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1 Abstract

2 Reduced-order models (ROMs) are frequently employed within concurrent multiscale frame-
3 works to enhance the efficiency of nonlinear simulations and to mitigate the substantial com-
4 putational expense associated with direct nonlinear homogenization schemes. Among these,
5 transformation field analysis (TFA)-based ROMs have gained particular prominence due to
6 their reliance on linear elastic simulations for model construction and their characteristically low
7 dimensionality. However, extensive studies have demonstrated that these models often exhibit
8 an artificially stiff response when applied across a broad spectrum of materials. In the present
9 study, a higher order eigenstrain homogenization scheme is presented to mitigate the overly stiff
10 response predicted by these models. Another challenge with the incorporation of nonuniform or
11 higher order basis within models based on TFA is the expensive integration of the constitutive
12 response due to nonuniform fields. A novel approach to compute these integrals is established
13 that reduces the number of integration parameters over complex three-dimensional domains
14 without additional spatial constraints. It is demonstrated that the linear modes can soften the
15 elasto-plastic response and that the proposed integration method achieves approximately an
16 order-of-magnitude improvement in computational efficiency compared to brute-force integration
17 over a background mesh.

18 Keywords: Computational homogenization; Reduced order modeling; Multiscale modeling;

o Crystal plasticity
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1 Introduction

Accurate modeling of the nonlinear mechanical behavior of structures made of advanced materials
with complex microstructures such as metal alloys, composites, and architected materials requires
the development and application of multiscale methods |1]. A variety of such methods are available
(e.g., computational homogenization [2|, variational multiscale enrichment [3|, multiscale finite
elements [4, 5]) to address specific classes of problems and material systems. For scale separable
problems, a classical strategy is the computational homogenization (CH) method, which requires
solving coupled nonlinear boundary value problems (BVPs) at both the macroscale and microscale
using finite elements or other numerical techniques |6, |7, 8]. CH has been successfully applied to
investigate various multiscale phenomena, such as the influence of microscale and mesoscale defects
on the multiscale response of additively manufactured composites 9], the role of microstructural
morphology in the response of heterogeneous interfaces [10]|, among many others.

The computational cost of CH implementations is typically high and significant computational
resources for simulating realistic-sized structures are required. This challenge has limited its broader
adoption. To address this limitation, reduced order models (ROMs) are employed by approximating
the microscale response without resorting to full-field methods such as the finite element method
(FEM) or the spectral method. A variety of ROM approaches have been developed in the literature
including transformation field analysis (TFA) |11}, 12|, nonuniform TFA (NTFA) [13| |14, 15, 16} |17]
and its extensions |18 19, [20], numerical potentials [21], self-consistent clustering analysis [22], eigen-
deformation methods |23} 24} 25, 26|, eigenstrain-based reduced order homogenization (EHM) |27,
28,129, 30|, deep material network [31] and proper orthogonal decomposition (POD) |32, 133, 34|, with
continuing developments exploring hybrid physics-informed and machine learning frameworks |35,
306).

ROM frameworks generally consist of two distinct stages: (1) “offline” model construction
(or training); and (2) “online” execution. During the offline stage (i.e., prior to the execution of
the multiscale simulation), the ROM is constructed based on a pre-defined set of microstructure
simulations. Model construction for some ROM approaches such as the NTFA, POD, and machine
learning-based surrogate models involves conducting a comprehensive set of nonlinear and history-
dependent microscale simulations subjected to a wide range of loading paths. In EHM, a predefined
set of linear elastic simulations independent of the loading path is needed. During the online stage,
the microscale BVP is replaced by the ROM, a nonlinear algebraic system of equations posed over a
coarse approximation space spanned by a small number of basis functions. This substitution leads
to significant computational efficiency, as the reduced system is of much lower dimension and can be

efficiently coupled with the macroscopic solver.
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While EHM and other TFA-based ROMs offer significant efficiency gains for nonlinear multiscale
simulations, they can exhibit limitations in capturing inelastic responses for certain loading paths
and microstructures. A common issue is an artificially stiff response compared to direct numerical
simulations, a phenomenon reported in multiple prior studies |37, 28, 138]. The prediction error
is generally more severe in high phase-contrast materials (e.g., carbon fiber reinforced polymer
composites) than in lower phase-contrast materials such as polycrystalline metals. To address this
shortcoming, several strategies have been explored, including ROM refinement based on phase
subpartitioning [23} 39, 40, [22|, online ROM reconstruction using instantaneous moduli |37, [30, |41],
and the use of nonuniform basis functions |42} 14, 19, [18]. Incorporating the instantaneous moduli
yields substantial improvement for high-phase-contrast microstructures but offers limited benefit
in low-phase-contrast cases and requires online reconstruction, which is computationally expensive.
A straightforward alternative is to subdivide each phase domain into smaller reduced-order parts,
analogous to h-refinement in finite element analysis. However, meaningful accuracy gains generally
require many subpartitions, even with advanced algorithms, as shown for both polycrystalline [25]
and composite [43] microstructures. In contrast, the incorporation of nonuniform basis functions has
demonstrated significant performance improvements, particularly when the basis functions are well
chosen.

A broad range of basis constructions has been explored for composite materials, including
piecewise-uniform |11} |12], piecewise-polynomial [19], mixed discretizations [15], and globally nonuni-
form bases [14]. Michel and Suquet [14] introduced the use of globally nonuniform basis functions in
the NTFA framework, deriving them from nonlinear full-field microstructure simulations. Similar
strategies were later explored by Fritzen et al. [18] and by Beel and Fish [44] who advocated using a
small set of six unidirectional loading simulations for the construction of the reduced basis. These ap-
proaches generally achieve high accuracy, particularly when the applied loading remains close to that
used in constructing the basis functions. Sepe et al. [19] proposed analytical basis functions to avoid
the cost of such a priori nonlinear simulations, demonstrating their effectiveness for two-dimensional
elastoplastic composites. Covezzi et al. [15] developed a mixed discretization for two-dimensional
elastoviscoplastic composites, employing divergence-free stress bases alongside piecewise-linear strain
and inelastic-strain functions. An additional challenge associated with the use of nonuniform basis
functions is integrating the nonlinear constitutive law efficiently [19|. This challenge has been tackled
by using reduced version of the constitutive model [14], Gauss point clustering [45], evolving Gauss
points [44], second order Taylor expansions [46], and empirical quadrature method [47].

The focus of the present study is achieving consistent improvement in ROM accuracy compared to

the classical EHM approach in the context of low-phase-contrast polycrystalline materials regardless
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of loading and microstructural morphology. We employ polynomial-type higher-order basis functions
to achieve this consistent accuracy improvement and accurately capture intragrain heterogeneity.
First, a set of microscale equilibrium problems for higher-order basis functions is derived to describe
the offline stage. For the online stage, reduced order versions of the constitutive equations are
derived using variational principles which include a computationally intensive integration of the
viscoplastic flow rule. We reformulate the integration problem and propose a machine-learning-based
surrogate model that performs constitutive integration more efficiently. The primary contributions
of this work are twofold: (i) the application of the ROM enhanced with higher-order basis functions
to three-dimensional polycrystal plasticity problems, and (ii) the development of a novel surrogate
approach to significantly reduce integration time.

The remainder of this manuscript is organized as follows: The EHM methodology is briefly
summarized and the mathematical formulation for the proposed higher order model is derived and
discussed in Section 2. Starting with a brief reintroduction of the key equations from classical EHM,
Section 2.1 presents the higher-order discretization. Sections 2.2 and 2.3 use this discretization to
derive the reduced constitutive law and evolution equations. Section 2.4 introduces the surrogate
framework, followed by the offline stage comprising the influence-function problems in Section 2.5.
Section 2.6 concludes with the description of the ROM algorithm. Numerical experiments performed
to assess the accuracy of the proposed method are discussed in Section 3. Conclusions are presented
in Section 4.

The following notation is used unless otherwise stated. Tensor fields are provided in Cartesian
coordinates and are denoted as italic lightface letters (A;;i or 0;;), in indicial notation, or in boldface
italic, (A or o), in tensor notation. Scalars are denoted by lightface letters, a without indices.
Parentheses in the subscript indicate the symmetric part of the tensor. A comma in the indices
indicates partial spatial derivative. The top right superscript is used as a descriptor. The bottom
left subscript denotes time increment. Overbar indicates macroscopic quantity averaged over the
microstructural domain while overhead dot indicates time derivative. Ny, denotes number of grains
in the polycrystal, Ny, the number of modes per grain, and Ny the number of Voigt components

(six in three-dimensional simulations).

2 Higher order EHM (HEHM)

Consider a macroscopic domain, 2 C R3, that is made of a periodic polycrystalline microstructural

volume, © C R3. The material constituents that occupy the domain behave in an inelastic manner,
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which is idealized using the small strain theory and additive decomposition of the total strain

0ij(®,y,t) = Liju(y) [en(z, y, ) — p(x, y,1)) (1)

where o is the stress tensor, L the tensor of elastic moduli, € the total strain, and p the inelastic
strain. @ denotes the macroscopic position vector defined over €2, y is the microscopic position
vector defined over ©, and t is the time coordinate. The strain field over the microstructural volume

at an arbitrary position & of the macroscale structure is decomposed as

gij(x,y,t) = Ey(x, ) + &5(x, y, 1) (2)

where € is the macroscale strain tensor, and € is the zero-mean microscale strain perturbation over

the microstructural volume. The strain perturbation field is then expanded as follows |28|

éij(w> Y, t) = H(z,j)mn(y)gmn(aja t) + /@ h(i,j)mn(ya y)ﬂmn(ma ga t)dy (3)

where H(y) and h(y,y) are elastic and phase influence functions, respectively.

2.1 Field-discretization

The ansatz in Eq. 3| forms the foundation of the EHM model. In the classical EHM formulation [28],
the spatial distribution of the inelastic strain and the stress fields over the microstructural volume is
approximated as piecewise-uniform over prescribed subdomains of ©. In this section, we propose
an extension of this approximation by including a hierarchy of higher-order basis functions. The
goal of this extension is to monotonically increase the accuracy of a ROM prepared by a given
set of basis functions by including additional higher-order basis functions from the hierarchy. Let
{0 cO|a=1,..., Ny} denote a partition of ©. We proceed with the following discretization of

the inelastic strain and stress fields

ph Nm

pij (%, Y, t) ZZN “P(y NW (33 t) (4)

a=1 p=1

ph Nm

gij(®,y,t) = > NOD(y)olt? (x,1) (5)

a=1 p=1

where N(®P) is a basis function associated with part a and mode p, and pu(*?) and o(®P) are the

corresponding eigenstrain and stress coefficients, respectively.
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In the present study, polynomial basis functions are used following the ideas proposed in
Ref. [19]. The basis functions are chosen such that they have compact support within their parts,
ie, NeP(y=0n W) = 0. This property of the basis functions enables partial localization of
the constitutive equations; for instance, the Schmid tensor remains constant within a grain and
does not require additional treatment. Furthermore, the basis functions are constructed to satisfy

orthonormality condition given as

07 )
NG () Ny = P ©)

o 1, p=gq.

Orthonormalizing the basis functions beforehand simplifies the numerical implementation and
improves conditioning of the reduced system as elaborated in Section

Construction of the orthonormal basis functions can be achieved by the Gram-Schmidt orthonor-
malization procedure. For consistency with the classical EHM formulation, the first basis function
is constrained to be constant within its corresponding part: N¥:1) = 1. To generate higher-order
basis functions based on polynomial expansions, we begin by selecting a set of linearly independent,

non-orthogonal functions. For instance, the set of linear polynomials are

The orthonormalized basis functions are then obtained recursively via the Gram—Schmidt process,

with the first mode given by

NG (y)

\/f@m NG (y) NED (y)dy

N (y) = (8)

and the rest of the modes given by

1
N(,B,p)(y) _ N(ﬁvp Pz (f@(ﬁ) N (B:p) (y) NP (y)dy) N(B’q)(y) (9)
e f@w) NGB (y)NB9 (y)dy

~—

NP (y) = (10)

N(Bp) (y
Vo N2 () N6 (y)dy

This approach is conceptually analogous to p-refinement in finite element analysis, where the order
of interpolation within each element is increased to more accurately capture field nonuniformities. As

an illustrative example, the functions N(#D =1, N(#:2) =y, NB3) =y, N4 = 42 are plotted over
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Figure 1: (a) Initial (non-orthonormal) basis functions over a square domain [0, 1]* in 2D and (b)
modified basis functions after orthonormalization.

the unit square domain [0, 1]? in Figure 1| both before and after orthonormalization, to demonstrate

the transformation.

2.2 Reduced Constitutive Equations

In this section, the constitutive relations are projected onto the reduced basis introduced earlier
to obtain a finite-dimensional representation of the microscale response. The resulting reduced
constitutive equations introduce the localization and interaction tensors that encode the mechanical
interactions within and between parts, and these tensors form the central building blocks of the
ROM used in the subsequent development. Combining the prescribed discretization in Eq. ] with
Eqgs. [T, 2| and [3] yields the following expression for the stress

O-ij(m7 Yy, t) = Ll]kl(y) [Ekl(ma t) + H(k,l)mn(y) gmn(a-% t)

Nph Nm
303 (Aehn @) = NP () L ) 1 (@, )] (1)
a=1 p=1

s where h(@P)(y) = Jo h(y,§)N@P)()dy is the integrated phase influence function. Substituting
17 discretizations in Eq. [5| into Eq. premultiplying with N9 and integrating over O we get
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Ph Nm

Mlglzzaz(f 9 = klmn mn T Z Z B kﬁanp u&%’ :ul(j @ (12)
a=1 p=1
where
Al(cﬁﬁz = ) N(@Q) (y) []klmn + H(k,l)mn(yﬂ dy (13)
e
Pii?) — oY P ()it () dy (14)

in which M® = L(ﬁ)fl, L® is the part-averaged stiffness tensor, A(»9 is the localization tensor,
and P %) the interaction tensor representing interactions between mode ¢ in part 8 and mode p

in part a.

2.3 Reduced Evolution Equations

Equation [12] establishes a linear mapping between the stress and inelastic strain coefficients, both of
which are unknown. In order to close the system, the constitutive laws that govern the viscoelasto-
plastic response of the crystals within the microstructure are invoked. Various forms of evolution
equations have been previously proposed to describe the nonlinear behavior of polycrystalline
materials (e.g., [48, |49, [50]). In this study, we adopt a dislocation-glide based phenomenological
crystal plasticity model. The flow rule [51, [28] at a material point is given by

Nss 1/71
Z% [ - } sign(7%) 2 (15)

where Z* is the Schmid tensor associated with a slip system s, Jq is the reference self-shearing rate,
n is the rate sensitivity parameter, ¢° is the slip system strength, and 7° = o : Z* is the resolved
shear stress over the s slip system, and Ny is the number of slip systems in the lattice. The

hardening rule |52}, 53| is given by

e ]Zr o Tr/nagnw (16)

gsa -

where hg is reference self-hardening, gy is the initial strength of a slip system, and g, is saturation

strength.
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When the basis functions of the reduced order model are piecewise uniform (e.g., in the classical
EHM approach), the flow and hardening rules can be directly expressed in terms of stress and
inelastic strain coefficients, as well as similarly defined hardening variable coefficients [28]. Hence,
the flow and hardening evolution rules for the reduced order coefficients are of the same form as
the point-wise evolution equations defined in Egs. [I5] and [I6l However, when basis functions are
nonuniform, the constitutive laws cannot be satisfied exactly at every point within a grain, while also
considering the reduced order approximations for the stress and inelastic strain fields (i.e., Egs.
and . This is because the nonlinearity in the constitutive laws result in a spatial distribution of
the fields within the part that is inconsistent with the polynomial basis. The approach in this paper
is to construct a reduced-flow rule where Eq. [15]is satisfied in a weak sense. Consider the following

weak form of the flow rule

o®B)

Nss s 1/n
NED (g <uij(y) -3 4 [Igs Ezﬂ Sign(m(y))z;j) dy = 0. (17)

Substituting the reduced order discretizations of the stress and inelastic strain fields result in the

following expression
g =y 4Pz (18)

where

l/n N,
ZNm N B0 (gy)7(Ba)-s ' m .
| ) | sign(d_ NOO(y)r D) dy  (19)

q=1

/-'}/(sz)vs = 4 N ,p) [
o)

and 4#P)5 is the reduced plastic slip rate for grain #, mode p and slip system s, and 73 =
o®r) . ZB)s is the resolved shear stress coefficient corresponding to mode p. The right-hand side of
Eq. [19 could be numerically integrated for a given input of stress coefficients, o®?) and hardening
coefficients, ¢(®?)>*. Similar procedure is applied to construct a reduced hardening rule using Eq. .

Orthonormalizing the basis functions in advance eliminates cross-mode coupling terms and
significantly simplifies the inversion required on the left-hand sides of Egs. [12] and [I§f Without
orthonormalization, the reduced evolution equations retain all cross terms, leading to coupled systems

of the form

N

B, ; B),s
SCT AR S 20
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where
i) = /m) NP (Y) Ljun N (y) dy (21)
e

denotes the inner product between modes p and ¢. In the absence of orthonormality, C#?9 is
generally dense, and each mode is coupled to all others, increasing both algebraic complexity and

computational cost.

2.4 Surrogate integration

Accurate integration of Eq. has a substantive effect on the overall accuracy of the reduced
model predictions as demonstrated in Section 3. However, direct numerical integration of this term
accurately over a complex three-dimensional microstructure is computationally expensive. This
difficulty is particularly pronounced when the exponent n is small, as the integrand becomes highly
nonlinear and requires a dense set of quadrature points for accurate evaluation. As discussed in
the literature review, several algorithms have been proposed to reduce the number of quadrature
points within each grain. A key limitation of most existing approaches is the inherent requirement
that quadrature points lie strictly within the integration domain. This constraint is difficult to
enforce for arbitrary three-dimensional geometries. We propose a new procedure that converts the
integration problem into an interpolation problem, thereby relaxing the geometric constraint and
enabling efficient evaluation over complex grain shapes. Consider a normalized resolved shear stress,

Tr(fgéﬂ’s, that is given by

(B:p),s
o = T € L] (22)
Tmax

where i’ = 7825 and p* = argmaxp(|7(ﬁ’p)’s|). Without loss of generality, we assume hardening
has only the average mode for simplicity. The integral for computing the reduced plastic slip rates
(Eq. [19)) is expressed as follows

(B).5 1"

g (B),s max norm

10
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where

5 N )i

q=1

](,871))(,((6)78) — N (Bp) (y) [

norm
oM®B)

1/n
] sign(d _ NOD(y)rBa)dy  (24)

q=1

and 125 indicates normalized resolved shear stresses over the modes combined into an array
form. For given coefficients Tr(ﬁ)r}fl, the integral 1(%») (Tl(ﬁ)nfl) can be computed using, for example,
composite integration rule over a background grid. This allows us to use interpolation methods
over the [—1,1]¥» space without dealing with the spatial constraints over subdomains within the
microstructure. Depending on the number of modes N,,, this space could be classified as hyper-
dimensional. Various methods can be used to interpolate functions in these spaces including sparse
grids [54] or high-dimensional model representation (HDMR) methods [55]. In the present work, we
employ neural-network—based surrogates due to their flexibility in approximating nonlinear mappings

as detailed in Section 3.0l

2.5 Influence function problems

Before proceeding to the complete algorithm, the method of computing influence functions, H and
h(@P) appearing in Eqgs. [13| and [14] must be specified. Substituting the stress expression from Eq.

into the microscale equilibrium condition V - & = 0 over the microstructural volume yields

{Lijkl(y) [Titmn + Hkymn (Y) ] Emnt

Nph Nm (25>
+ Z Lijir(y) [ N“(y) Lyimn + hgzg)mn(y)] uﬁfb‘f)} T 0.
a=1 g=1 ’

Considering the microscale equilibrium (Eq. defined in the absence of any inelastic strain leads

to following influence function problems (IFPs)

[Lijia(y) [Lotmn + H(k,l)mn(y)HJ =0 (26)

which are identical to those encountered in the classical linear elastic homogenization theory. The
phase IFPs can be formulated by considering the case where only the inelastic strain coefficient

corresponding to mode p in part « is nonzero, yielding

Liua®) [~ NP W) i + W35, 0)]] =00 (27)

7

11
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Periodic boundary conditions are applied on the edges and faces of the microstructural volume, while
homogeneous Dirichlet boundary conditions are imposed at the vertices for both Egs. [26] and It
is noteworthy that the phase IFPs are different from the classical EHM due to nonuniformity of
the basis functions. Although the IFPs remain linear elastic boundary value problems, the number
of required solves increases to Ny, X Ny, compared to only Ny, in the original ROM formulation.
Previous studies have employed various numerical techniques to solve these IFPs, including the finite
element method |28, 56, 57, 58|, the generalized finite element method [59|, and the reduced spectral
method [60].

To illustrate the physical meaning of the higher order basis functions and their effect on the

influence functions, deformation of a representative grain « is shown in Figure 2] computed from

the phase influence function problem given in Eq. 27 The Figures [J(b)-(e) show the influence
functions A%V, R L8 Cand h{®Y | respectively. The first influence functlon corresponds to

the uniform applied strain mode, which manifests as a uniform expansion (tension) of all finite
elements within the grain domain along direction 1. Figure [2|c) shows the effect of the higher-order
mode N(®?) characterized by a transition from compression to tension along direction 1. Similarly,
Figures (d) and (e) show the actions of modes N@3) and N(®4 which correspond to transitions
from compression to tension along directions 2 and 3, respectively. These higher-order modes enable
the ROM to capture grain-scale strain gradients and nonuniform deformation patterns that cannot

be represented by the uniform mode alone.

2.6 Algorithm

The computational procedure consists of two stages: an offline precomputation stage and an online
stage in which the reduced-order system is evolved. The offline stage of the model consists of solving
the linear elastic problems shown in Egs. and [27| using the finite element method. Once the
influence functions are obtained, the interaction tensors, P¥P? and the localization tensors, A#P),
are precomputed by evaluating Egs. [13 and using numerical integration.

The online stage involves evolving the microstructural state using the reduced-order system
summarized in Box [l The online stage of the ROM takes macroscale strain increment, A€, together
with the state variables from the previous step, and computes the stress coefficients, o®?), and
hardening coefficients, g"®?)*. The system is solved using a staggered scheme in which the stresses
are obtained via a Newton-Raphson iteration and the hardening variables are updated explicitly,
with the two updates iterated until convergence is reached. Newton—Raphson convergence was
enforced when “¢(5’p)|| < 107'° where ¢®*? is the residual for grain § and mode s, unless

otherwise stated. State-variable convergence was enforced when Hfﬁla Bp) — % g B) H L, < 107°

12
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Figure 2: Magnitude of deformation of (a) a single grain within a 10-grain SVE under the application
of (b) average mode, N@b(y), (c) first mode, N2 (y), (d) second mode, N3 (y), and (e) third
mode, N4 (y). The colorbars indicate the deforgnation magnitude.



Reduced order system of equations:

M) sBp) _ 6P = z 4 Za Nm P(Ba pq)Mggnq) M’(j P)

klig~ i3 klmn klmn

Flow rule: u(ﬁ’p) = Zi\gsl fy(ﬁ,p),sZZ(jﬁ),s

FBs 1
7 (@) q sign(r?(y)) dy

Slip rate: 7P =4 [J . NP (y) {W

;y(ﬂﬁl)wl

Hardening rule : ¢ = h, [M} ZNSS

gsa—4go r=1

Schmid’s law : 75 (y) = S0 NG9 (y)o 70 77

Box I : Microscale problem for higher order EHM

Given: Macroscopic strain increment A€, the state variables ;0#?) ;¢(%P)5 at increment [.

01410
l+1_ at increment [ + 1.

1+1€

Find: Macroscopic stress, ;,10, and macroscopic tangent moduli,

1. Initialize k < 0, fﬂa'(ﬁ’p) 0P and fﬂg(ﬁ’p)’s < g\Be)s,

2. Solve for ffllo'(ﬁ’p) using Egs. |28 and together with their derivatives in Egs. 29| and
by Newton-Raphson iterations.

3. Update fj:ll g#P)5 by explicitly integrating the hardening rule (Eq. |1

4. Check for convergence of fjlla'(ﬁ’p) and fjll gBP)s,

If not converged, set k < k + 1 and return to Step 2.

01T
17 , using Eq. .
al+1€

6. Compute the macroscopic stress by averaging ;.10 = Z@ SR GRS

5. Compute the macroscopic tangent moduli,

Box IT : Algorithm for stress update

14
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and Hfjll g fﬂ g(ﬁ’p)’sH Ly < 107°, unless otherwise stated. The Newton—Raphson procedure
requires evaluating the residual and Jacobian associated with the reduced microscale evolution
equations. The residual follows from applying a backward-Euler time discretization to the time

derivatives in Eqs. [12] and For grain 8 and mode p, the residual is given by

ph Nrn
ﬁ7 5 Ba’ a, * 57
¢§g "= Mz(]k)lalgzl P zgk:l B — Z Z Pk . /ﬁ/(cz Uy /%(j ¢ (28)
a=1 g=1

where all quantities are evaluated at the next increment, [ + 1. The Jacobian with respect to the

reduced stresses is derived as

B,p) (n,p)
¢( of ;!
(Bn) 5(pt) Bn,pq) :ukl (Bn) THij
57 At5 oM~ ZPZM PR +o PR (29)
(n:p)

where 60®" =1 if 3 = n and zero otherwise. The derivative is obtained from

aﬂg%p) aﬁ/(n’p)ﬁ (n),s
) Z o Zis (30)
&Imn s aamn

where the slip-rate derivative is

oymps 1 1Y al
i = 10 s NOP) () N (4)
Oomn, noLgv em

1/n—1
v ] dy Ze.  (31)

The integral on the right hand side is evaluated on the background finite element mesh when the
full model (non-surrogate) is used. Alternatively, when using the surrogate representation of the

integral, the slip-rate derivative becomes

 (n,p),5 1/n
oy :7[ 1 ] |7 (8| (1/n=1) 5

ool (nt g(n),s max
, (n),s N , (n),s
[1 [0 (s )50 w -3 W%% 50| zme  (32)
n T T
norm q:l norm

where §#) = 1 if t = ¢ (i.e., if mode t corresponds to the largest absolute resolved shear stress
coefficient) and §® = 0 otherwise. The derivative 9I%) (T orm) / O can be derived analytically

or computed using numerical differentiation methods. For completeness, the macroscale Jacobian
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can be obtained by solving the following system of equations

N . (mb) - (1,p) (m,9)
1 0 of;! do 1
(Bn) 5pa) pyB) (Bnpt) OHmn_ | o(8n) ZFig s~ A6
At o 0 ijrs ; szmn 80_7(“18741) +9 80'7(2’(1) 8gkl At Aijkl : (33>

Once the the system is solved for 9o (*?)/9€, the macroscale tangent modulus can be assembled
Jdo N, doB1)

the updated grain-averaged stress coefficients across all grains. The computational algorithm is

and the updated macroscopic stress is obtained by volume-averaging

summarized in Box , where ¢® denotes volume fraction of grain 3. The algorithm was implemented
in Abaqus, and surrogate computations were executed using CalculiX [61], which provided a
convenient environment for the required library interfaces.

The total number of stress degrees of freedom in the Step 2 is equal to Ny, X Nph X Nypoigt, Which
makes the online stage computationally more expensive than the classical EHM. In the standard
EHM formulation, this number reduces to N,i X Nyoige by setting N, = 1. In practice, we observed
that the repeated integration of Eq. [19 during each iteration dominates the total computational cost.
This is primarily due to the requirement for a refined integration mesh to accurately resolve the high
nonlinearity introduced by the large exponent 1/n typically used in crystal plasticity flow rules.

The implementation described above establishes the complete computational framework for
the proposed reduced-order model. To assess its accuracy and efficiency, a series of numerical
experiments were conducted on representative polycrystalline aggregates subjected to various loading
conditions. These simulations aim to evaluate the model’s ability to reproduce microscale fields,
capture intergranular heterogeneity, and predict the macroscopic response in comparison with

full-field crystal plasticity finite element simulations.

3 Numerical Experiments

The capabilities of the higher order EHM (HEHM) model are assessed by comparing it to the original
EHM model and crystal plasticity finite element (CPFE) simulations. The microstructures used in
the numerical analyses were generated using the Neper [62] software. Although Neper generates
microstructures with a voxel discretization, each voxel was subsequently and consistently subdivided
into exactly six tetrahedral elements as described in Ref. [58]. The crystal orientations were randomly
sampled from a uniform distribution and rescaled to the Bunge-Euler angle ranges [0, 360°] x [0,
180°] x [0, 360°]. Property contrast between the phases arises solely from differences in crystal
orientations within the polycrystal and the size of the microstructure is set to 10pum x 10pm x 10pum.

The grains were modeled as aluminum, with the elastic and viscoplastic properties summarized in
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Table 1: Elastic and viscoplastic properties of Aluminum.

Cia Cha Ca 9o GJsa ho n Yo
108.2 GPa 61.3 GPa 285 GPa 3.7 MPa 30.8 MPa 20.4 MPa 0.05 1s!

Table [I} For cubic elasticity, the single-crystal constants Cyq, C1o and Cyy are reported in Voigt (or
Kelvin) notation and are used to construct the fourth-order stiffness tensor, consistent with standard
crystal plasticity conventions (see Ref. [63] for example). Aluminum has a face-centered cubic (FCC)
structure with twelve slip systems.

For the reduced order model simulations, a single reduced integration linear hexahedral finite
element was employed to represent the macroscale domain. The macroscopic domain was subjected
to strain-controlled loading with boundary conditions described in the following subsections. At
the microscale, periodic boundary conditions were applied on the faces and edges of the polycrystal
following the approach described in Ref. [58]. Displacements at the corners of the volume were fixed
to eliminate rigid-body motion. For the HEHM simulations, the reduced order basis for inelastic
strain and stress fields was constructed from the linear polynomial basis (N, = 4) shown in Eq. .
For simplicity, piecewise-uniform basis functions were used for the slip system strength, (¥ (see
Eq. .

The reference CPFE simulations were performed directly on the microstructures using the
commercial finite element analysis software, Abaqus [63]. Periodic boundary conditions were
considered along the domain boundaries, and a macroscopic strain history was applied as loading
using procedures detailed in Ref. [64]. Imposition of the periodic boundary conditions brings the
conditions of the CPFE model closer to those considered in the computational homogenization
method, alleviating differences induced by boundary effects. Domain discretization in the CPFE
simulations was performed using hybrid tetrahedral elements (C3D4H) to mitigate volumetric locking
effects, while retaining computational efficiency compared to quadratic tetrahedral elements (C3D10

or C3D10HS) [65].

3.1 Discretization effects

The influence of microscale discretization on the performance of the EHM, HEHM, and CPFE
models was examined for a 10-grain polycrystal. Three (coarse, medium and fine) microscale meshes
were considered, containing 6,000, 48,000, and 384,000 tetrahedral elements as shown in Fig. [3] For
the EHM, the meshes are used only to solve the IFPs. Since EHM employs piecewise-uniform basis
functions, numerical integration is not needed to evaluate the constitutive response as discussed
in Section [2.3] In the HEHM models, the meshes along with first-order (C3D4) and quadratic
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Figure 3: Generated sample 10-grain microstructure with (a) 1,000, (b) 8,000, and (c) 64,000 voxels.

Table 2: Comparison of EHM, HEHM, and CPFE models in terms of stress at 5% strain, computa-
tional time, and speedup.

Method Elglgint elilgi ts 55?(?/?12) Error (%)  Time (s) Speedup
EHM - 6,000 13.1 21.2 18 207.1
EHM - 384,000 13.1 20.9 16 237.6

HEHM C3D4 6,000 12.7 17.7 o1 73.1

HEHM C3D4 48,000 12.1 11.7 121 30.8

HEHM C3D4 384,000 11.7 8.1 667 5.6

HEHM C3D10 6,000 11.5 6.4 45 82.8
CPFE C3D4H 6,000 11.0 2.0 206 18.1
CPFE C3D4H 48,000 10.8 - 233 -
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Figure 4: Discretization effects on the performance of EHM, HEHM and CPFE models.

(C3D10) finite elements were used to solve the IFPs, and for numerical integrations. The HEHM
simulations employ direct numerical integration of the constitutive model rather than the surrogate
based approach. Figure [l summarizes the overall stress-strain responses of the microstructure when
subjected to volume-preserving tensile loading. The response predicted by the EHM is insensitive to
mesh refinement as the influence functions are computed with sufficient accuracy using the coarse
mesh. In contrast, the HEHM predictions (dashed lines) progressively converge toward the CPFE
solutions as the integration grid is refined and higher-order elements (e.g., C3D10) are employed.
Meanwhile, the CPFE results obtained using the 6k and 48k meshes (gray and blue markers) exhibit
strong agreement, confirming mesh convergence of the reference model.

A quantitative comparison of peak stress error and computational speedup is provided in Table [2]
The reported speedup values are computed relative to the CPFE 48k simulation, which was performed
in parallel using 16 cores, whereas the rest of the simulations were executed using a single core. The
reference CPFE simulation was executed in parallel due to its high computational cost and because
direct numerical simulations are typically parallelized, whereas the ROM-based simulations were
run serially since the reduced system is small and computationally efficient. The speedup values
reported herein are computed by normalizing the ROM wall-clock times to a 16-core equivalent
assuming ideal linear scaling, and they should therefore be interpreted as implementation-dependent
estimates that may be slightly reduced in practice if parallel efficiency is not perfectly linear. The

consistent and monotonic improvement of the HEHM simulations using the C3D4 mesh points to the
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Figure 5: Relative error in the stress (o17) at onset of plasticity and end of simulation for various
number of modes used in the ROM.

importance of the integration accuracy on the overall accuracy of the ROM predictions. However,
this comes with a substantial increase in the computational cost when direct numerical integration
is employed. Among the tested configurations, the HEHM model with the 6k C3D10 mesh (red
dashed line) achieves the most favorable balance between accuracy and computational cost. These
results clearly demonstrate that HEHM can systematically reduce the stiffness over-prediction of the
classical EHM while maintaining high efficiency. Based on this assessment, the quadratic-element
HEHM configuration with approximately 6k elements, corresponding to roughly 24k numerical
integration points, is adopted for the subsequent numerical studies.

To examine the effect of increasing the number of modes on the ROM performance, we performed
a brief sensitivity study in which the number of modes used in the reduced basis was varied while
keeping all other settings fixed. To isolate the effect of basis enrichment on the stress response, the
study was conducted without hardening so that additional modal enrichment of hardening-related
internal variables is avoided. Figure [5] reports the relative error in oy, at the onset of plasticity
(e=0.05%) and at the end of loading (e=5%) for the classical EHM and several HEHM configurations
with different mode counts. “HEHM 4 modes” employs a 3D linear polynomial basis (constant plus
x, y, and z), while “HEHM 10 modes” employs a full 3D quadratic polynomial basis (constant,
linear terms, and all quadratic terms). The intermediate cases use seven modes constructed from

selected quadratic terms: “HEHM 7 modes (pure)” includes the pure quadratic components %, 32,
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and 2%, whereas “HEHM 7 modes (mixed)” includes the mixed quadratic components xy, 3z, and
zzx. Overall, HEHM reduces the stress error compared to EHM at both strain levels, particularly
near the onset of plasticity. At the same time, the error does not decrease monotonically with mode
count at 5% strain, indicating that the effect of adding higher-order modes can be more intricate
than a strictly monotonic improvement across all outputs, and motivating the use of a moderate

mode count as a practical choice to balance between accuracy and efficiency.

3.2  Performance study over statistical volume elements (SVEs)

The mechanical response of polycrystalline microstructures varies significantly depending on the
grain size distribution, texture, among other statistical morphology parameters. To capture these
effects on model performance, we have generated 81 ten-grain statistical volume elements (SVEs)
and collectively analyzed the response of approximately 810 grains using EHM, HEHM and CPFE.
The microstructures were generated using the grain growth option provided in Neper which results
in varying grain shapes and sizes within the SVEs. Grain sizes, defined as equivalent diameter [62],
were sampled from a lognormal distribution with mean and standard deviation of 1 ym and 0.35
pm, respectively. Grain sphericity [62] was sampled from a lognormal distribution with mean and
standard deviation of 0.145 and 0.03, respectively. Representative SVEs are shown in Figure @(afc).

Each SVE was subjected to a strain history corresponding to 5% total strain under volume-
preserving uniaxial tension, applied at the rate of 0.05/s. Volume preservation was enforced by
prescribing the lateral strain components to satisfy €99 = £33 = —¢11/2, thereby maintaining zero
macroscopic volumetric strain throughout the loading process. The stress—strain responses (&1 vs.
g11) are plotted in Figure . In Figure (a), solid lines correspond to the mean response the SVE
ensemble predicted by the EHM, HEHM and CPFE simulations, while the shaded regions indicate
20 confidence intervals, highlighting the uncertainty in the individual SVE within the ensemble. In
addition, the dashed and dotted curves explicitly show the corresponding i + 20 bounds to improve
readability when the intervals overlap. The variation from the mean prior to the elastic limit is
small, whereas there is a substantial variation after the onset of plastic deformations. The large
variation in the elasto-plastic behavior is largely due to the relatively small size of the individual
SVEs and relatively high variability in grain morphologies. At 5% strain, the relative errors in
the mean stresses computed with EHM and HEHM (compared to CPFE) are 11.81% and 5.39%,
respectively. The nearly two-fold reduction in error underscores the improvement achieved by the
HEHM. As seen in Figure [7(b), the HEHM model improves predictions starting from the onset of
plasticity and throughout the loading history.

Grain-averaged microscale von-Mises stresses were computed for all grains in all SVEs and are
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Figure 6: Generated sample 10-grain SVEs geometries.
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Figure 7: (a) Means and 20 confidence intervals for the stress-strain responses of the SVE ensemble,
and (b) stress-strain responses of three distinct SVEs from the ensemble. In (b), colors indicate

results from the same SVE within the ensemble.
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Table 3: Morphological and statistical parameters used to generate SVEs.

Grain Size (pum Grain Sphericit Aspect
Morphology Mean Standard(l(flev)iation Mean Standard degiation Ratio
Equiaxed 1 0.05 0.145 0.03 (1,1,1)
Elongated 1 0.05 0.145 0.03 (2,1,1)
Low Sphericity 1 0.35 0.3 0.03 (1,1,1)

plotted as a histogram in Figure [§(a). Stress distribution for the EHM model has two peaks at about
16 MPa and 24 MPa. By contrast, stress distributions from HEHM model resembles a unimodal,
near-normal distribution similar to the CPFE results. Moreover, the HEHM distribution shows a
reduced frequency at the higher stress range compared to the EHM model. Normal distributions were
subsequently fitted to the datasets, as shown in Figure (b)7 yielding mean von Mises stresses of 19.7
MPa, 18.6 MPa, and 17.4 MPa for the EHM, HEHM, and CPFE models, respectively. The reduction
in the mean stress quantitatively confirms the enhanced predictive capability of the HEHM. Finally,
Figure (c) plots the relative error between HEHM and CPFE grain-averaged von Mises stresses as a
function of normalized grain size. Although grain size is not the sole parameter governing the error,

a clear trend of decreasing relative error with increasing normalized grain size can be observed.

3.3 Influence of grain morphology

We further examined the influence of grain morphology by generating ensembles of five 30-grain
SVEs. Three cases were considered: (1) equiaxed grains, (2) elongated grains, and (3) low-sphericity
grains. The parameters for grain size and grain sphericity (sampled from lognormal distributions) as
well as grain aspect ratio used in the three cases are shown in Table [3] The aspect ratio parameter,
describing the relative grain dimensions along the 1, 2, and 3 directions, was employed to generate
elongated grain morphologies. Figure [9] shows sample morphologies of the SVE ensembles for the
three cases considered in this study. In case (1), the SVEs primarily consist of equiaxed grains
(Figure [9a)), whereas in case (2), the grain are equiaxed in 2-3 plane, but are elongated along the
1-direction (Figure [9(b)). The grains in case (3) demonstrate lower sphericity (Figure[Jfc)). The
histogram of grain shapes in Figure [J[(d) shows that SVEs with equiaxed and elongated morphologies
have much narrower size distributions compared to those produced using the grain growth model
used to generate the 10-grain SVEs. The 10-grain SVEs and those with lower sphericity exhibit
considerably broader size distributions.

The mean stress-strain behavior as well as the variability observed under volume-preserving
tension loading for the three cases are reported in Figure [I0] Comparing the CPFE simulations of

the ensembles for the three cases, the mean stress-strain behavior is not significantly affected by the
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Figure 8: (a) Histograms of microscale grain-averaged von Mises stresses computed from EHM,
HEHM and CPFE models. (b) Normal distributions fitted to the corresponding histograms of
grain-averaged von Mises stresses predicted by EHM, HEHM, and CPFE. (c) Relative error between
HEHM and CPFE grain-averaged von Mises stresses against normalized grain size.
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microstructure morphology. In contrast, the variability in case (3) is noticeably higher compared
to the equiaxed and elongated microstructures. This is expected due to the higher variability of
grain shape and size in the low sphericity microstructures. The microstructural morphologies do
have a significant affect on the performance of the ROMs. The relative errors in the mean stress at
5% strain are 13.68%, 12.39%, and 13.56% for EHM, and 11.85%, 9.97%, and 8.94% for HEHM,
for equiaxed, elongated, and lower sphericity SVE ensembles, respectively. The relative error of
the classical EHM model does not change as a function of morphology, but there is an observable
improvement in the performance of HEHM for case of (3), compared to cases of (1) and (2).

The microscale stress distributions are shown in Figure for a 10-grain polycrystal and in
Figure |12 for a 30-grain equiaxed polycrystal. In the 10-grain case, the HEHM solution exhibits
larger stress gradients compared to EHM, while for the 30-grain equiaxed polycrystal, the gradients
in the HEHM fields are less pronounced. Smaller gradients correspond to lower higher order terms in
the field expansions, which may explain the reduced improvement provided by HEHM for equiaxed
microstructures.

This observation aligns with intuition from Eshelby’s inclusion problem: for nearly spherical
inclusions (a subset of ellipsoidal morphologies), the internal fields tend to be more uniform, enabling
the original EHM to provide relatively accurate approximations. Overall, the results indicate that
grain morphology plays a critical role in the relative performance of HEHM compared to EHM and

CPFE. Thus, HEHM may be most beneficial for microstructures with highly irregular morphologies.

3.4 Influence of complex loading conditions

The performance of the HEHM model was further evaluated under several additional loading
conditions to assess its generality and robustness. Figure presents the stress—strain response of
a 10-grain polycrystal subjected to fully reversed cyclic loading in 1 direction with a stress ratio of
R = —1. The loading was prescribed as a strain history under a volume-preserving constraint to
minimize pressure effects, which would otherwise lead to unrealistically large stresses. The relative
errors in peak stress are 18.3% and 4.3% for EHM and HEHM, respectively. The HEHM accurately
reproduces the cyclic behavior, exhibiting significantly smaller deviations from the CPFE results
compared to the classical EHM.

To examine the rate sensitivity, simulations were conducted at strain rates of 5 s7!, 5x1072 57!,
and 5x107* 57!, as shown in Figure [13b] Similar to previous sections, volume-preserving tensile
loading was considered. The relative errors in peak stress are in the range of ~16% for EHM

and ~6% for HEHM. The HEHM consistently delivers improved predictions across all strain rates,

demonstrating its robustness with respect to loading rate variations.
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Figure 9: Sample 30-grain polycrystal with (a) equiaxed, (b) elongated and (c) low sphericity grain
morphology. (d) Histogram of grain sizes for grain-growth (10-grain SVEs), equiaxed, elongated,
and lower sphericity morphologies.
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Table 4: Strain history applied in the numerical experiment.

Step g €22 €33 €12 €93

€13

1 0.025 0.025 -0.06 O 0 0
0
0

2 0025 0.025 -005 O 0
3 0.025 0.025 -0.05 0 0.05

The model’s capability under simple shear was also assessed, with the corresponding results
displayed in Figure [13c, The improvement achieved by HEHM is comparable to the previous test
cases, with errors in peak shear stress of 8.6% and 2.2% for EHM and HEHM, respectively.

Finally, a complex, multiaxial strain history (summarized in Table , consisting of biaxial,
volume-preserving tension followed by relaxation and subsequent unidirectional shear, was applied
in both ROM and CPFE simulations. The resulting von Mises stress—strain responses are shown
in Figure [[3d. The HEHM demonstrates notably higher accuracy under shear and significant
improvement throughout the full strain history, with errors in peak shear stress of 13.5% and 7.3%
for EHM and HEHM, respectively.

Overall, these results confirm that the proposed HEHM framework maintains high accuracy
across a broad range of loading paths and strain rates, highlighting its potential as a reliable and

general reduced-order model for nonlinear polycrystal plasticity simulations.

3.5 Surrogate model experiments

This section evaluates the efficiency gains achieved by replacing the direct numerical integration
of the constitutive model with a surrogate approximation, while ensuring that accuracy remains

comparable to the fully integrated solution.

3.5.1 Architecture selection

To construct the surrogate function I(3») (’tl(ﬁlm) introduced earlier, several neural network archi-

tectures were tested, as summarized in Table [5] Three representative cases were considered. The
first architecture consisted of a three-layer fully connected network with eight neurons per layer and
ReLU activation function. The second architecture used the same layout but replaced ReLU with
the ELU activation function, which offers improved smoothness and continuity. The third case was

a single-layer perceptron with forty neurons and an activation function defined as

f(z) = |a]"" sign(z) (34)
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Figure 13: Stress-strain response of a 10-grain polycrystal under (a) cyclical loading, (b) varying
strain rates, (c¢) unidirectional shear, and (d) varying strain history.
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Table 5: Loss as a function of the architecture for a single grain.

Case Activation Layers Neurons RMSE

1 RELU 3 8 1.52 x 1072
2 ELU 3 8 3.23 x 107*
3 Flow Rule 1 40 3.41 x 107°

chosen to mimic the nonlinearity present in the flow rule itself. The biases were set to zero to
make sure that integral evaluates to zero at vanishing inputs (i.e., zero slip rate at zero resolved
shear stresses). All architectures were designed to contain approximately two hundred trainable
parameters so that comparisons would primarily reflect differences in the activation functions rather
than differences in model capacity.

Training data was generated by sampling the normalized resolved shear stresses, rrﬂfr’?ﬁ’s, for one
representative grain and every mode of the reduced basis. Since after normalization, one of the
normalized resolved shear stresses is equal to unity, for every mode p, we fix the mode p at unity
and uniformly sample the other modes in the space [—1, 1]Vmedes™! with 21 points. The networks
were trained by initializing with the Nelder-Mead algorithm and refining using BFGS algorithm

from the SciPy package [66]. The exact form of the loss function is given by

[

(Bp) —
E - 7(61p)7max

(35)

),max . . .
is a normalization parameter

where I(®P)% is the integral value for input data point 4, the Y(B’p
indicating maximum value of the observed integral. Overline indicates true value of the integral
computed from the underlying finite element mesh. Training was performed using a plastic rate
sensitivity corresponding to a flow-rule exponent of approximately nine.

The root-mean-square errors (RMSE) between the surrogate predictions and the exact integrals
are reported in Table[5] The ReLU-based model exhibits the largest error, likely because the integrand
is highly nonlinear and contains sharp transitions that ReLLU cannot approximate smoothly. The
ELU architecture provides a substantial improvement, indicating that increased smoothness in
the activation function is beneficial. The best performance is obtained with the flow-rule-inspired
activation, which reduces the RMSE by roughly an order of magnitude relative to the ELU network.
These results demonstrate that incorporating physics-based nonlinearities directly into the activation

function yields a significantly more accurate surrogate approximation for the reduced integral. The

flow-rule inspired activation function is used for the rest of numerical examples below.

32



528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

Table 6: RMSE between surrogate and reference integral outputs for a single grain as a function of
the exponent.

Exponent RMSE
5 6.18 x 1076
9 3.41 x 1075
20 1.97 x 1073

3.5.2 Effect of the rate parameter

Building on the architectural comparisons presented in the previous subsection, we next examine how
the intrinsic nonlinearity of the flow rule influences surrogate accuracy. The nonlinearity is governed
by the exponent in the viscoplastic flow rule, and this parameter directly controls the sharpness of
the integrand that the surrogate must approximate. To assess this effect, three surrogate models
were independently trained using exponents of 5, 9, and 20.

Using the same sampling procedure described in Section [3.5.1] the surrogate-based integral
was then evaluated for every mode of a single grain and compared with the corresponding value
obtained from direct numerical integration over the background mesh. The resulting RMSE values,
summarized in Table [0, reveal a clear trend: lower exponents produce excellent agreement with
the reference integrals, while higher exponents introduce significantly sharper nonlinearities that
degrade surrogate accuracy. These results highlight the importance of considering the exponent
when developing surrogate models for viscoplastic integration, as it fundamentally influences the

complexity of the approximation task.

3.5.3 Effect of the grain morphology

The surrogate models trained for a single grain were then used as initial guess and subsequently fine
tuned for all grains in a single 10-grain polycrystal. Using the same sampling procedure described in
Section [3.5.1] the surrogate-based integral was evaluated for every mode of every grain and compared
against the corresponding exact integral computed using the background mesh. A flow-rule exponent
of nine was used for this study.

The resulting comparison is shown in Figure Over the full domain of the outputs (|-1, 1]),
surrogate errors are visually negligible. A closer examination near the origin (-1 x 1074, 1 x 107])
reveals small but discernible discrepancies, consistent with the increased sensitivity of the integrand
in this region. The computed RMSE of 3.386 x 107° aligns with the error scale visible in the inset
plot. We further plot comparison between reference and surrogate integral output in Figure [I4b] The
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Figure 14: (a) Truth plot for all grains and modes with inset showing deviations in the proximity of
zero and (b) comparison of the reference and surrogate integral values as a function of the normalized
resolved shear stress for different exponents.

integral 1(®1 for a representative grain o was evaluated over the full range of 7(®!) € [—1, 1] while

@2) r(@3) and 7(@4) were fixed at 0.2. Results are shown for exponents

remaining components 7¢
of 5, 9, and 20. For the exponent of 5, the surrogate output is nearly indistinguishable from the
reference across the entire domain. For exponents of 9 and 20, small deviations become visible upon
magnification, with the exponent of 20 requiring less zoom to reveal the discrepancies. It is also
noteworthy that the surrogate predictions remain smooth, reflecting the smoothness of the activation
functions used in the neural network architecture.

Overall, these results show that the surrogate accurately captures the dominant nonlinear
structure of the integrand. Moreover, the surrogate performs consistently across all grains, indicating

that the model generalizes effectively across the variations in grain morphology present within the

polycrystal.

3.5.4 Accuracy and efficiency study

HEHM combined with surrogate integration model was evaluated for both accuracy and computa-
tional efficiency by subjecting a 10-grain polycrystal in tension in 1, 2, and 3 as well as loading it in
shear in 12, 23, and 31 directions.

Figure [I5] presents the macroscopic stress—strain responses obtained from the HEHM with

surrogate-based integration and compares them with the responses from the HEHM using full finite
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element integration. For the HEHM simulations with surrogate-based integration, the Newton—
Raphson residual tolerance was relaxed to 1072 and the state-variable convergence tolerance was
relaxed to 1073 to improve robustness. All simulations and surrogate training were performed
using a plastic rate sensitivity of n = 1/9 (corresponding to an exponent of approximately nine).
Across most loading cases, the surrogate-based HEHM reproduces the fully integrated HEHM
response with high fidelity. Only small deviations are observed for case of shear loading in the
31 direction. The offline cost of the HEHM with surrogate approach is comprised of integral
data generation and surrogate training. The integral data generation cost is negligible relative
to the influence-function solves that dominate the ROM offline stage. In the current prototype,
surrogate training is dominated by implementation overhead because the code is serial and not
performance-optimized, and it is therefore expected to decrease in an optimized implementation.
The associated computational times are reported in Table [7l The reference simulation reported in
Table [7] corresponds to the CPFE 6k setup used in Table [2| with the same element type and number
of elements. The Table [7| reference timing was obtained using 4 cores, a rate-sensitivity exponent
of 9 (instead of 20), and was run on an Intel(R) Core i7-4578U CPU @ 3.00GHz rather than an
Intel Xeon Gold compute node. Relative to the reference CPFE simulation, the HEHM with full
integration provides roughly a 7x speedup, the surrogate-enhanced HEHM achieves approximately
a 70x speedup, and the classical EHM attains nearly a 300x speedup. These results demonstrate
that the surrogate integration reduces the computational cost of the HEHM by about an order of
magnitude while preserving its accuracy across a broad range of loading conditions. This subsection
does not re-quantify HEHM accuracy versus CPFE because that comparison is already established
in the preceding three subsections, and instead it focuses on whether the surrogate preserves HEHM
accuracy while improving computational efficiency.

It is important to emphasize that the intent of this work is not to advocate for a specific
neural-network architecture, but rather to demonstrate a general methodology for constructing
surrogate integrators for ROMs with nonuniform basis functions. The architectures examined here
serve only as representative examples for evaluating the approach. As shown in Tables [5] and [6]
surrogate accuracy inevitably degrades as the flow-rule exponent increases, reflecting the sharper
nonlinearities the network must approximate. Consequently, alternative architectures, including
deeper networks, different activation functions, or other physics informed formulations, may be more
suitable depending on the material system and modeling requirements. The proposed framework is
therefore flexible, and the surrogate model may be tailored to specific application without loss of

generality.
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Table 7: Comparison of computational time and speedup for different methods, computed for the
full 5% strain loading under direction 1.

Method Time (s) Speedup Cores
CPFE 82.89 - 4
HEHM 50.18 6.6 1
HEHM Surrogate 4.78 69.4 1
EHM 0.98 338.0 1

4 Conclusion

This manuscript demonstrated the capabilities of the EHM framework when higher-order basis
functions are employed in the model order reduction. The general objective of incorporating the
specific type of higher order functions is to achieve consistent and non-trivial (across microstructures
and loading conditions) improvement of model accuracy, while retaining the primary function of the
ROM, i.e., reduced computational cost. We also presented a surrogate model for the integrals arising
from the weak enforcement of the constitutive equations. By introducing normalized coefficients,
this surrogate transforms the integration problem into an interpolation problem, achieving an order
of magnitude reduction in computational cost without any reduction in integration accuracy.

The performance of the model is demonstrated on low-phase contrast polycrystalline microstruc-
tures, accounting for stochastic variations in grain morphology and crystal orientations. The
higher-order model consistently exhibits softer mechanical behavior compared to the original EHM,
reducing the discrepancy with the reference CPFE simulations. However, the level of improvement
depends on grain size and morphology. More specifically, and rather intuitively, the level of im-
provement is high when the response fields are better approximated with the basis functions being
included in the ROM. While more complex basis functions, e.g., those generated by preliminary
nonlinear CPFE (training) simulations as typically used in NTFA models could yield better accuracy
when loading is similar to the training simulations, the proposed approach guarantees that the
prediction accuracy is no less than EHM regardless of loading, but could be improved substantially
from this baseline. While the presented results capture stochastic variations in grain morphology
and crystal orientations, the scope of this study is limited to low-phase-contrast polycrystalline
materials, and extension to higher phase-contrast systems remains a subject of future work.

The key advantage of the HEHM model lies in the enhanced reduced basis without requiring
nonlinear simulations during the offline stage, keeping offline costs relatively low. In the online
stage, most of the computational cost arises from integrating the constitutive law over a large set

of quadrature points. This cost is substantially mitigated by the surrogate model; however, the
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surrogate can degrade Newton—Raphson convergence for high plastic rate sensitivities.
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