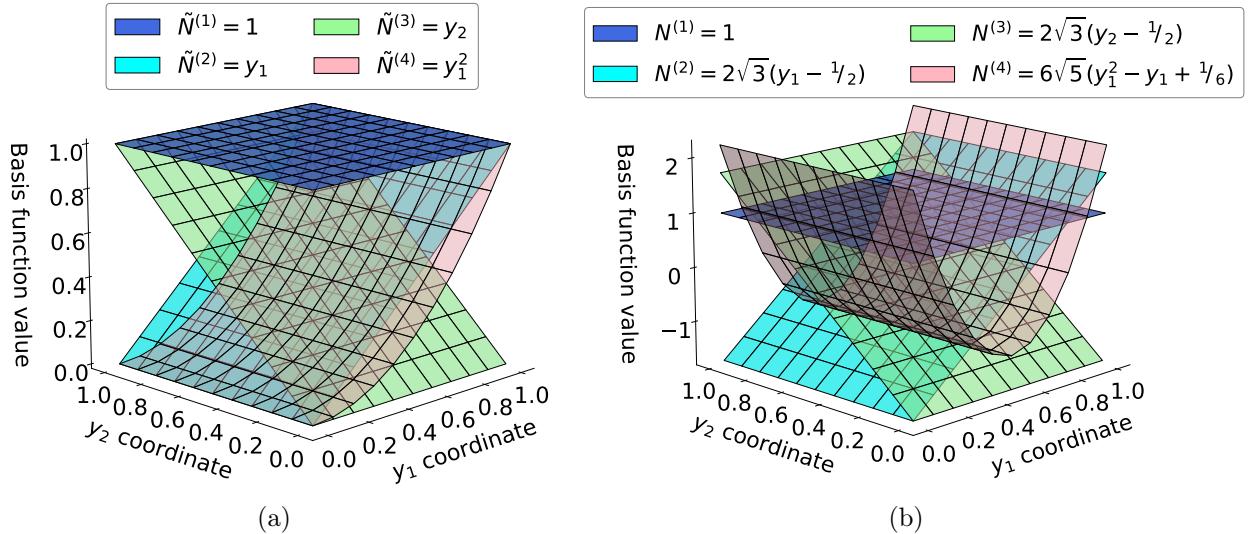


Figure 1: (a) Initial (non-orthonormal) basis functions over a square domain  $[0, 1]^2$  in 2D and (b) modified basis functions after orthonormalization.

157 the unit square domain  $[0, 1]^2$  in Figure 1 both before and after orthonormalization, to demonstrate  
 158 the transformation.

## 159 2.2 Reduced Constitutive Equations

160 In this section, the constitutive relations are projected onto the reduced basis introduced earlier  
 161 to obtain a finite-dimensional representation of the microscale response. The resulting reduced  
 162 constitutive equations introduce the localization and interaction tensors that encode the mechanical  
 163 interactions within and between parts, and these tensors form the central building blocks of the  
 164 ROM used in the subsequent development. Combining the prescribed discretization in Eq. 4 with  
 165 Eqs. 1, 2, and 3 yields the following expression for the stress

$$\sigma_{ij}(\mathbf{x}, \mathbf{y}, t) = L_{ijkl}(\mathbf{y}) \left[ \bar{\varepsilon}_{kl}(\mathbf{x}, t) + H_{(k,l)mn}(\mathbf{y}) \bar{\varepsilon}_{mn}(\mathbf{x}, t) \right. \\ \left. + \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{p=1}^{N_m} \left( h_{(k,l)mn}^{(\alpha,p)}(\mathbf{y}) - N^{(\alpha,p)}(\mathbf{y}) I_{klmn} \right) \mu_{mn}^{(\alpha,p)}(\mathbf{x}, t) \right] \quad (11)$$

166 where  $\mathbf{h}^{(\alpha,p)}(\mathbf{y}) = \int_{\Theta} \mathbf{h}(\mathbf{y}, \hat{\mathbf{y}}) N^{(\alpha,p)}(\hat{\mathbf{y}}) d\hat{\mathbf{y}}$  is the integrated phase influence function. Substituting  
 167 discretizations in Eq. 5 into Eq. 11, premultiplying with  $N^{(\beta,q)}$ , and integrating over  $\Theta^{(\beta)}$  we get

$$M_{klkj}^{(\beta)} \sigma_{ij}^{(\beta,q)} = A_{klmn}^{(\beta,q)} \bar{\varepsilon}_{mn} + \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{p=1}^{N_{\text{m}}} P_{klmn}^{(\beta\alpha,qp)} \mu_{mn}^{(\alpha,p)} - \mu_{kl}^{(\beta,q)} \quad (12)$$

<sup>168</sup> where

$$A_{klmn}^{(\beta,q)} = \int_{\Theta^{(\beta)}} N^{(\beta,q)}(\mathbf{y}) [I_{klmn} + H_{(k,l)mn}(\mathbf{y})] d\mathbf{y} \quad (13)$$

$$P_{klmn}^{(\beta\alpha,qp)} = \int_{\Theta^{(\beta)}} N^{(\beta,q)}(\mathbf{y}) h_{(k,l)mn}^{(\alpha,p)}(\mathbf{y}) d\mathbf{y} \quad (14)$$

<sup>169</sup> in which  $\mathbf{M}^{(\beta)} = \mathbf{L}^{(\beta)}^{-1}$ ,  $\mathbf{L}^{(\beta)}$  is the part-averaged stiffness tensor,  $\mathbf{A}^{(\beta,q)}$  is the localization tensor,  
<sup>170</sup> and  $\mathbf{P}^{(\beta\alpha,qp)}$  the interaction tensor representing interactions between mode  $q$  in part  $\beta$  and mode  $p$   
<sup>171</sup> in part  $\alpha$ .

## <sup>172</sup> 2.3 Reduced Evolution Equations

<sup>173</sup> Equation 12 establishes a linear mapping between the stress and inelastic strain coefficients, both of  
<sup>174</sup> which are unknown. In order to close the system, the constitutive laws that govern the viscoelasto-  
<sup>175</sup> plastic response of the crystals within the microstructure are invoked. Various forms of evolution  
<sup>176</sup> equations have been previously proposed to describe the nonlinear behavior of polycrystalline  
<sup>177</sup> materials (e.g., [48, 49, 50]). In this study, we adopt a dislocation-glide based phenomenological  
<sup>178</sup> crystal plasticity model. The flow rule [51, 28] at a material point is given by

$$\dot{\mu}_{ij} = \sum_{s=1}^{N_{\text{ss}}} \dot{\gamma}_0 \left[ \frac{|\tau^s|}{g^s} \right]^{1/n} \text{sign}(\tau^s) Z_{ij}^s \quad (15)$$

<sup>179</sup> where  $\mathbf{Z}^s$  is the Schmid tensor associated with a slip system  $s$ ,  $\dot{\gamma}_0$  is the reference self-shearing rate,  
<sup>180</sup>  $n$  is the rate sensitivity parameter,  $g^s$  is the slip system strength, and  $\tau^s = \boldsymbol{\sigma} : \mathbf{Z}^s$  is the resolved  
<sup>181</sup> shear stress over the  $s^{\text{th}}$  slip system, and  $N_{\text{ss}}$  is the number of slip systems in the lattice. The  
<sup>182</sup> hardening rule [52, 53] is given by

$$\dot{g}^s = h_0 \left[ \frac{g_{\text{sa}} - g^s}{g_{\text{sa}} - g_0} \right] \sum_{r=1}^{N_{\text{ss}}} |\dot{\gamma}_0| \left[ \frac{|\tau^r|}{g^r} \right]^{1/n} \text{sign}(\tau^r) \quad (16)$$

<sup>183</sup> where  $h_0$  is reference self-hardening,  $g_0$  is the initial strength of a slip system, and  $g_{\text{sa}}$  is saturation  
<sup>184</sup> strength.

185 When the basis functions of the reduced order model are piecewise uniform (e.g., in the classical  
 186 EHM approach), the flow and hardening rules can be directly expressed in terms of stress and  
 187 inelastic strain coefficients, as well as similarly defined hardening variable coefficients [28]. Hence,  
 188 the flow and hardening evolution rules for the reduced order coefficients are of the same form as  
 189 the point-wise evolution equations defined in Eqs. 15 and 16. However, when basis functions are  
 190 nonuniform, the constitutive laws cannot be satisfied exactly at every point within a grain, while also  
 191 considering the reduced order approximations for the stress and inelastic strain fields (i.e., Eqs. 5  
 192 and 4). This is because the nonlinearity in the constitutive laws result in a spatial distribution of  
 193 the fields within the part that is inconsistent with the polynomial basis. The approach in this paper  
 194 is to construct a reduced-flow rule where Eq. 15 is satisfied in a weak sense. Consider the following  
 195 weak form of the flow rule

$$\int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) \left( \dot{\mu}_{ij}(\mathbf{y}) - \sum_{s=1}^{N_{ss}} \dot{\gamma}_0 \left[ \frac{|\tau^s(\mathbf{y})|}{g^s(\mathbf{y})} \right]^{1/n} \text{sign}(\tau^s(\mathbf{y})) Z_{ij}^s \right) d\mathbf{y} = 0. \quad (17)$$

196 Substituting the reduced order discretizations of the stress and inelastic strain fields result in the  
 197 following expression

$$\dot{\mu}_{ij}^{(\beta,p)} = \sum_s \dot{\gamma}^{(\beta,p),s} Z_{ij}^{(\beta),s} \quad (18)$$

198 where

$$\dot{\gamma}^{(\beta,p),s} = \dot{\gamma}_0 \int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) \left[ \frac{\left| \sum_{q=1}^{N_m} N^{(\beta,q)}(\mathbf{y}) \tau^{(\beta,q),s} \right|}{g^s(\mathbf{y})} \right]^{1/n} \text{sign} \left( \sum_{q=1}^{N_m} N^{(\beta,q)}(\mathbf{y}) \tau^{(\beta,q),s} \right) d\mathbf{y} \quad (19)$$

199 and  $\dot{\gamma}^{(\beta,p),s}$  is the reduced plastic slip rate for grain  $\beta$ , mode  $p$  and slip system  $s$ , and  $\tau^{(\beta,p),s} =$   
 200  $\boldsymbol{\sigma}^{(\beta,p)} : \mathbf{Z}^{(\beta),s}$  is the resolved shear stress coefficient corresponding to mode  $p$ . The right-hand side of  
 201 Eq. 19 could be numerically integrated for a given input of stress coefficients,  $\boldsymbol{\sigma}^{(\beta,p)}$ , and hardening  
 202 coefficients,  $g^{(\beta,p),s}$ . Similar procedure is applied to construct a reduced hardening rule using Eq. 16.

203 Orthonormalizing the basis functions in advance eliminates cross-mode coupling terms and  
 204 significantly simplifies the inversion required on the left-hand sides of Eqs. 12 and 18. Without  
 205 orthonormalization, the reduced evolution equations retain all cross terms, leading to coupled systems  
 206 of the form

$$\sum_{q=1}^{N_m} C_{ijkl}^{(\beta,pq)} \dot{\mu}_{kl}^{(\beta,q)} = \sum_{s=1}^{N_{ss}} \dot{\gamma}^{(\beta,p),s} Z_{ij}^{(\beta),s} \quad (20)$$

207 where

$$C_{ijmn}^{(\beta,pq)} = \int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) I_{ijmn} N^{(\beta,q)}(\mathbf{y}) d\mathbf{y} \quad (21)$$

208 denotes the inner product between modes  $p$  and  $q$ . In the absence of orthonormality,  $\mathbf{C}^{(\beta,pq)}$  is  
209 generally dense, and each mode is coupled to all others, increasing both algebraic complexity and  
210 computational cost.

## 211 2.4 Surrogate integration

212 Accurate integration of Eq. 18 has a substantive effect on the overall accuracy of the reduced  
213 model predictions as demonstrated in Section 3. However, direct numerical integration of this term  
214 accurately over a complex three-dimensional microstructure is computationally expensive. This  
215 difficulty is particularly pronounced when the exponent  $n$  is small, as the integrand becomes highly  
216 nonlinear and requires a dense set of quadrature points for accurate evaluation. As discussed in  
217 the literature review, several algorithms have been proposed to reduce the number of quadrature  
218 points within each grain. A key limitation of most existing approaches is the inherent requirement  
219 that quadrature points lie strictly within the integration domain. This constraint is difficult to  
220 enforce for arbitrary three-dimensional geometries. We propose a new procedure that converts the  
221 integration problem into an interpolation problem, thereby relaxing the geometric constraint and  
222 enabling efficient evaluation over complex grain shapes. Consider a normalized resolved shear stress,  
223  $\tau_{\text{norm}}^{(\beta,p),s}$ , that is given by

$$\tau_{\text{norm}}^{(\beta,p),s} = \frac{\tau^{(\beta,p),s}}{\tau_{\text{max}}^{(\beta,s)}} \in [-1, 1] \quad (22)$$

224 where  $\tau_{\text{max}}^{(\beta,s)} = \tau^{(\beta,p^*),s}$  and  $p^* = \text{argmax}_p(|\tau^{(\beta,p),s}|)$ . Without loss of generality, we assume hardening  
225 has only the average mode for simplicity. The integral for computing the reduced plastic slip rates  
226 (Eq. 19) is expressed as follows

$$\dot{\gamma}^{(\beta,p),s} = \dot{\gamma}_0 \left[ \frac{|\tau_{\text{max}}^{(\beta,s)}|}{g^{(\beta,s)}} \right]^{1/n} \text{sign}(\tau_{\text{max}}^{(\beta,s)}) I^{(\beta,p)}(\tau_{\text{norm}}^{(\beta,s)}) \quad (23)$$

227 where

$$I^{(\beta,p)}(\tau_{\text{norm}}^{(\beta),s}) = \int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) \left[ \left| \sum_{q=1} N^{(\beta,q)}(\mathbf{y}) \tau_{\text{norm}}^{(\beta,q),s} \right| \right]^{1/n} \text{sign} \left( \sum_{q=1} N^{(\beta,q)}(\mathbf{y}) \tau_{\text{norm}}^{(\beta,q),s} \right) d\mathbf{y} \quad (24)$$

228 and  $\tau_{\text{norm}}^{(\beta),s}$  indicates normalized resolved shear stresses over the modes combined into an array  
229 form. For given coefficients  $\tau_{\text{norm}}^{(\beta),s}$ , the integral  $I^{(\beta,p)}(\tau_{\text{norm}}^{(\beta),s})$  can be computed using, for example,  
230 composite integration rule over a background grid. This allows us to use interpolation methods  
231 over the  $[-1, 1]^{N_m}$  space without dealing with the spatial constraints over subdomains within the  
232 microstructure. Depending on the number of modes  $N_m$ , this space could be classified as hyper-  
233 dimensional. Various methods can be used to interpolate functions in these spaces including sparse  
234 grids [54] or high-dimensional model representation (HDMR) methods [55]. In the present work, we  
235 employ neural-network-based surrogates due to their flexibility in approximating nonlinear mappings  
236 as detailed in Section 3.5.

## 237 2.5 Influence function problems

238 Before proceeding to the complete algorithm, the method of computing influence functions,  $\mathbf{H}$  and  
239  $\mathbf{h}^{(\alpha,p)}$ , appearing in Eqs. 13 and 14 must be specified. Substituting the stress expression from Eq. 11  
240 into the microscale equilibrium condition  $\nabla \cdot \boldsymbol{\sigma} = 0$  over the microstructural volume yields

$$\left\{ L_{ijkl}(\mathbf{y}) [I_{klmn} + H_{(k,l)mn}(\mathbf{y})] \bar{\varepsilon}_{mn} + \right. \\ \left. + \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{q=1}^{N_m} L_{ijkl}(\mathbf{y}) [-N^{(\alpha,q)}(\mathbf{y}) I_{klmn} + h_{(k,l)mn}^{(\alpha,q)}(\mathbf{y})] \mu_{mn}^{(\alpha,q)} \right\}_{,j} = 0. \quad (25)$$

241 Considering the microscale equilibrium (Eq. 25) defined in the absence of any inelastic strain leads  
242 to following influence function problems (IFPs)

$$[L_{ijkl}(\mathbf{y}) [I_{klmn} + H_{(k,l)mn}(\mathbf{y})]]_{,j} = 0 \quad (26)$$

243 which are identical to those encountered in the classical linear elastic homogenization theory. The  
244 phase IFPs can be formulated by considering the case where only the inelastic strain coefficient  
245 corresponding to mode  $p$  in part  $\alpha$  is nonzero, yielding

$$[L_{ijkl}(\mathbf{y}) [-N^{(\alpha,p)}(\mathbf{y}) I_{klmn} + h_{(k,l)mn}^{(\alpha,p)}(\mathbf{y})]]_{,j} = 0. \quad (27)$$

246 Periodic boundary conditions are applied on the edges and faces of the microstructural volume, while  
 247 homogeneous Dirichlet boundary conditions are imposed at the vertices for both Eqs. 26 and 27. It  
 248 is noteworthy that the phase IFPs are different from the classical EHM due to nonuniformity of  
 249 the basis functions. Although the IFPs remain linear elastic boundary value problems, the number  
 250 of required solves increases to  $N_{\text{ph}} \times N_{\text{m}}$ , compared to only  $N_{\text{ph}}$  in the original ROM formulation.  
 251 Previous studies have employed various numerical techniques to solve these IFPs, including the finite  
 252 element method [28, 56, 57, 58], the generalized finite element method [59], and the reduced spectral  
 253 method [60].

254 To illustrate the physical meaning of the higher order basis functions and their effect on the  
 255 influence functions, deformation of a representative grain  $\alpha$  is shown in Figure 2 computed from  
 256 the phase influence function problem given in Eq. 27. The Figures 2(b)-(e) show the influence  
 257 functions  $h_{i11}^{(\alpha,1)}$ ,  $h_{i11}^{(\alpha,2)}$ ,  $h_{i11}^{(\alpha,3)}$ , and  $h_{i11}^{(\alpha,4)}$ , respectively. The first influence function corresponds to  
 258 the uniform applied strain mode, which manifests as a uniform expansion (tension) of all finite  
 259 elements within the grain domain along direction 1. Figure 2(c) shows the effect of the higher-order  
 260 mode  $N^{(\alpha,2)}$ , characterized by a transition from compression to tension along direction 1. Similarly,  
 261 Figures 2(d) and (e) show the actions of modes  $N^{(\alpha,3)}$  and  $N^{(\alpha,4)}$ , which correspond to transitions  
 262 from compression to tension along directions 2 and 3, respectively. These higher-order modes enable  
 263 the ROM to capture grain-scale strain gradients and nonuniform deformation patterns that cannot  
 264 be represented by the uniform mode alone.

## 265 2.6 Algorithm

266 The computational procedure consists of two stages: an offline precomputation stage and an online  
 267 stage in which the reduced-order system is evolved. The offline stage of the model consists of solving  
 268 the linear elastic problems shown in Eqs. 26 and 27 using the finite element method. Once the  
 269 influence functions are obtained, the interaction tensors,  $\mathbf{P}^{(\beta\alpha,pq)}$ , and the localization tensors,  $\mathbf{A}^{(\beta,p)}$ ,  
 270 are precomputed by evaluating Eqs. 13 and 14 using numerical integration.

271 The online stage involves evolving the microstructural state using the reduced-order system  
 272 summarized in Box 1. The online stage of the ROM takes macroscale strain increment,  $\Delta\bar{\boldsymbol{\varepsilon}}$ , together  
 273 with the state variables from the previous step, and computes the stress coefficients,  $\boldsymbol{\sigma}^{(\beta,p)}$ , and  
 274 hardening coefficients,  $g^{(\beta,p),s}$ . The system is solved using a staggered scheme in which the stresses  
 275 are obtained via a Newton–Raphson iteration and the hardening variables are updated explicitly,  
 276 with the two updates iterated until convergence is reached. Newton–Raphson convergence was  
 277 enforced when  $\|\boldsymbol{\phi}^{(\beta,p)}\|_\infty < 10^{-10}$  where  $\boldsymbol{\phi}^{(\beta,p)}$  is the residual for grain  $\beta$  and mode  $s$ , unless  
 278 otherwise stated. State-variable convergence was enforced when  $\|_{l+1}^{k+1} \boldsymbol{\sigma}^{(\beta,p)} - {}_{l+1}^k \boldsymbol{\sigma}^{(\beta,p)}\|_{L_2} < 10^{-5}$



Figure 2: Magnitude of deformation of (a) a single grain within a 10-grain SVE under the application of (b) average mode,  $N^{(\alpha,1)}(\mathbf{y})$ , (c) first mode,  $N^{(\alpha,2)}(\mathbf{y})$ , (d) second mode,  $N^{(\alpha,3)}(\mathbf{y})$ , and (e) third mode,  $N^{(\alpha,4)}(\mathbf{y})$ . The colorbars indicate the deformation magnitude.

Reduced order system of equations:

$$M_{kl}^{(\beta)} \sigma_{ij}^{(\beta,p)} = A_{klmn}^{(\beta,p)} \bar{\varepsilon}_{mn} + \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{q=1}^{N_{\text{m}}} P_{klmn}^{(\beta\alpha,pq)} \mu_{mn}^{(\alpha,q)} - \mu_{kl}^{(\beta,p)}$$

Flow rule:  $\dot{\mu}_{ij}^{(\beta,p)} = \sum_{s=1}^{N_{\text{ss}}} \dot{\gamma}^{(\beta,p),s} Z_{ij}^{(\beta),s}$

Slip rate:  $\dot{\gamma}^{(\beta,p),s} = \dot{\gamma}_0 \int_{\Theta^{(\beta)}} N^{(\beta,p)}(\mathbf{y}) \left[ \frac{|\tau^{(\beta),s}(\mathbf{y})|}{g^{(\beta),s}} \right]^{1/n} \text{sign}(\tau^{(\beta),s}(\mathbf{y})) d\mathbf{y}$

Hardening rule:  $\dot{g}^{(\beta),s} = h_0 \left[ \frac{g_{\text{sa}} - g^{(\beta),s}}{g_{\text{sa}} - g_0} \right] \sum_{r=1}^{N_{\text{ss}}} |\dot{\gamma}^{(\beta,1),r}|$

Schmid's law:  $\tau^{(\beta),s}(\mathbf{y}) = \sum_{q=1}^{N_{\text{m}}} N^{(\beta,q)}(\mathbf{y}) \sigma_{kl}^{(\beta,q)} Z_{kl}^{(\beta),s}$

Box I : Microscale problem for higher order EHM

Given: Macroscopic strain increment  $\Delta \bar{\varepsilon}$ , the state variables  ${}_l \boldsymbol{\sigma}^{(\beta,p)}, {}_l g^{(\beta,p),s}$  at increment  $l$ .

Find: Macroscopic stress,  ${}_{l+1} \bar{\boldsymbol{\sigma}}$ , and macroscopic tangent moduli,  $\frac{\partial_{l+1} \bar{\boldsymbol{\sigma}}}{\partial_{l+1} \bar{\varepsilon}}$  at increment  $l+1$ .

1. Initialize  $k \leftarrow 0$ ,  ${}_{l+1}^k \boldsymbol{\sigma}^{(\beta,p)} \leftarrow {}_l \boldsymbol{\sigma}^{(\beta,p)}$ , and  ${}_{l+1}^k g^{(\beta,p),s} \leftarrow {}_l g^{(\beta,p),s}$ .

2. Solve for  ${}_{l+1}^{k+1} \boldsymbol{\sigma}^{(\beta,p)}$  using Eqs. 28 and 18 together with their derivatives in Eqs. 29 and 30 by Newton-Raphson iterations.

3. Update  ${}_{l+1}^{k+1} g^{(\beta,p),s}$  by explicitly integrating the hardening rule (Eq. 16).

4. Check for convergence of  ${}_{l+1}^{k+1} \boldsymbol{\sigma}^{(\beta,p)}$  and  ${}_{l+1}^{k+1} g^{(\beta,p),s}$ .

If not converged, set  $k \leftarrow k + 1$  and return to Step 2.

5. Compute the macroscopic tangent moduli,  $\frac{\partial_{l+1} \bar{\boldsymbol{\sigma}}}{\partial_{l+1} \bar{\varepsilon}}$ , using Eq. 33.

6. Compute the macroscopic stress by averaging  ${}_{l+1} \bar{\boldsymbol{\sigma}} = \sum_{\beta} c^{(\beta)} {}_{l+1} \boldsymbol{\sigma}^{(\beta,1)}$ .

Box II : Algorithm for stress update

279 and  $\|{}_{l+1}^{k+1}g^{(\beta,p),s} - {}_{l+1}^kg^{(\beta,p),s}\|_{L_2} < 10^{-5}$ , unless otherwise stated. The Newton–Raphson procedure  
280 requires evaluating the residual and Jacobian associated with the reduced microscale evolution  
281 equations. The residual follows from applying a backward-Euler time discretization to the time  
282 derivatives in Eqs. 12 and 18. For grain  $\beta$  and mode  $p$ , the residual is given by

$$\phi_{ij}^{(\beta,p)} = M_{ijkl}^{(\beta)} \dot{\sigma}_{kl}^{(\beta,p)} - A_{ijkl}^{(\beta,p)} \dot{\bar{\varepsilon}}_{kl} - \sum_{\alpha=1}^{N_{\text{ph}}} \sum_{q=1}^{N_m} P_{ijkl}^{(\beta\alpha,pq)} \dot{\mu}_{kl}^{(\alpha,q)} + \dot{\mu}_{ij}^{(\beta,p)} \quad (28)$$

283 where all quantities are evaluated at the next increment,  $l + 1$ . The Jacobian with respect to the  
284 reduced stresses is derived as

$$\frac{\partial \phi_{ij}^{(\beta,p)}}{\partial \sigma_{mn}^{(\eta,t)}} = \frac{1}{\Delta t} \delta^{(\beta\eta)} \delta^{(pt)} M_{ijmn}^{(\beta)} - \sum_{q=1}^{N_m} P_{ijkl}^{(\beta\eta,pq)} \frac{\partial \mu_{kl}^{(\eta,q)}}{\partial \sigma_{mn}^{(\eta,t)}} + \delta^{(\beta\eta)} \frac{\partial \dot{\mu}_{ij}^{(\eta,p)}}{\partial \sigma_{mn}^{(\eta,t)}} \quad (29)$$

285 where  $\delta^{(\beta\eta)} = 1$  if  $\beta = \eta$  and zero otherwise. The derivative  $\frac{\partial \dot{\mu}_{ij}^{(\eta,p)}}{\partial \sigma_{mn}^{(\eta,t)}}$  is obtained from

$$\frac{\partial \dot{\mu}_{ij}^{(\eta,p)}}{\partial \sigma_{mn}^{(\eta,t)}} = \sum_s \frac{\partial \dot{\gamma}^{(\eta,p),s}}{\partial \sigma_{mn}^{(\eta,t)}} Z_{ij}^{(\eta),s} \quad (30)$$

286 where the slip-rate derivative is

$$\frac{\partial \dot{\gamma}^{(\eta,p),s}}{\partial \sigma_{mn}^{(\eta,t)}} = \frac{\dot{\gamma}_0}{n} \left[ \frac{1}{g^{(\eta),s}} \right]^{1/n} \int_{\Theta^{(\eta)}} N^{(\eta,p)}(\mathbf{y}) N^{(\eta,t)}(\mathbf{y}) \left[ \sum_{q=1}^{N_m} N^{(\eta,q)} \tau^{(\eta,q),s} \right]^{1/n-1} d\mathbf{y} Z_{mn}^{(\eta),s}. \quad (31)$$

287 The integral on the right hand side is evaluated on the background finite element mesh when the  
288 full model (non-surrogate) is used. Alternatively, when using the surrogate representation of the  
289 integral, the slip-rate derivative becomes

$$\frac{\partial \dot{\gamma}^{(\eta,p),s}}{\partial \sigma_{mn}^{(\eta,t)}} = \dot{\gamma}_0 \left[ \frac{1}{g^{(\eta),s}} \right]^{1/n} |\tau_{\max}^{(\eta),s}|^{(1/n-1)} \times \left[ \frac{1}{n} I^{(\eta,p)}(\tau_{\text{norm}}^{(\eta),s}) \delta^{(t)} + \frac{\partial I^{(\eta,p)}(\tau_{\text{norm}}^{(\eta),s})}{\partial \tau_{\text{norm}}^{(\eta,t),s}} - \sum_{q=1}^{N_m} \frac{\partial I^{(\eta,p)}(\tau_{\text{norm}}^{(\eta),s})}{\partial \tau_{\text{norm}}^{(\eta,q),s}} \tau_{\text{norm}}^{(\eta,q),s} \delta^{(t)} \right] Z_{mn}^{(\eta),s} \quad (32)$$

290 where  $\delta^{(t)} = 1$  if  $t = t^*$  (i.e., if mode  $t$  corresponds to the largest absolute resolved shear stress  
291 coefficient) and  $\delta^{(t)} = 0$  otherwise. The derivative  $\partial I^{(\beta,p)}(\tau_{\text{norm}}^{(\beta),s}) / \partial \tau_{\text{norm}}^{(\beta,q),s}$  can be derived analytically  
292 or computed using numerical differentiation methods. For completeness, the macroscale Jacobian

293 can be obtained by solving the following system of equations

$$\left[ \frac{1}{\Delta t} \delta^{(\beta\eta)} \delta^{(pq)} M_{ijrs}^{(\beta)} - \sum_{t=1}^{N_m} P_{ijmn}^{(\beta\eta,pt)} \frac{\partial \dot{\mu}_{mn}^{(\eta,t)}}{\partial \sigma_{rs}^{(\eta,q)}} + \delta^{(\beta\eta)} \frac{\partial \dot{\mu}_{ij}^{(\eta,p)}}{\partial \sigma_{rs}^{(\eta,q)}} \right] \frac{\partial \sigma_{rs}^{(\eta,q)}}{\partial \bar{\varepsilon}_{kl}} = \frac{1}{\Delta t} A_{ijkl}^{(\beta,p)}. \quad (33)$$

294 Once the the system is solved for  $\partial\sigma^{(\beta,p)}/\partial\bar{\varepsilon}$ , the macroscale tangent modulus can be assembled  
295 as  $\frac{\partial\bar{\sigma}}{\partial\bar{\varepsilon}} = \sum_{\beta=1}^{N_{\text{ph}}} c^{(\beta)} \frac{\partial\sigma^{(\beta,1)}}{\partial\bar{\varepsilon}}$  and the updated macroscopic stress is obtained by volume-averaging  
296 the updated grain-averaged stress coefficients across all grains. The computational algorithm is  
297 summarized in Box 2, where  $c^{(\beta)}$  denotes volume fraction of grain  $\beta$ . The algorithm was implemented  
298 in Abaqus, and surrogate computations were executed using CalculiX [61], which provided a  
299 convenient environment for the required library interfaces.

300 The total number of stress degrees of freedom in the Step 2 is equal to  $N_m \times N_{\text{ph}} \times N_{\text{Voigt}}$ , which  
301 makes the online stage computationally more expensive than the classical EHM. In the standard  
302 EHM formulation, this number reduces to  $N_{\text{ph}} \times N_{\text{Voigt}}$  by setting  $N_m = 1$ . In practice, we observed  
303 that the repeated integration of Eq. 19 during each iteration dominates the total computational cost.  
304 This is primarily due to the requirement for a refined integration mesh to accurately resolve the high  
305 nonlinearity introduced by the large exponent  $1/n$  typically used in crystal plasticity flow rules.

306 The implementation described above establishes the complete computational framework for  
307 the proposed reduced-order model. To assess its accuracy and efficiency, a series of numerical  
308 experiments were conducted on representative polycrystalline aggregates subjected to various loading  
309 conditions. These simulations aim to evaluate the model's ability to reproduce microscale fields,  
310 capture intergranular heterogeneity, and predict the macroscopic response in comparison with  
311 full-field crystal plasticity finite element simulations.

### 312 3 Numerical Experiments

313 The capabilities of the higher order EHM (HEHM) model are assessed by comparing it to the original  
314 EHM model and crystal plasticity finite element (CPFE) simulations. The microstructures used in  
315 the numerical analyses were generated using the Neper [62] software. Although Neper generates  
316 microstructures with a voxel discretization, each voxel was subsequently and consistently subdivided  
317 into exactly six tetrahedral elements as described in Ref. [58]. The crystal orientations were randomly  
318 sampled from a uniform distribution and rescaled to the Bunge-Euler angle ranges  $[0, 360^\circ] \times [0,$   
319  $180^\circ] \times [0, 360^\circ]$ . Property contrast between the phases arises solely from differences in crystal  
320 orientations within the polycrystal and the size of the microstructure is set to  $10\mu\text{m} \times 10\mu\text{m} \times 10\mu\text{m}$ .  
321 The grains were modeled as aluminum, with the elastic and viscoplastic properties summarized in

Table 1: Elastic and viscoplastic properties of Aluminum.

| $C_{11}$  | $C_{12}$ | $C_{44}$ | $g_0$   | $g_{sa}$ | $h_0$    | $n$  | $\dot{\gamma}_0$  |
|-----------|----------|----------|---------|----------|----------|------|-------------------|
| 108.2 GPa | 61.3 GPa | 28.5 GPa | 3.7 MPa | 30.8 MPa | 20.4 MPa | 0.05 | 1 s <sup>-1</sup> |

322 Table 1. For cubic elasticity, the single-crystal constants  $C_{11}$ ,  $C_{12}$  and  $C_{44}$  are reported in Voigt (or  
 323 Kelvin) notation and are used to construct the fourth-order stiffness tensor, consistent with standard  
 324 crystal plasticity conventions (see Ref. [63] for example). Aluminum has a face-centered cubic (FCC)  
 325 structure with twelve slip systems.

326 For the reduced order model simulations, a single reduced integration linear hexahedral finite  
 327 element was employed to represent the macroscale domain. The macroscopic domain was subjected  
 328 to strain-controlled loading with boundary conditions described in the following subsections. At  
 329 the microscale, periodic boundary conditions were applied on the faces and edges of the polycrystal  
 330 following the approach described in Ref. [58]. Displacements at the corners of the volume were fixed  
 331 to eliminate rigid-body motion. For the HEHM simulations, the reduced order basis for inelastic  
 332 strain and stress fields was constructed from the linear polynomial basis ( $N_m = 4$ ) shown in Eq. 7.  
 333 For simplicity, piecewise-uniform basis functions were used for the slip system strength,  $g^{(\beta),s}$  (see  
 334 Eq. 16).

335 The reference CPFE simulations were performed directly on the microstructures using the  
 336 commercial finite element analysis software, Abaqus [63]. Periodic boundary conditions were  
 337 considered along the domain boundaries, and a macroscopic strain history was applied as loading  
 338 using procedures detailed in Ref. [64]. Imposition of the periodic boundary conditions brings the  
 339 conditions of the CPFE model closer to those considered in the computational homogenization  
 340 method, alleviating differences induced by boundary effects. Domain discretization in the CPFE  
 341 simulations was performed using hybrid tetrahedral elements (C3D4H) to mitigate volumetric locking  
 342 effects, while retaining computational efficiency compared to quadratic tetrahedral elements (C3D10  
 343 or C3D10HS) [65].

### 344 3.1 Discretization effects

345 The influence of microscale discretization on the performance of the EHM, HEHM, and CPFE  
 346 models was examined for a 10-grain polycrystal. Three (coarse, medium and fine) microscale meshes  
 347 were considered, containing 6,000, 48,000, and 384,000 tetrahedral elements as shown in Fig. 3. For  
 348 the EHM, the meshes are used only to solve the IFPs. Since EHM employs piecewise-uniform basis  
 349 functions, numerical integration is not needed to evaluate the constitutive response as discussed  
 350 in Section 2.3. In the HEHM models, the meshes along with first-order (C3D4) and quadratic

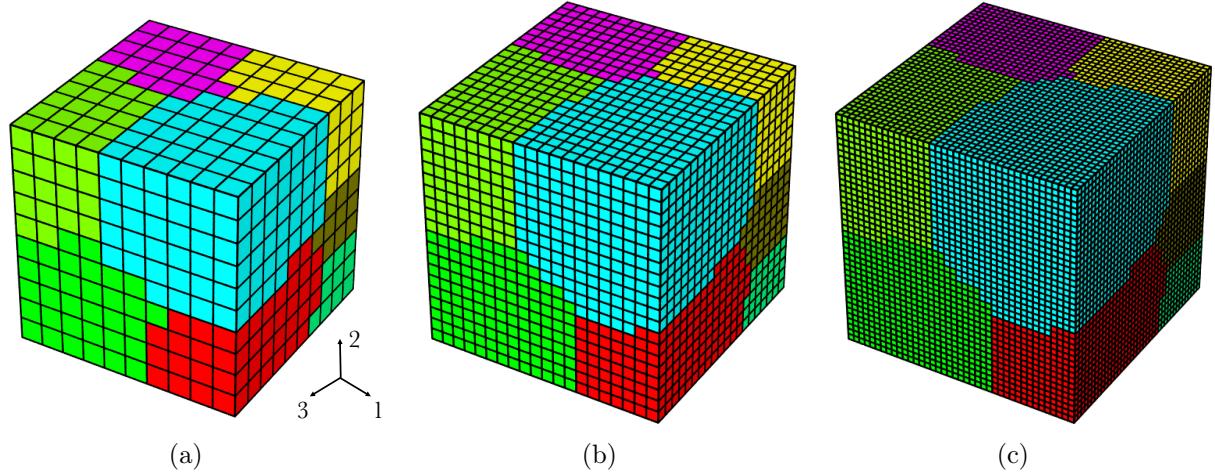


Figure 3: Generated sample 10-grain microstructure with (a) 1,000, (b) 8,000, and (c) 64,000 voxels.

Table 2: Comparison of EHM, HEHM, and CPFE models in terms of stress at 5% strain, computational time, and speedup.

| Method | Element type | # of elements | Stress @ 5% (MPa) | Error (%) | Time (s) | Speedup |
|--------|--------------|---------------|-------------------|-----------|----------|---------|
| EHM    | –            | 6,000         | 13.1              | 21.2      | 18       | 207.1   |
| EHM    | –            | 384,000       | 13.1              | 20.9      | 16       | 237.6   |
| HEHM   | C3D4         | 6,000         | 12.7              | 17.7      | 51       | 73.1    |
| HEHM   | C3D4         | 48,000        | 12.1              | 11.7      | 121      | 30.8    |
| HEHM   | C3D4         | 384,000       | 11.7              | 8.1       | 667      | 5.6     |
| HEHM   | C3D10        | 6,000         | 11.5              | 6.4       | 45       | 82.8    |
| CPFE   | C3D4H        | 6,000         | 11.0              | 2.0       | 206      | 18.1    |
| CPFE   | C3D4H        | 48,000        | 10.8              | –         | 233      | –       |

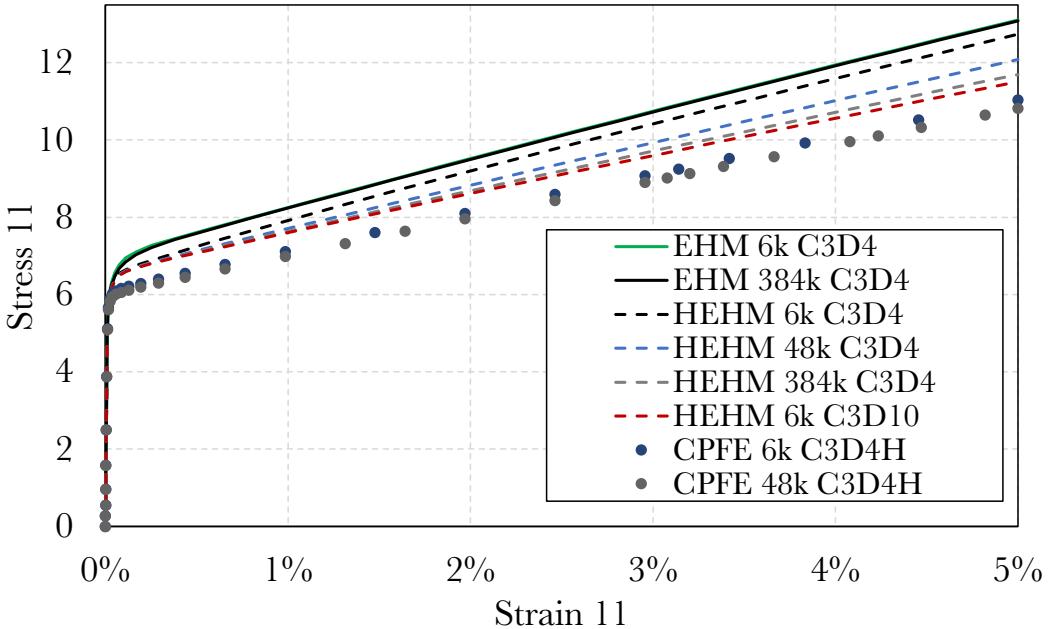


Figure 4: Discretization effects on the performance of EHM, HEHM and CPFE models.

(C3D10) finite elements were used to solve the IFPs, and for numerical integrations. The HEHM simulations employ direct numerical integration of the constitutive model rather than the surrogate based approach. Figure 4 summarizes the overall stress-strain responses of the microstructure when subjected to volume-preserving tensile loading. The response predicted by the EHM is insensitive to mesh refinement as the influence functions are computed with sufficient accuracy using the coarse mesh. In contrast, the HEHM predictions (dashed lines) progressively converge toward the CPFE solutions as the integration grid is refined and higher-order elements (e.g., C3D10) are employed. Meanwhile, the CPFE results obtained using the 6k and 48k meshes (gray and blue markers) exhibit strong agreement, confirming mesh convergence of the reference model.

A quantitative comparison of peak stress error and computational speedup is provided in Table 2. The reported speedup values are computed relative to the CPFE 48k simulation, which was performed in parallel using 16 cores, whereas the rest of the simulations were executed using a single core. The reference CPFE simulation was executed in parallel due to its high computational cost and because direct numerical simulations are typically parallelized, whereas the ROM-based simulations were run serially since the reduced system is small and computationally efficient. The speedup values reported herein are computed by normalizing the ROM wall-clock times to a 16-core equivalent assuming ideal linear scaling, and they should therefore be interpreted as implementation-dependent estimates that may be slightly reduced in practice if parallel efficiency is not perfectly linear. The consistent and monotonic improvement of the HEHM simulations using the C3D4 mesh points to the

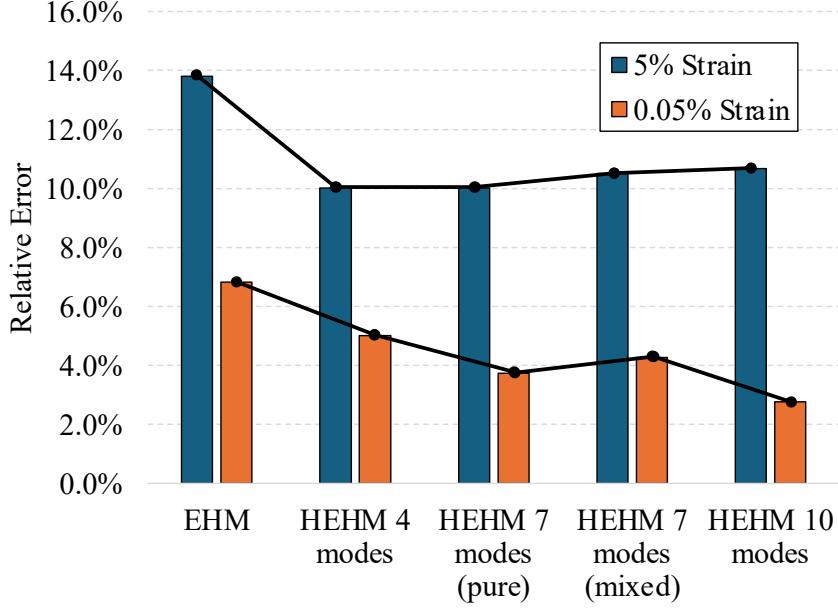


Figure 5: Relative error in the stress ( $\sigma_{11}$ ) at onset of plasticity and end of simulation for various number of modes used in the ROM.

importance of the integration accuracy on the overall accuracy of the ROM predictions. However, this comes with a substantial increase in the computational cost when direct numerical integration is employed. Among the tested configurations, the HEHM model with the 6k C3D10 mesh (red dashed line) achieves the most favorable balance between accuracy and computational cost. These results clearly demonstrate that HEHM can systematically reduce the stiffness over-prediction of the classical EHM while maintaining high efficiency. Based on this assessment, the quadratic-element HEHM configuration with approximately 6k elements, corresponding to roughly 24k numerical integration points, is adopted for the subsequent numerical studies.

To examine the effect of increasing the number of modes on the ROM performance, we performed a brief sensitivity study in which the number of modes used in the reduced basis was varied while keeping all other settings fixed. To isolate the effect of basis enrichment on the stress response, the study was conducted without hardening so that additional modal enrichment of hardening-related internal variables is avoided. Figure 5 reports the relative error in  $\sigma_{11}$  at the onset of plasticity ( $\varepsilon=0.05\%$ ) and at the end of loading ( $\varepsilon=5\%$ ) for the classical EHM and several HEHM configurations with different mode counts. “HEHM 4 modes” employs a 3D linear polynomial basis (constant plus  $x$ ,  $y$ , and  $z$ ), while “HEHM 10 modes” employs a full 3D quadratic polynomial basis (constant, linear terms, and all quadratic terms). The intermediate cases use seven modes constructed from selected quadratic terms: “HEHM 7 modes (pure)” includes the pure quadratic components  $x^2$ ,  $y^2$ ,

388 and  $z^2$ , whereas “HEHM 7 modes (mixed)” includes the mixed quadratic components  $xy$ ,  $yz$ , and  
389  $zx$ . Overall, HEHM reduces the stress error compared to EHM at both strain levels, particularly  
390 near the onset of plasticity. At the same time, the error does not decrease monotonically with mode  
391 count at 5% strain, indicating that the effect of adding higher-order modes can be more intricate  
392 than a strictly monotonic improvement across all outputs, and motivating the use of a moderate  
393 mode count as a practical choice to balance between accuracy and efficiency.

### 394 3.2 Performance study over statistical volume elements (SVEs)

395 The mechanical response of polycrystalline microstructures varies significantly depending on the  
396 grain size distribution, texture, among other statistical morphology parameters. To capture these  
397 effects on model performance, we have generated 81 ten-grain statistical volume elements (SVEs)  
398 and collectively analyzed the response of approximately 810 grains using EHM, HEHM and CPFE.  
399 The microstructures were generated using the grain growth option provided in Neper which results  
400 in varying grain shapes and sizes within the SVEs. Grain sizes, defined as equivalent diameter [62],  
401 were sampled from a lognormal distribution with mean and standard deviation of 1  $\mu\text{m}$  and 0.35  
402  $\mu\text{m}$ , respectively. Grain sphericity [62] was sampled from a lognormal distribution with mean and  
403 standard deviation of 0.145 and 0.03, respectively. Representative SVEs are shown in Figure 6(a–c).

404 Each SVE was subjected to a strain history corresponding to 5% total strain under volume-  
405 preserving uniaxial tension, applied at the rate of 0.05/s. Volume preservation was enforced by  
406 prescribing the lateral strain components to satisfy  $\varepsilon_{22} = \varepsilon_{33} = -\varepsilon_{11}/2$ , thereby maintaining zero  
407 macroscopic volumetric strain throughout the loading process. The stress–strain responses ( $\bar{\sigma}_{11}$  vs.  
408  $\bar{\varepsilon}_{11}$ ) are plotted in Figure 7. In Figure 7(a), solid lines correspond to the mean response the SVE  
409 ensemble predicted by the EHM, HEHM and CPFE simulations, while the shaded regions indicate  
410  $2\sigma$  confidence intervals, highlighting the uncertainty in the individual SVE within the ensemble. In  
411 addition, the dashed and dotted curves explicitly show the corresponding  $\mu \pm 2\sigma$  bounds to improve  
412 readability when the intervals overlap. The variation from the mean prior to the elastic limit is  
413 small, whereas there is a substantial variation after the onset of plastic deformations. The large  
414 variation in the elasto-plastic behavior is largely due to the relatively small size of the individual  
415 SVEs and relatively high variability in grain morphologies. At 5% strain, the relative errors in  
416 the mean stresses computed with EHM and HEHM (compared to CPFE) are 11.81% and 5.39%,  
417 respectively. The nearly two-fold reduction in error underscores the improvement achieved by the  
418 HEHM. As seen in Figure 7(b), the HEHM model improves predictions starting from the onset of  
419 plasticity and throughout the loading history.

420 Grain-averaged microscale von-Mises stresses were computed for all grains in all SVEs and are

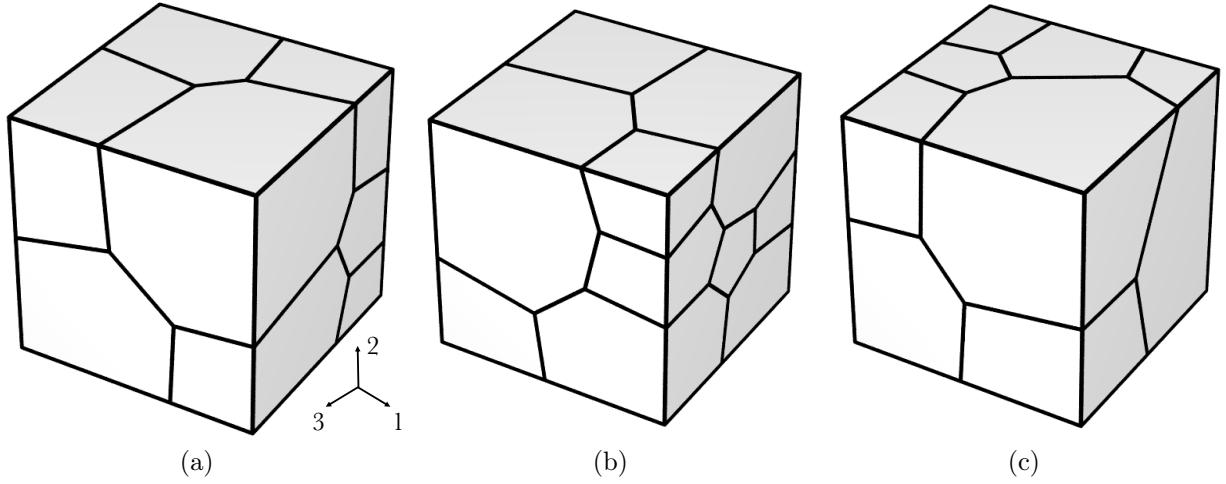


Figure 6: Generated sample 10-grain SVEs geometries.

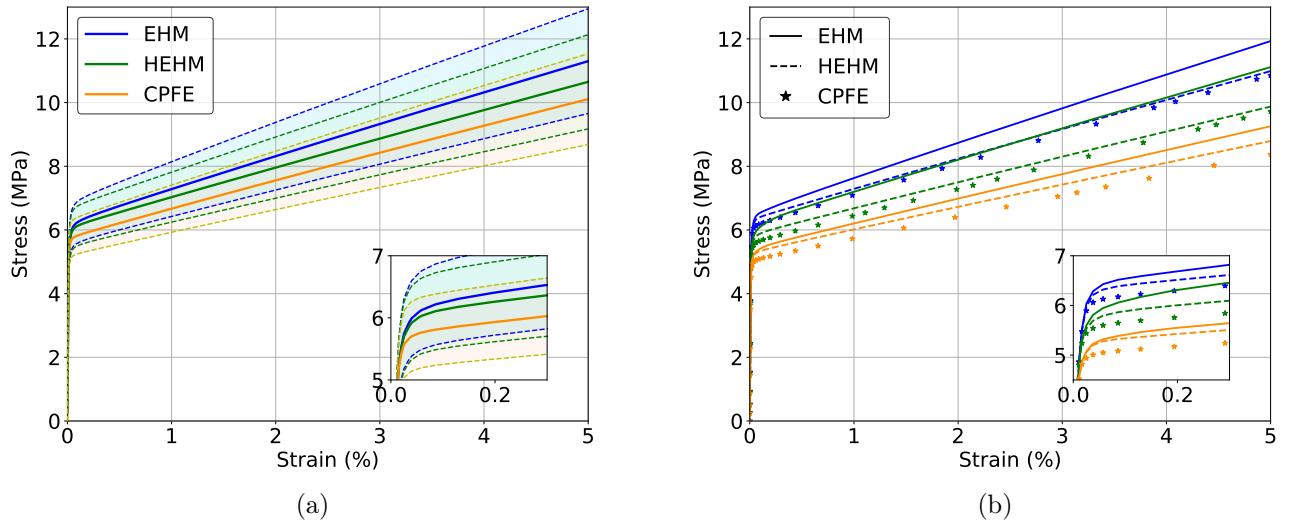


Figure 7: (a) Means and  $2\sigma$  confidence intervals for the stress-strain responses of the SVE ensemble, and (b) stress-strain responses of three distinct SVEs from the ensemble. In (b), colors indicate results from the same SVE within the ensemble.

Table 3: Morphological and statistical parameters used to generate SVEs.

| Morphology     | Grain Size ( $\mu\text{m}$ ) |                    | Grain Sphericity |                    | Aspect Ratio |
|----------------|------------------------------|--------------------|------------------|--------------------|--------------|
|                | Mean                         | Standard deviation | Mean             | Standard deviation |              |
| Equiaxed       | 1                            | 0.05               | 0.145            | 0.03               | (1,1,1)      |
| Elongated      | 1                            | 0.05               | 0.145            | 0.03               | (2,1,1)      |
| Low Sphericity | 1                            | 0.35               | 0.3              | 0.03               | (1,1,1)      |

421 plotted as a histogram in Figure 8(a). Stress distribution for the EHM model has two peaks at about  
 422 16 MPa and 24 MPa. By contrast, stress distributions from HEHM model resembles a unimodal,  
 423 near-normal distribution similar to the CPFE results. Moreover, the HEHM distribution shows a  
 424 reduced frequency at the higher stress range compared to the EHM model. Normal distributions were  
 425 subsequently fitted to the datasets, as shown in Figure 8(b), yielding mean von Mises stresses of 19.7  
 426 MPa, 18.6 MPa, and 17.4 MPa for the EHM, HEHM, and CPFE models, respectively. The reduction  
 427 in the mean stress quantitatively confirms the enhanced predictive capability of the HEHM. Finally,  
 428 Figure 8(c) plots the relative error between HEHM and CPFE grain-averaged von Mises stresses as a  
 429 function of normalized grain size. Although grain size is not the sole parameter governing the error,  
 430 a clear trend of decreasing relative error with increasing normalized grain size can be observed.

### 431 3.3 Influence of grain morphology

432 We further examined the influence of grain morphology by generating ensembles of five 30-grain  
 433 SVEs. Three cases were considered: (1) equiaxed grains, (2) elongated grains, and (3) low-sphericity  
 434 grains. The parameters for grain size and grain sphericity (sampled from lognormal distributions) as  
 435 well as grain aspect ratio used in the three cases are shown in Table 3. The aspect ratio parameter,  
 436 describing the relative grain dimensions along the 1, 2, and 3 directions, was employed to generate  
 437 elongated grain morphologies. Figure 9 shows sample morphologies of the SVE ensembles for the  
 438 three cases considered in this study. In case (1), the SVEs primarily consist of equiaxed grains  
 439 (Figure 9(a)), whereas in case (2), the grain are equiaxed in 2-3 plane, but are elongated along the  
 440 1-direction (Figure 9(b)). The grains in case (3) demonstrate lower sphericity (Figure 9(c)). The  
 441 histogram of grain shapes in Figure 9(d) shows that SVEs with equiaxed and elongated morphologies  
 442 have much narrower size distributions compared to those produced using the grain growth model  
 443 used to generate the 10-grain SVEs. The 10-grain SVEs and those with lower sphericity exhibit  
 444 considerably broader size distributions.

445 The mean stress-strain behavior as well as the variability observed under volume-preserving  
 446 tension loading for the three cases are reported in Figure 10. Comparing the CPFE simulations of  
 447 the ensembles for the three cases, the mean stress-strain behavior is not significantly affected by the

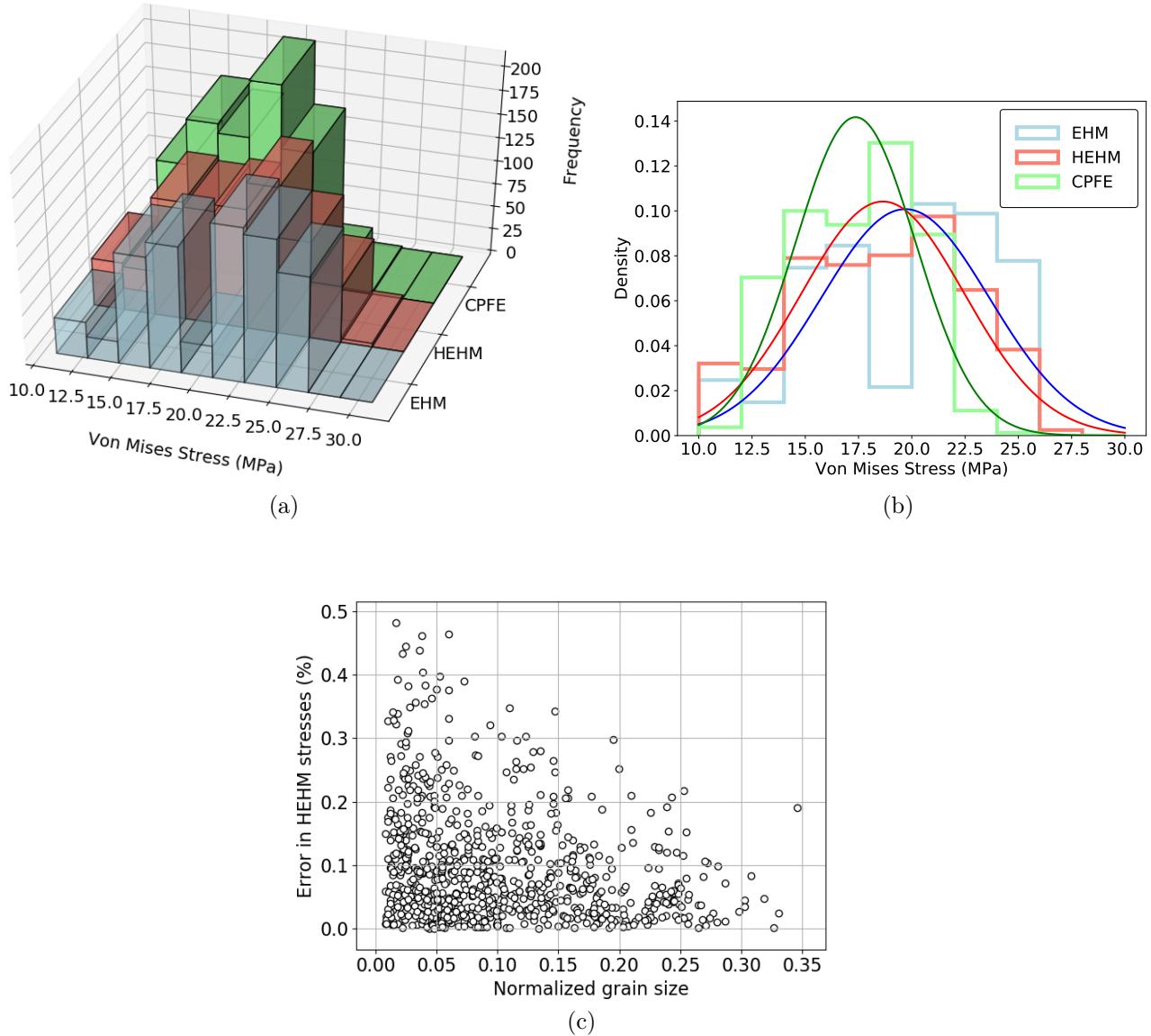


Figure 8: (a) Histograms of microscale grain-averaged von Mises stresses computed from EHM, HEHM and CPFE models. (b) Normal distributions fitted to the corresponding histograms of grain-averaged von Mises stresses predicted by EHM, HEHM, and CPFE. (c) Relative error between HEHM and CPFE grain-averaged von Mises stresses against normalized grain size.

448 microstructure morphology. In contrast, the variability in case (3) is noticeably higher compared  
449 to the equiaxed and elongated microstructures. This is expected due to the higher variability of  
450 grain shape and size in the low sphericity microstructures. The microstructural morphologies do  
451 have a significant affect on the performance of the ROMs. The relative errors in the mean stress at  
452 5% strain are 13.68%, 12.39%, and 13.56% for EHM, and 11.85%, 9.97%, and 8.94% for HEHM,  
453 for equiaxed, elongated, and lower sphericity SVE ensembles, respectively. The relative error of  
454 the classical EHM model does not change as a function of morphology, but there is an observable  
455 improvement in the performance of HEHM for case of (3), compared to cases of (1) and (2).

456 The microscale stress distributions are shown in Figure 11 for a 10-grain polycrystal and in  
457 Figure 12 for a 30-grain equiaxed polycrystal. In the 10-grain case, the HEHM solution exhibits  
458 larger stress gradients compared to EHM, while for the 30-grain equiaxed polycrystal, the gradients  
459 in the HEHM fields are less pronounced. Smaller gradients correspond to lower higher order terms in  
460 the field expansions, which may explain the reduced improvement provided by HEHM for equiaxed  
461 microstructures.

462 This observation aligns with intuition from Eshelby's inclusion problem: for nearly spherical  
463 inclusions (a subset of ellipsoidal morphologies), the internal fields tend to be more uniform, enabling  
464 the original EHM to provide relatively accurate approximations. Overall, the results indicate that  
465 grain morphology plays a critical role in the relative performance of HEHM compared to EHM and  
466 CPFE. Thus, HEHM may be most beneficial for microstructures with highly irregular morphologies.

### 467 3.4 Influence of complex loading conditions

468 The performance of the HEHM model was further evaluated under several additional loading  
469 conditions to assess its generality and robustness. Figure 13a presents the stress-strain response of  
470 a 10-grain polycrystal subjected to fully reversed cyclic loading in 1 direction with a stress ratio of  
471  $R = -1$ . The loading was prescribed as a strain history under a volume-preserving constraint to  
472 minimize pressure effects, which would otherwise lead to unrealistically large stresses. The relative  
473 errors in peak stress are 18.3% and 4.3% for EHM and HEHM, respectively. The HEHM accurately  
474 reproduces the cyclic behavior, exhibiting significantly smaller deviations from the CPFE results  
475 compared to the classical EHM.

476 To examine the rate sensitivity, simulations were conducted at strain rates of  $5 \text{ s}^{-1}$ ,  $5 \times 10^{-2} \text{ s}^{-1}$ ,  
477 and  $5 \times 10^{-4} \text{ s}^{-1}$ , as shown in Figure 13b. Similar to previous sections, volume-preserving tensile  
478 loading was considered. The relative errors in peak stress are in the range of  $\sim 16\%$  for EHM  
479 and  $\sim 6\%$  for HEHM. The HEHM consistently delivers improved predictions across all strain rates,  
480 demonstrating its robustness with respect to loading rate variations.

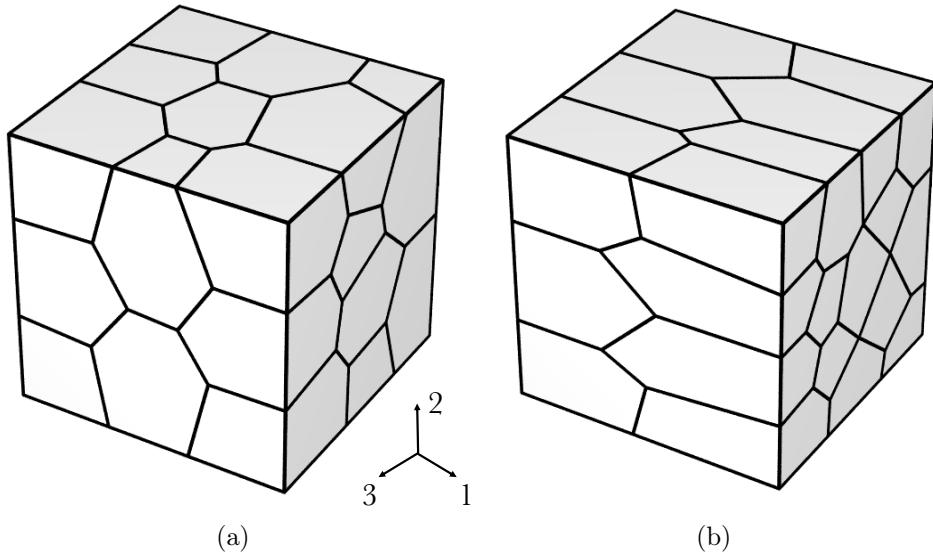
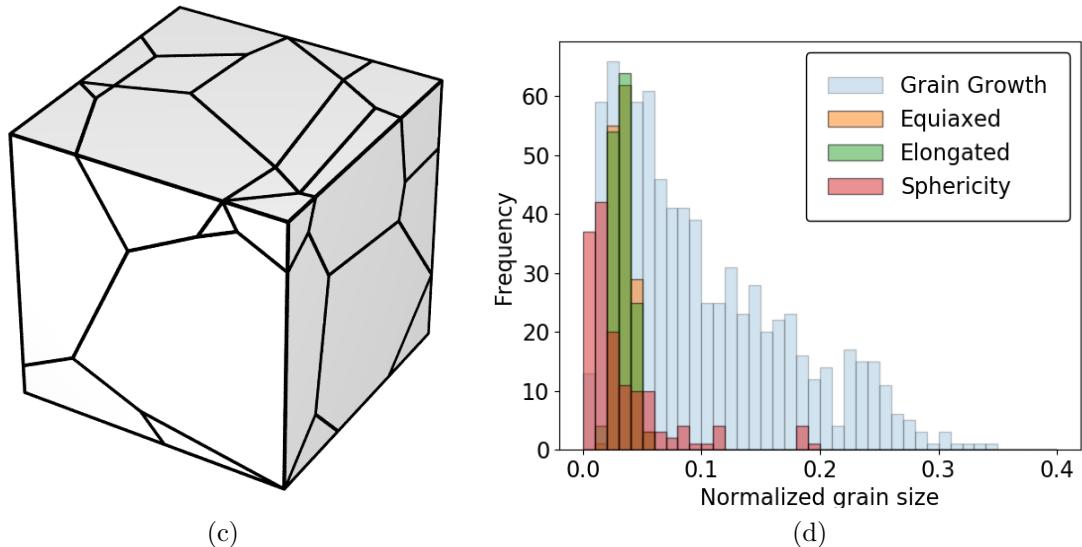
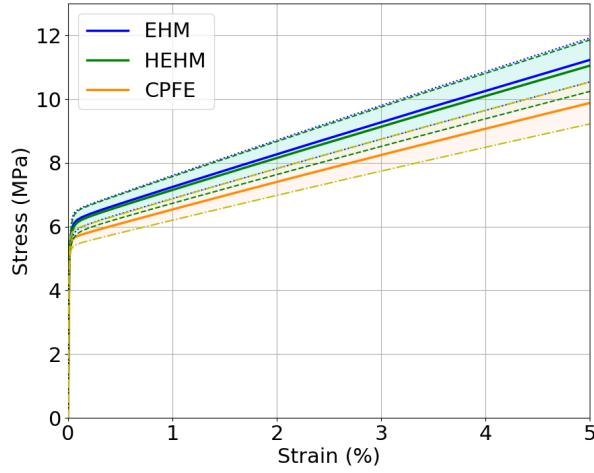
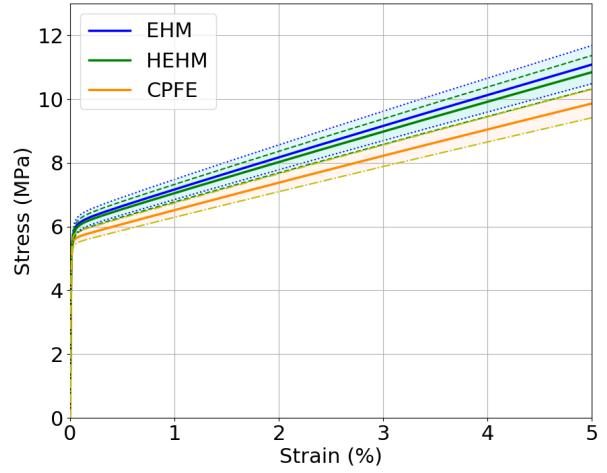


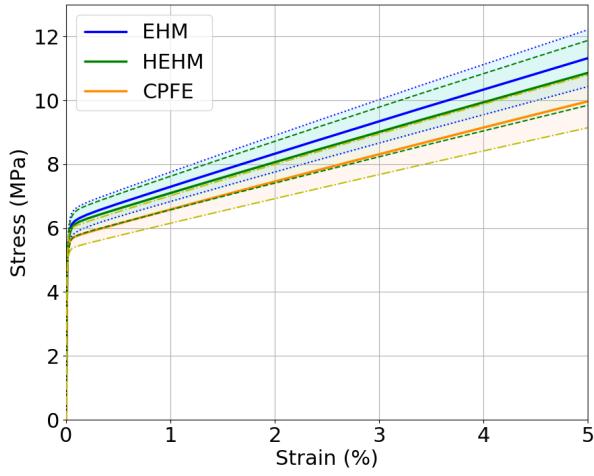
Figure 9: Sample 30-grain polycrystal with (a) equiaxed, (b) elongated and (c) low sphericity grain morphology. (d) Histogram of grain sizes for grain-growth (10-grain SVEs), equiaxed, elongated, and lower sphericity morphologies.



(a)



(b)



(c)

Figure 10: Mean and variance of stress-strain responses of 30 grain polycrystal SVEs under volume-preserving tension with (a) equiaxed, (b) elongated and (c) lower sphericity morphologies.

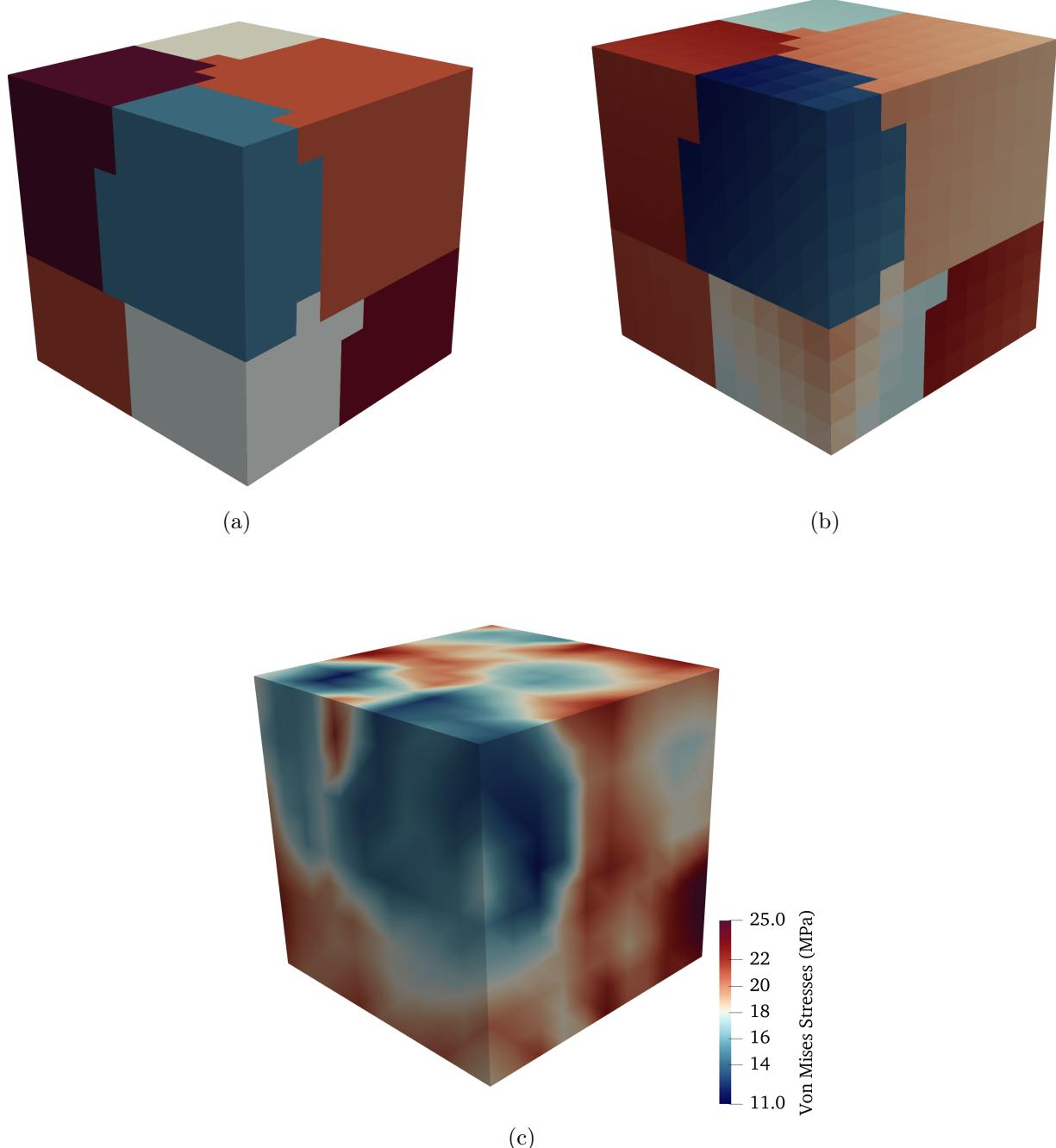


Figure 11: Microscale von Mises distribution computed from (a) EHM (b) HEHM (c) CPFE simulations plotted over the 10-grain polycrystal.

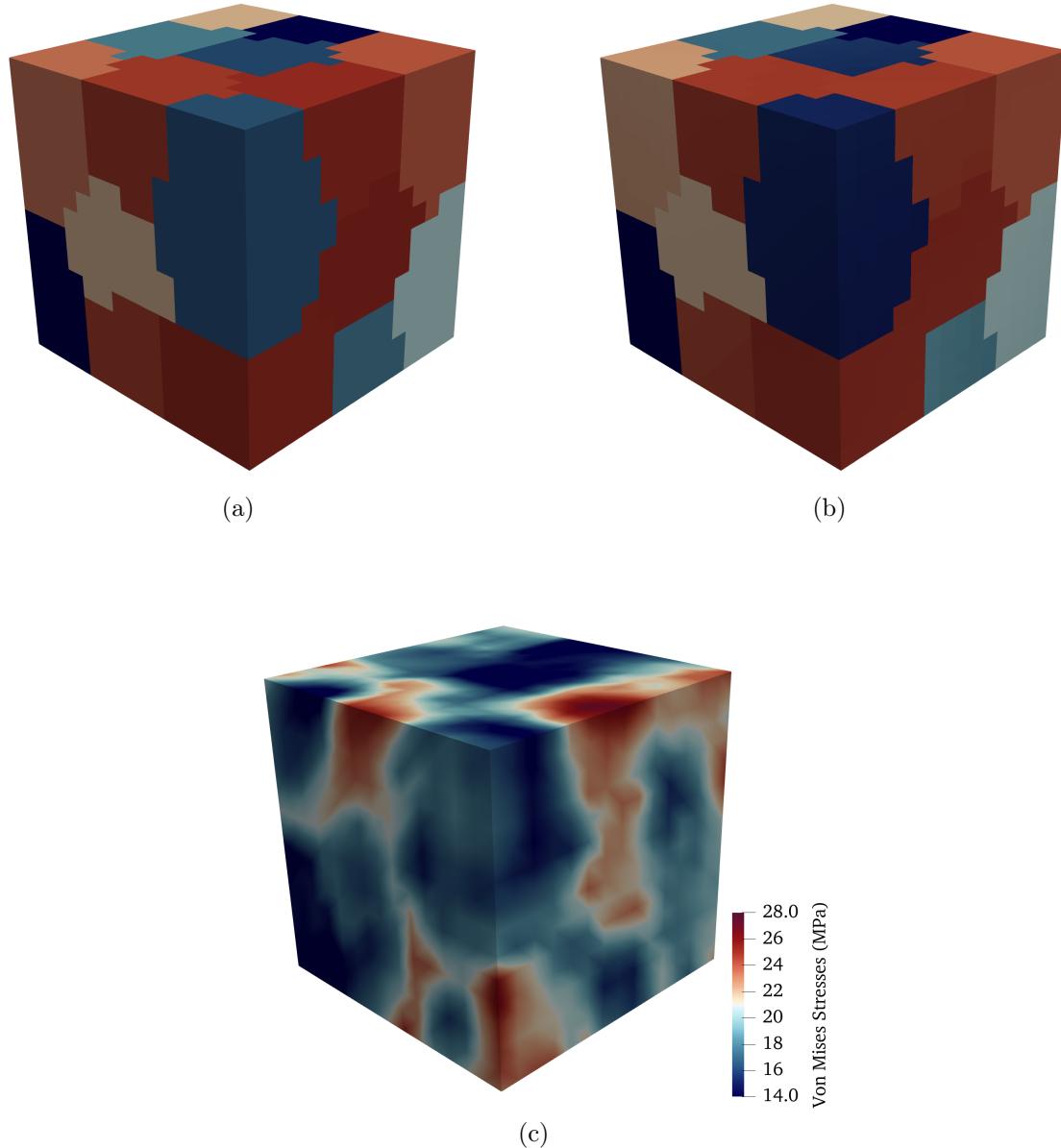


Figure 12: Microscale von Mises distribution computed from (a) EHM (b) HEHM (c) CPFE simulations plotted over 30-grain equiaxed polycrystal.

Table 4: Strain history applied in the numerical experiment.

| Step | $\bar{\varepsilon}_{11}$ | $\bar{\varepsilon}_{22}$ | $\bar{\varepsilon}_{33}$ | $\bar{\varepsilon}_{12}$ | $\bar{\varepsilon}_{13}$ | $\bar{\varepsilon}_{23}$ |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1    | 0.025                    | 0.025                    | -0.05                    | 0                        | 0                        | 0                        |
| 2    | 0.025                    | 0.025                    | -0.05                    | 0                        | 0                        | 0                        |
| 3    | 0.025                    | 0.025                    | -0.05                    | 0                        | 0                        | 0.05                     |

481 The model's capability under simple shear was also assessed, with the corresponding results  
 482 displayed in Figure 13c. The improvement achieved by HEHM is comparable to the previous test  
 483 cases, with errors in peak shear stress of 8.6% and 2.2% for EHM and HEHM, respectively.

484 Finally, a complex, multiaxial strain history (summarized in Table 4), consisting of biaxial,  
 485 volume-preserving tension followed by relaxation and subsequent unidirectional shear, was applied  
 486 in both ROM and CPFE simulations. The resulting von Mises stress-strain responses are shown  
 487 in Figure 13d. The HEHM demonstrates notably higher accuracy under shear and significant  
 488 improvement throughout the full strain history, with errors in peak shear stress of 13.5% and 7.3%  
 489 for EHM and HEHM, respectively.

490 Overall, these results confirm that the proposed HEHM framework maintains high accuracy  
 491 across a broad range of loading paths and strain rates, highlighting its potential as a reliable and  
 492 general reduced-order model for nonlinear polycrystal plasticity simulations.

### 493 3.5 Surrogate model experiments

494 This section evaluates the efficiency gains achieved by replacing the direct numerical integration  
 495 of the constitutive model with a surrogate approximation, while ensuring that accuracy remains  
 496 comparable to the fully integrated solution.

#### 497 3.5.1 Architecture selection

498 To construct the surrogate function  $I^{(\beta,p)}(\tau_{\text{norm}}^{(\beta)})$  introduced earlier, several neural network archi-  
 499 tectures were tested, as summarized in Table 5. Three representative cases were considered. The  
 500 first architecture consisted of a three-layer fully connected network with eight neurons per layer and  
 501 ReLU activation function. The second architecture used the same layout but replaced ReLU with  
 502 the ELU activation function, which offers improved smoothness and continuity. The third case was  
 503 a single-layer perceptron with forty neurons and an activation function defined as

$$f(x) = |x|^{1/n} \text{ sign}(x) \quad (34)$$

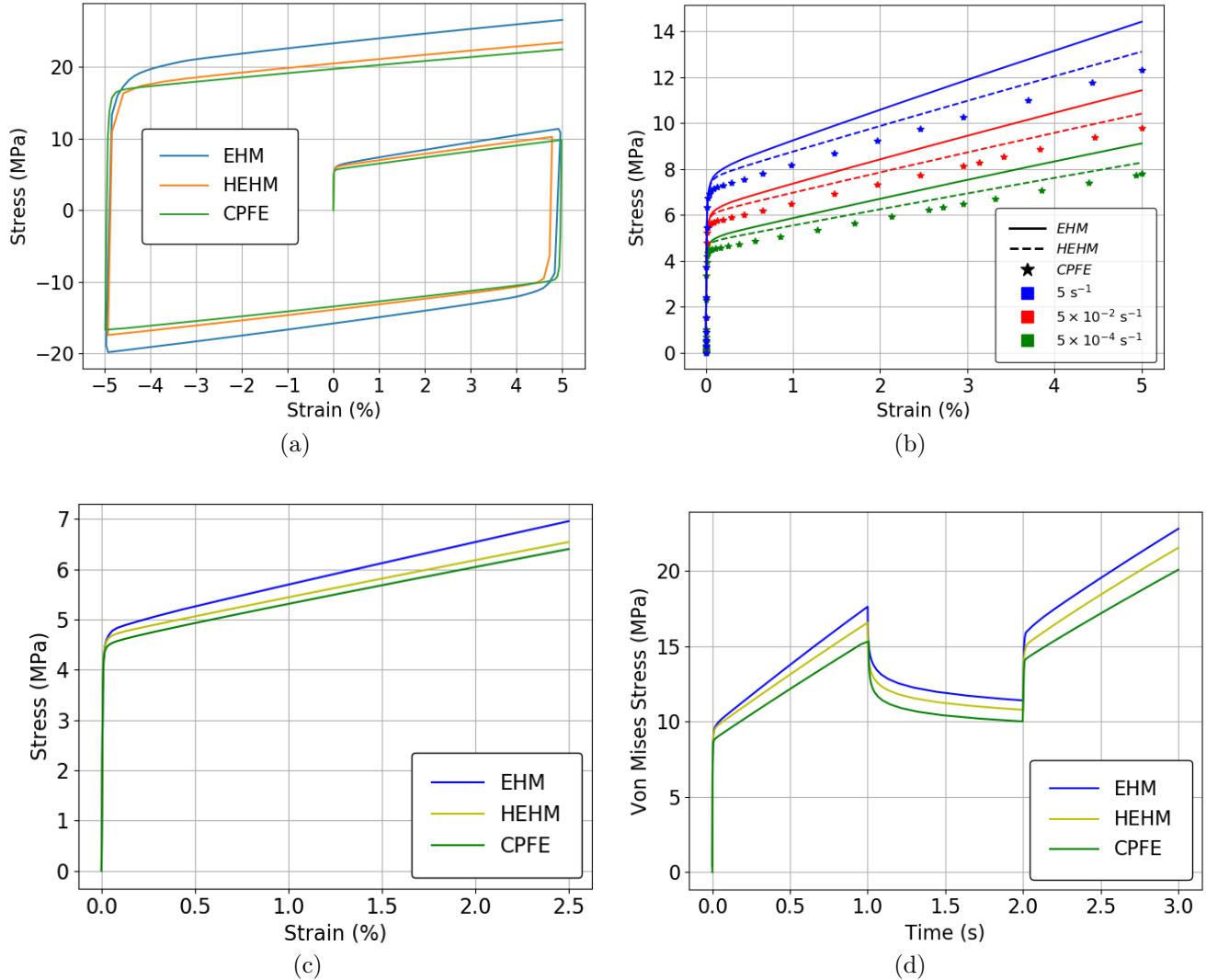


Figure 13: Stress-strain response of a 10-grain polycrystal under (a) cyclical loading, (b) varying strain rates, (c) unidirectional shear, and (d) varying strain history.

Table 5: Loss as a function of the architecture for a single grain.

| Case | Activation | Layers | Neurons | RMSE                  |
|------|------------|--------|---------|-----------------------|
| 1    | ReLU       | 3      | 8       | $1.52 \times 10^{-2}$ |
| 2    | ELU        | 3      | 8       | $3.23 \times 10^{-4}$ |
| 3    | Flow Rule  | 1      | 40      | $3.41 \times 10^{-5}$ |

504 chosen to mimic the nonlinearity present in the flow rule itself. The biases were set to zero to  
 505 make sure that integral evaluates to zero at vanishing inputs (i.e., zero slip rate at zero resolved  
 506 shear stresses). All architectures were designed to contain approximately two hundred trainable  
 507 parameters so that comparisons would primarily reflect differences in the activation functions rather  
 508 than differences in model capacity.

509 Training data was generated by sampling the normalized resolved shear stresses,  $\tau_{\text{norm}}^{(\beta,p),s}$ , for one  
 510 representative grain and every mode of the reduced basis. Since after normalization, one of the  
 511 normalized resolved shear stresses is equal to unity, for every mode  $p$ , we fix the mode  $p$  at unity  
 512 and uniformly sample the other modes in the space  $[-1, 1]^{N_{\text{modes}}-1}$  with 21 points. The networks  
 513 were trained by initializing with the Nelder-Mead algorithm and refining using BFGS algorithm  
 514 from the SciPy package [66]. The exact form of the loss function is given by

$$\mathcal{L}^{(\beta,p)} = \frac{\|I^{(\beta,p),i} - \bar{I}^{(\beta,p),i}\|}{\bar{I}^{(\beta,p),\text{max}}} \quad (35)$$

515 where  $I^{(\beta,p),i}$  is the integral value for input data point  $i$ , the  $\bar{I}^{(\beta,p),\text{max}}$  is a normalization parameter  
 516 indicating maximum value of the observed integral. Overline indicates true value of the integral  
 517 computed from the underlying finite element mesh. Training was performed using a plastic rate  
 518 sensitivity corresponding to a flow-rule exponent of approximately nine.

519 The root-mean-square errors (RMSE) between the surrogate predictions and the exact integrals  
 520 are reported in Table 5. The ReLU-based model exhibits the largest error, likely because the integrand  
 521 is highly nonlinear and contains sharp transitions that ReLU cannot approximate smoothly. The  
 522 ELU architecture provides a substantial improvement, indicating that increased smoothness in  
 523 the activation function is beneficial. The best performance is obtained with the flow-rule-inspired  
 524 activation, which reduces the RMSE by roughly an order of magnitude relative to the ELU network.  
 525 These results demonstrate that incorporating physics-based nonlinearities directly into the activation  
 526 function yields a significantly more accurate surrogate approximation for the reduced integral. The  
 527 flow-rule inspired activation function is used for the rest of numerical examples below.

Table 6: RMSE between surrogate and reference integral outputs for a single grain as a function of the exponent.

| Exponent | RMSE                  |
|----------|-----------------------|
| 5        | $6.18 \times 10^{-6}$ |
| 9        | $3.41 \times 10^{-5}$ |
| 20       | $1.97 \times 10^{-3}$ |

### 528 3.5.2 Effect of the rate parameter

529 Building on the architectural comparisons presented in the previous subsection, we next examine how  
 530 the intrinsic nonlinearity of the flow rule influences surrogate accuracy. The nonlinearity is governed  
 531 by the exponent in the viscoplastic flow rule, and this parameter directly controls the sharpness of  
 532 the integrand that the surrogate must approximate. To assess this effect, three surrogate models  
 533 were independently trained using exponents of 5, 9, and 20.

534 Using the same sampling procedure described in Section 3.5.1, the surrogate-based integral  
 535 was then evaluated for every mode of a single grain and compared with the corresponding value  
 536 obtained from direct numerical integration over the background mesh. The resulting RMSE values,  
 537 summarized in Table 6, reveal a clear trend: lower exponents produce excellent agreement with  
 538 the reference integrals, while higher exponents introduce significantly sharper nonlinearities that  
 539 degrade surrogate accuracy. These results highlight the importance of considering the exponent  
 540 when developing surrogate models for viscoplastic integration, as it fundamentally influences the  
 541 complexity of the approximation task.

### 542 3.5.3 Effect of the grain morphology

543 The surrogate models trained for a single grain were then used as initial guess and subsequently fine  
 544 tuned for all grains in a single 10-grain polycrystal. Using the same sampling procedure described in  
 545 Section 3.5.1, the surrogate-based integral was evaluated for every mode of every grain and compared  
 546 against the corresponding exact integral computed using the background mesh. A flow-rule exponent  
 547 of nine was used for this study.

548 The resulting comparison is shown in Figure 14a. Over the full domain of the outputs ( $[-1, 1]$ ),  
 549 surrogate errors are visually negligible. A closer examination near the origin ( $[-1 \times 10^{-4}, 1 \times 10^{-4}]$ )  
 550 reveals small but discernible discrepancies, consistent with the increased sensitivity of the integrand  
 551 in this region. The computed RMSE of  $3.386 \times 10^{-5}$  aligns with the error scale visible in the inset  
 552 plot. We further plot comparison between reference and surrogate integral output in Figure 14b. The

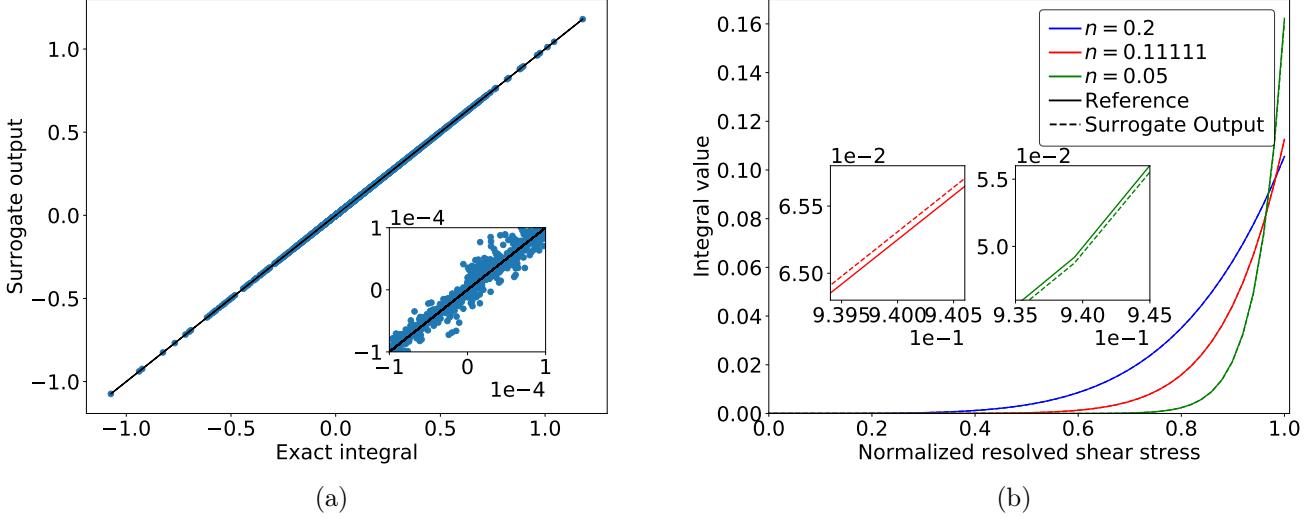


Figure 14: (a) Truth plot for all grains and modes with inset showing deviations in the proximity of zero and (b) comparison of the reference and surrogate integral values as a function of the normalized resolved shear stress for different exponents.

integral  $I^{(\alpha,1)}$  for a representative grain  $\alpha$  was evaluated over the full range of  $\tau^{(\alpha,1)} \in [-1, 1]$  while remaining components  $\tau^{(\alpha,2)}, \tau^{(\alpha,3)}$  and  $\tau^{(\alpha,4)}$  were fixed at 0.2. Results are shown for exponents of 5, 9, and 20. For the exponent of 5, the surrogate output is nearly indistinguishable from the reference across the entire domain. For exponents of 9 and 20, small deviations become visible upon magnification, with the exponent of 20 requiring less zoom to reveal the discrepancies. It is also noteworthy that the surrogate predictions remain smooth, reflecting the smoothness of the activation functions used in the neural network architecture.

Overall, these results show that the surrogate accurately captures the dominant nonlinear structure of the integrand. Moreover, the surrogate performs consistently across all grains, indicating that the model generalizes effectively across the variations in grain morphology present within the polycrystal.

### 3.5.4 Accuracy and efficiency study

HEHM combined with surrogate integration model was evaluated for both accuracy and computational efficiency by subjecting a 10-grain polycrystal in tension in 1, 2, and 3 as well as loading it in shear in 12, 23, and 31 directions.

Figure 15 presents the macroscopic stress-strain responses obtained from the HEHM with surrogate-based integration and compares them with the responses from the HEHM using full finite

570 element integration. For the HEHM simulations with surrogate-based integration, the Newton–  
571 Raphson residual tolerance was relaxed to  $10^{-2}$  and the state-variable convergence tolerance was  
572 relaxed to  $10^{-3}$  to improve robustness. All simulations and surrogate training were performed  
573 using a plastic rate sensitivity of  $n = 1/9$  (corresponding to an exponent of approximately nine).  
574 Across most loading cases, the surrogate-based HEHM reproduces the fully integrated HEHM  
575 response with high fidelity. Only small deviations are observed for case of shear loading in the  
576 31 direction. The offline cost of the HEHM with surrogate approach is comprised of integral  
577 data generation and surrogate training. The integral data generation cost is negligible relative  
578 to the influence-function solves that dominate the ROM offline stage. In the current prototype,  
579 surrogate training is dominated by implementation overhead because the code is serial and not  
580 performance-optimized, and it is therefore expected to decrease in an optimized implementation.  
581 The associated computational times are reported in Table 7. The reference simulation reported in  
582 Table 7 corresponds to the CPFE 6k setup used in Table 2 with the same element type and number  
583 of elements. The Table 7 reference timing was obtained using 4 cores, a rate-sensitivity exponent  
584 of 9 (instead of 20), and was run on an Intel(R) Core i7-4578U CPU @ 3.00GHz rather than an  
585 Intel Xeon Gold compute node. Relative to the reference CPFE simulation, the HEHM with full  
586 integration provides roughly a  $7\times$  speedup, the surrogate-enhanced HEHM achieves approximately  
587 a  $70\times$  speedup, and the classical EHM attains nearly a  $300\times$  speedup. These results demonstrate  
588 that the surrogate integration reduces the computational cost of the HEHM by about an order of  
589 magnitude while preserving its accuracy across a broad range of loading conditions. This subsection  
590 does not re-quantify HEHM accuracy versus CPFE because that comparison is already established  
591 in the preceding three subsections, and instead it focuses on whether the surrogate preserves HEHM  
592 accuracy while improving computational efficiency.

593 It is important to emphasize that the intent of this work is not to advocate for a specific  
594 neural-network architecture, but rather to demonstrate a general methodology for constructing  
595 surrogate integrators for ROMs with nonuniform basis functions. The architectures examined here  
596 serve only as representative examples for evaluating the approach. As shown in Tables 5 and 6,  
597 surrogate accuracy inevitably degrades as the flow-rule exponent increases, reflecting the sharper  
598 nonlinearities the network must approximate. Consequently, alternative architectures, including  
599 deeper networks, different activation functions, or other physics informed formulations, may be more  
600 suitable depending on the material system and modeling requirements. The proposed framework is  
601 therefore flexible, and the surrogate model may be tailored to specific application without loss of  
602 generality.

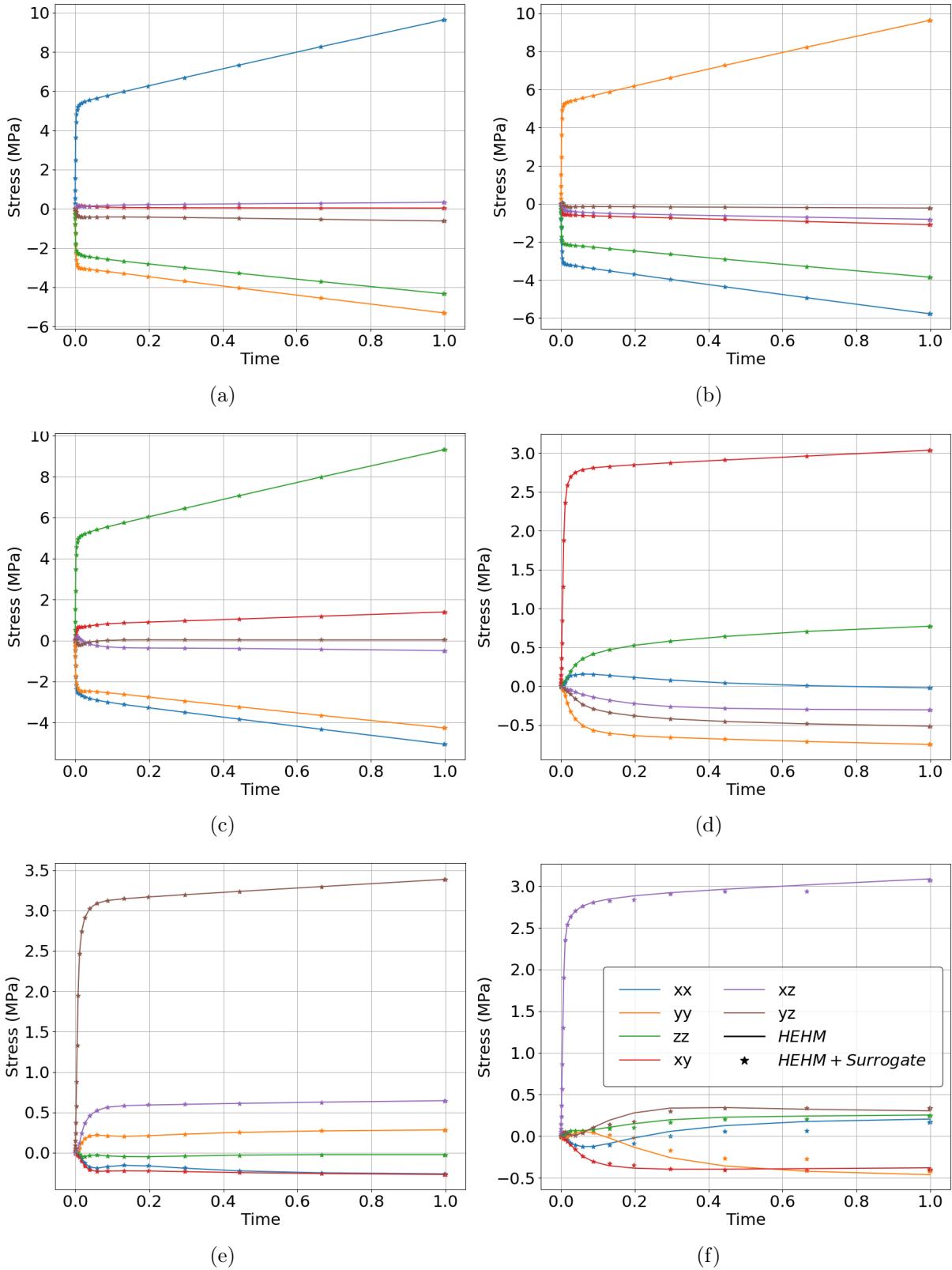


Figure 15: Stress-strain response of 10 grain polycrystal under volume-preserving tension in (a) 1 (b) 2 (c) 3 directions and shear in (d) 12 (e) 23 (f) 31 directions.

Table 7: Comparison of computational time and speedup for different methods, computed for the full 5% strain loading under direction 1.

| Method         | Time (s) | Speedup | Cores |
|----------------|----------|---------|-------|
| CPFE           | 82.89    | –       | 4     |
| HEHM           | 50.18    | 6.6     | 1     |
| HEHM Surrogate | 4.78     | 69.4    | 1     |
| EHM            | 0.98     | 338.0   | 1     |

## 603 4 Conclusion

604 This manuscript demonstrated the capabilities of the EHM framework when higher-order basis  
 605 functions are employed in the model order reduction. The general objective of incorporating the  
 606 specific type of higher order functions is to achieve consistent and non-trivial (across microstructures  
 607 and loading conditions) improvement of model accuracy, while retaining the primary function of the  
 608 ROM, i.e., reduced computational cost. We also presented a surrogate model for the integrals arising  
 609 from the weak enforcement of the constitutive equations. By introducing normalized coefficients,  
 610 this surrogate transforms the integration problem into an interpolation problem, achieving an order  
 611 of magnitude reduction in computational cost without any reduction in integration accuracy.

612 The performance of the model is demonstrated on low-phase contrast polycrystalline microstruc-  
 613 tures, accounting for stochastic variations in grain morphology and crystal orientations. The  
 614 higher-order model consistently exhibits softer mechanical behavior compared to the original EHM,  
 615 reducing the discrepancy with the reference CPFE simulations. However, the level of improvement  
 616 depends on grain size and morphology. More specifically, and rather intuitively, the level of im-  
 617 provement is high when the response fields are better approximated with the basis functions being  
 618 included in the ROM. While more complex basis functions, e.g., those generated by preliminary  
 619 nonlinear CPFE (training) simulations as typically used in NTFA models could yield better accuracy  
 620 when loading is similar to the training simulations, the proposed approach guarantees that the  
 621 prediction accuracy is no less than EHM regardless of loading, but could be improved substantially  
 622 from this baseline. While the presented results capture stochastic variations in grain morphology  
 623 and crystal orientations, the scope of this study is limited to low-phase-contrast polycrystalline  
 624 materials, and extension to higher phase-contrast systems remains a subject of future work.

625 The key advantage of the HEHM model lies in the enhanced reduced basis without requiring  
 626 nonlinear simulations during the offline stage, keeping offline costs relatively low. In the online  
 627 stage, most of the computational cost arises from integrating the constitutive law over a large set  
 628 of quadrature points. This cost is substantially mitigated by the surrogate model; however, the

629 surrogate can degrade Newton–Raphson convergence for high plastic rate sensitivities.

## 630 CRediT authorship contribution statement

631 Aslan Nasirov: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data  
632 curation, Visualization, Writing – original draft, Writing – review & editing. Caglar Oskay: Con-  
633 ceptualization, Supervision, Methodology, Formal analysis, Writing – review & editing, Project  
634 administration, Funding acquisition.

## 635 Data availability

636 Data supporting the findings of this study are available from the corresponding author upon  
637 reasonable request.

## 638 Declaration of competing interest

639 The authors declare that they have no known competing financial interests or personal relationships  
640 that could have appeared to influence the work reported in this manuscript.

## 641 Acknowledgments

642 The authors gratefully acknowledge the financial support from the National Aeronautics and Space  
643 Administration (NASA) Space Technology Early State Innovation (ESI) Grant (No.:80NSSC20K0294).  
644 The authors thank the Vanderbilt University Advanced Computing Center for Research and Education  
645 (ACCRE) for computational resources.

## 646 References

- 647 [1] T. Schlick et al. “A Multiscale Vision - Illustrative Applications from Biology to Engineering”.  
648 In: *Int. J. Mult. Comp. Eng.* 19 (2021), pp. 39–73.
- 649 [2] José Miranda Guedes and Noboru Kikuchi. “Preprocessing and postprocessing for materials  
650 based on the homogenization method with adaptive finite element methods”. In: *Computer  
651 Methods in Applied Mechanics and Engineering* 83.2 (1990), pp. 143–198. ISSN: 0045-7825.

652 [3] Thomas J.R. Hughes et al. “The variational multiscale method—a paradigm for computa-  
653 tional mechanics”. In: *Computer Methods in Applied Mechanics and Engineering* 166.1 (1998).  
654 Advances in Stabilized Methods in Computational Mechanics, pp. 3–24. ISSN: 0045-7825.

655 [4] Yalchin Efendiev and Thomas Y Hou. *Multiscale finite element methods: theory and applications*.  
656 Vol. 4. Springer Science & Business Media, 2009.

657 [5] Thomas Y. Hou and Xiao-Hui Wu. “A Multiscale Finite Element Method for Elliptic Problems  
658 in Composite Materials and Porous Media”. In: *Journal of Computational Physics* 134.1 (1997),  
659 pp. 169–189. ISSN: 0021-9991.

660 [6] F. Feyel and J.L. Chaboche. “FE2 multiscale approach for modelling the elastoviscoplastic be-  
661 haviour of long fibre SiC/Ti composite materials”. In: *Computer Methods in Applied Mechanics  
662 and Engineering* 183 (2000), pp. 309–330.

663 [7] M. Marino, B. Hudobivnik, and P. Wriggers. “Computational homogenization of polycrystalline  
664 materials with the Virtual Element Method”. In: *Computer Methods in Applied Mechanics  
665 and Engineering* 355 (2019), pp. 349–372. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2019.06.004>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782519303445>.

666 [8] H. Moulinec and P. Suquet. “A numerical method for computing the overall response of nonlinear  
667 composites with complex microstructure”. In: *Computer Methods in Applied Mechanics and  
668 Engineering* 157.1 (1998), pp. 69–94. ISSN: 0045-7825. DOI: [https://doi.org/10.1016/S0045-7825\(97\)00218-1](https://doi.org/10.1016/S0045-7825(97)00218-1). URL: <https://www.sciencedirect.com/science/article/pii/S0045782597002181>.

669 [9] Satyajit Mojumder et al. “Multiscale Modeling of Process-Induced Defects in Fused Filament  
670 Fabrication-Printed Materials”. In: *Advanced Engineering Materials* n/a.n/a (), p. 2402592. DOI:  
671 <https://doi.org/10.1002/adem.202402592>. eprint: <https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202402592>. URL: <https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adem.202402592>.

672 [10] M. Mosby and K. Matouš. “Computational homogenization at extreme scales”. In: *Extreme  
673 Mechanics Letters* 6 (Mar. 2016). ISSN: 2352-4316. DOI: 10.1016/j.eml.2015.12.009. URL:  
674 <https://www.osti.gov/biblio/1565430>.

675 [11] G. J. Dvorak and Y. Benveniste. “On Transformation Strains and Uniform Fields in Multiphase  
676 Elastic Media”. In: *Proceedings: Mathematical and Physical Sciences* 437.1900 (1992), pp. 291–  
677 310. ISSN: 09628444. URL: <http://www.jstor.org/stable/52199> (visited on 08/22/2022).

684 [12] G. J. Dvorak. "Transformation field analysis of inelastic composite materials". In: *Proceedings*  
685 *of the Royal Society of London. Series A: Mathematical and Physical Sciences* 437.1900 (1992),  
686 pp. 311–327. DOI: 10.1098/rspa.1992.0063. eprint: <https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0063>. URL: <https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1992.0063>.

689 [13] J.C. Michel and P. Suquet. "Computational analysis of nonlinear composite structures using  
690 the nonuniform transformation field analysis". In: *Computer Methods in Applied Mechanics  
691 and Engineering* 193.48 (2004). Advances in Computational Plasticity, pp. 5477–5502. ISSN:  
692 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2003.12.071>. URL: <https://www.sciencedirect.com/science/article/pii/S004578250400283X>.

698 [14] J.C. Michel and P. Suquet. "Nonuniform transformation field analysis". In: *International  
695 Journal of Solids and Structures* 40.25 (2003). Special issue in Honor of George J. Dvorak,  
696 pp. 6937–6955. ISSN: 0020-7683. DOI: [https://doi.org/10.1016/S0020-7683\(03\)00346-9](https://doi.org/10.1016/S0020-7683(03)00346-9).  
697 URL: <https://www.sciencedirect.com/science/article/pii/S0020768303003469>.

708 [15] F. Covezzi et al. "Comparison of reduced order homogenization techniques: pRBMOR, NUTFA  
709 and MxTFA". In: *Meccanica* 53 (2018), pp. 1291–1312.

708 [16] F. Fritzen, S. Marfia, and V. Sepe. "Reduced order modeling in nonlinear homogenization:  
709 A comparative study". In: *Computers & Structures* 157 (2015), pp. 114–131. ISSN: 0045-  
702 7949. DOI: <https://doi.org/10.1016/j.compstruc.2015.05.012>. URL: <https://www.sciencedirect.com/science/article/pii/S0045794915001492>.

708 [17] A. Mishra et al. "Enhanced transformation field analysis for reduced-order modeling of problems  
709 with cohesive interfaces". In: *Computer Methods in Applied Mechanics and Engineering* 421  
710 (2024), p. 116755. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2024.116755>.  
711 URL: <https://www.sciencedirect.com/science/article/pii/S0045782524000112>.

708 [18] F. Fritzen and M. Leuschner. "Reduced basis hybrid computational homogenization based on a  
709 mixed incremental formulation". In: *Computer Methods in Applied Mechanics and Engineering*  
710 260 (2013), pp. 143–154. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2013.03.007>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782513000583>.

712 [19] V. Sepe, S. Marfia, and E. Sacco. "A nonuniform TFA homogenization technique based on  
713 piecewise interpolation functions of the inelastic field". In: *International Journal of Solids and  
714 Structures* 50.5 (2013), pp. 725–742. ISSN: 0020-7683. DOI: <https://doi.org/10.1016/j.ijsolstr.2012.11.005>. URL: <https://www.sciencedirect.com/science/article/pii/S0020768312004684>.

717 [20] F. Covezzi et al. “Homogenization of elastic–viscoplastic composites by the Mixed TFA”. In:  
718 *Computer Methods in Applied Mechanics and Engineering* 318 (2017), pp. 701–723. ISSN:  
719 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2017.02.009>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782516308635>.

721 [21] J. Yvonnet, D. Gonzalez, and Q.-C. He. “Numerically explicit potentials for the homogenization  
722 of nonlinear elastic heterogeneous materials”. In: *Computer Methods in Applied Mechanics and Engineering*  
723 198.33 (2009), pp. 2723–2737. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2009.03.017>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782509001492>.

726 [22] Z. Liu, M.A. Bessa, and W. K. Liu. “Self-consistent clustering analysis: An efficient multi-scale  
727 scheme for inelastic heterogeneous materials”. In: *Computer Methods in Applied Mechanics and Engineering*  
728 306 (2016), pp. 319–341. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2016.04.004>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782516301499>.

731 [23] C. Oskay and J. Fish. “Eigendeformation-based reduced order homogenization for failure  
732 analysis of heterogeneous materials”. In: *Computer Methods in Applied Mechanics and Engineering* 196.7 (2007), pp. 1216–1243. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2006.08.015>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782506002933>.

736 [24] Z. Yuan and J. Fish. “Multiple scale eigendeformation-based reduced order homogenization”.  
737 In: *Computer Methods in Applied Mechanics and Engineering* 198.21 (2009). Advances in  
738 Simulation-Based Engineering Sciences – Honoring J. Tinsley Oden, pp. 2016–2038. ISSN:  
739 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2008.12.038>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782509000243>.

741 [25] D. Xia and C. Oskay. “Reduced order mathematical homogenization method for polycrystalline  
742 microstructure with microstructurally small cracks”. In: *International Journal for Numerical  
743 Methods in Engineering* 124.14 (2023), pp. 3166–3190. DOI: <https://doi.org/10.1002/nme.7243>. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.7243>. URL:  
745 <https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7243>.

746 [26] C. Oskay, Z. Su, and B. Kapsuzoglu. “Discrete eigenseparation-based reduced order homoge-  
747 nization method for failure modeling of composite materials”. In: *Comput. Meth. Appl. Mech.  
748 Engng.* 359 (2020), p. 112656.

749 [27] R. D. Crouch and C. Oskay. “Symmetric meso-mechanical model for failure analysis of  
750 heterogeneous materials”. In: *Int. J. Mult. Comp. Eng.* 8 (2010), pp. 447–461.

751 [28] X. Zhang and C. Oskay. “Eigenstrain based reduced order homogenization for polycrystalline  
752 materials”. In: *Computer Methods in Applied Mechanics and Engineering* 297 (2015), pp. 408–  
753 436. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2015.09.006>. URL: <https://www.sciencedirect.com/science/article/pii/S004578251500300X>.

755 [29] X. Zhang and C. Oskay. “Sparse and Scalable Eigenstrain-based Reduced Order Homogenization  
756 Models for Polycrystal Plasticity”. In: *Comput. Meth. Appl. Mech. Engrg.* 326 (2017), pp. 241–  
757 269.

758 [30] D. Xia, X. Zhang, and C. Oskay. “Large-deformation reduced order homogenization of polycrys-  
759 talline materials”. In: *Computer Methods in Applied Mechanics and Engineering* 387 (2021),  
760 p. 114119. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2021.114119>. URL:  
761 <https://www.sciencedirect.com/science/article/pii/S0045782521004503>.

762 [31] Zeliang Liu, C.T. Wu, and M. Koishi. “A deep material network for multiscale topology learning  
763 and accelerated nonlinear modeling of heterogeneous materials”. In: *Computer Methods in  
764 Applied Mechanics and Engineering* 345 (2019), pp. 1138–1168. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2018.09.020>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782518304729>.

766 [32] P. Krysl, S. Lall, and J. E. Marsden. “Dimensional model reduction in non-linear finite  
767 element dynamics of solids and structures”. In: *International Journal for Numerical Methods  
768 in Engineering* 51.4 (2001), pp. 479–504. DOI: <https://doi.org/10.1002/nme.167>.  
769 eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.167>. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.167>.

771 [33] J. Yvonnet and Q.-C. He. “The reduced model multiscale method (R3M) for the non-linear  
772 homogenization of hyperelastic media at finite strains”. In: *Journal of Computational Physics*  
773 223.1 (2007), pp. 341–368. ISSN: 0021-9991. DOI: <https://doi.org/10.1016/j.jcp.2006.09.019>. URL: <https://www.sciencedirect.com/science/article/pii/S0021999106004402>.

775 [34] D. Xia and C. Oskay. “Proper orthogonal decomposition assisted eigendeformation-based math-  
777 ematical homogenization method for modeling cracks in 3D polycrystalline microstructures”.  
778 In: *Comput. Meth. Appl. Mech. Engrg.* 418 (2024), p. 116508.

779 [35] B. A. Le, J. Yvonnet, and Q.-C. He. “Computational homogenization of nonlinear elas-  
780 tic materials using neural networks”. In: *International Journal for Numerical Methods in*  
781 *Engineering* 104.12 (2015), pp. 1061–1084. DOI: <https://doi.org/10.1002/nme.4953>.  
782 eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4953>. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4953>.

784 [36] Yuan Zhongbo and Poh Leong Hien. “Pre-trained transformer model as a surrogate in multiscale  
785 computational homogenization framework for elastoplastic composite materials subjected to  
786 generic loading paths”. In: *Computer Methods in Applied Mechanics and Engineering* 421  
787 (2024), p. 116745. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2024.116745>.  
788 URL: <https://www.sciencedirect.com/science/article/pii/S004578252400001X>.

789 [37] J.L. Chaboche et al. “Towards a micromechanics based inelastic and damage modeling of  
790 composites”. In: *International Journal of Plasticity* 17.4 (2001), pp. 411–439. ISSN: 0749-  
791 6419. DOI: [https://doi.org/10.1016/S0749-6419\(00\)00056-5](https://doi.org/10.1016/S0749-6419(00)00056-5). URL: <https://www.sciencedirect.com/science/article/pii/S0749641900000565>.

793 [38] J. Fish, V. Filonova, and Z. Yuan. “Hybrid impotent–incompatible eigenstrain based ho-  
794 mogenization”. In: *International journal for numerical methods in engineering* 95.1 (2013),  
795 pp. 1–32.

796 [39] P. A. Sparks and C. Oskay. “Identification of Optimal Reduced Order Computational Models  
797 for Failure of Heterogeneous Materials”. In: *Int. J. Mult. Comp. Eng.* 11 (2013), pp. 185–200.

798 [40] Kevin Spilker et al. “Piecewise-uniform homogenization of heterogeneous composites using  
799 a spatial decomposition based on inelastic micromechanics”. In: *Composite Structures* 295  
800 (2022), p. 115836.

801 [41] Aslan Nasirov and Caglar Oskay. “An affine formulation of eigenstrain-based homogenization  
802 method and its application to polycrystal plasticity”. In: *Modelling and Simulation in Materials*  
803 *Science and Engineering* 32.8 (2024), p. 085017.

804 [42] D. Xia and C. Oskay. “Proper orthogonal decomposition assisted eigendeformation-based math-  
805 ematical homogenization method for modeling cracks in 3D polycrystalline microstructures”.  
806 In: *Computer Methods in Applied Mechanics and Engineering* 418 (2024), p. 116508.

807 [43] Bernardo P. Ferreira, F.M. Andrade Pires, and M.A. Bessa. “Adaptivity for clustering-based  
808 reduced-order modeling of localized history-dependent phenomena”. In: *Computer Methods*  
809 *in Applied Mechanics and Engineering* 393 (2022), p. 114726. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2022.114726>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782522000895>.

812 [44] Andrew Beel and Jacob Fish. "Solver-free reduced order homogenization for nonlinear periodic  
813 heterogeneous media". In: *Computer Methods in Applied Mechanics and Engineering* 425  
814 (2024), p. 116932. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2024.116932>.  
815 URL: <https://www.sciencedirect.com/science/article/pii/S0045782524001889>.

816 [45] Stephan Wulffinghoff and Jan Hauck. "E3C for Computational Homogenization in Nonlinear  
817 Mechanics". In: *arXiv preprint arXiv:2501.13631* (2025).

818 [46] Jean-Claude Michel and Pierre Suquet. "A model-reduction approach to the micromechanical  
819 analysis of polycrystalline materials". In: *Computational Mechanics* 57 (Mar. 2016). DOI:  
820 10.1007/s00466-015-1248-9.

821 [47] Masayuki Yano and Anthony T. Patera. "An LP empirical quadrature procedure for reduced  
822 basis treatment of parametrized nonlinear PDEs". In: *Computer Methods in Applied Mechanics  
823 and Engineering* 344 (2019), pp. 1104–1123. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2018.02.028>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782518301087>.

826 [48] Y. Liu et al. "Experimental and computational study of microstructural effect on ductile  
827 fracture of hot-forming materials". In: *Mater. Sci. Eng. A* 724 (2018), pp. 298–323.

828 [49] Y. Liu et al. "Dislocation density informed eigenstrain based reduced order homogenization  
829 modeling: verification and application on a titanium alloy structure subjected to cyclic loading".  
830 In: *Modelling Simul. Mater. Sci. Eng.* 28 (2020), p. 025004.

831 [50] F. Roters et al. "Overview of constitutive laws, kinematics, homogenization and multiscale  
832 methods in crystal plasticity finite-element modeling: Theory, experiments, applications". In:  
833 *Acta materialia* 58.4 (2010), pp. 1152–1211.

834 [51] J.R. Rice. "Inelastic constitutive relations for solids: An internal-variable theory and its  
835 application to metal plasticity". In: *Journal of the Mechanics and Physics of Solids* 19.6 (1971),  
836 pp. 433–455. ISSN: 0022-5096. DOI: [https://doi.org/10.1016/0022-5096\(71\)90010-X](https://doi.org/10.1016/0022-5096(71)90010-X).  
837 URL: <https://www.sciencedirect.com/science/article/pii/002250967190010X>.

838 [52] L. Anand. "Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated  
839 Temperatures". In: *Journal of Engineering Materials and Technology* 104.1 (Jan. 1982), pp. 12–  
840 17. ISSN: 0094-4289. DOI: 10.1115/1.3225028. eprint: [https://asmedigitalcollection.asme.org/materialstechnology/article-pdf/104/1/12/5513557/12\\\_1.pdf](https://asmedigitalcollection.asme.org/materialstechnology/article-pdf/104/1/12/5513557/12\_1.pdf). URL:  
842 <https://doi.org/10.1115/1.3225028>.

843 [53] E. Voce. “The relationship between stress and strain for homogeneous deformations”. In:  
844 *Journal of the Institute of Metals* 74 (1948), pp. 537–562.

845 [54] S. A. Smolyak. “Quadrature and Interpolation Formulas for Tensor Products of Certain Classes  
846 of Functions”. In: *Soviet Mathematics Doklady* 4 (1963), pp. 240–243.

847 [55] Sergei Manzhos, Koichi Yamashita, and Tucker Carrington. “Fitting sparse multidimensional  
848 data with low-dimensional terms”. In: *Computer Physics Communications* 180.10 (2009),  
849 pp. 2002–2012. ISSN: 0010-4655. DOI: <https://doi.org/10.1016/j.cpc.2009.05.022>. URL:  
850 <https://www.sciencedirect.com/science/article/pii/S0010465509001817>.

851 [56] X. Zhang and C. Oskay. “Sparse and scalable eigenstrain-based reduced order homogenization  
852 models for polycrystal plasticity”. In: *Computer Methods in Applied Mechanics and Engineering*  
853 326 (2017), pp. 241–269. ISSN: 0045-7825. DOI: <https://doi.org/10.1016/j.cma.2017.07.027>. URL: <https://www.sciencedirect.com/science/article/pii/S004578251730347X>.

855 [57] X. Zhang, Y. Liu, and C. Oskay. “Uncertainty Quantification for Microstructure-Sensitive  
856 Fatigue Nucleation and Application to Titanium Alloy, Ti6242”. In: *Frontiers in Materials* 9,  
857 897998 (May 2022), p. 897998. DOI: [10.3389/fmats.2022.897998](https://doi.org/10.3389/fmats.2022.897998).

858 [58] A. Nasirov et al. “Achieving high efficiency in reduced order modeling for large scale polycrystal  
859 plasticity simulations”. In: *Finite Elements in Analysis and Design* 228 (2024), p. 104053.  
860 ISSN: 0168-874X. DOI: <https://doi.org/10.1016/j.finel.2023.104053>. URL: <https://www.sciencedirect.com/science/article/pii/S0168874X23001464>.

862 [59] D. R. Brandyberry, X. Zhang, and P. H. Geubelle. “A GFEM-based reduced-order homogeniza-  
863 tion model for heterogeneous materials under volumetric and interfacial damage”. In: *Computer*  
864 *Methods in Applied Mechanics and Engineering* 377 (2021), p. 113690. ISSN: 0045-7825. DOI:  
865 <https://doi.org/10.1016/j.cma.2021.113690>. URL: <https://www.sciencedirect.com/science/article/pii/S0045782521000268>.

867 [60] Aslan Nasirov and Caglar Oskay. “A reduced order variational spectral method for efficient  
868 construction of eigenstrain-based reduced order homogenization models”. In: *International*  
869 *Journal for Numerical Methods in Engineering* 125.18 (2024), e7547.

870 [61] Guido Dhondt. *The finite element method for three-dimensional thermomechanical applications*.  
871 John Wiley & Sons, 2004.

872 [62] R. Quey and M. Kasemer. “The Neper/FEPX Project: Free / Open-source Polycrystal Gener-  
873 ation, Deformation Simulation, and Post-processing”. In: *IOP Conference Series: Materials*  
874 *Science and Engineering* 1249.1 (2022), p. 012021. DOI: 10.1088/1757-899X/1249/1/012021.  
875 URL: <https://dx.doi.org/10.1088/1757-899X/1249/1/012021>.

876 [63] Esteban B Marin. *On the formulation of a crystal plasticity model*. Tech. rep. Albuquerque,  
877 NM, and Livermore, CA: Sandia National Laboratories, 2006.

878 [64] Zheng Yuan and Jacob Fish. “Toward realization of computational homogenization in practice”.  
879 In: *International Journal for Numerical Methods in Engineering* 73.3 (2008), pp. 361–380.

880 [65] William G Feather, Hojun Lim, and Marko Knezevic. “A numerical study into element type  
881 and mesh resolution for crystal plasticity finite element modeling of explicit grain structures”.  
882 In: *Computational Mechanics* 67.1 (2021), pp. 33–55.

883 [66] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.  
884 In: *Nature Methods* 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.