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Abstract1

Reduced-order models (ROMs) are frequently employed within concurrent multiscale frame-2

works to enhance the efficiency of nonlinear simulations and to mitigate the substantial com-3

putational expense associated with direct nonlinear homogenization schemes. Among these,4

transformation field analysis (TFA)-based ROMs have gained particular prominence due to5

their reliance on linear elastic simulations for model construction and their characteristically low6

dimensionality. However, extensive studies have demonstrated that these models often exhibit7

an artificially stiff response when applied across a broad spectrum of materials. In the present8

study, a higher order eigenstrain homogenization scheme is presented to mitigate the overly stiff9

response predicted by these models. Another challenge with the incorporation of nonuniform or10

higher order basis within models based on TFA is the expensive integration of the constitutive11

response due to nonuniform fields. A novel approach to compute these integrals is established12

that reduces the number of integration parameters over complex three-dimensional domains13

without additional spatial constraints. It is demonstrated that the linear modes can soften the14

elasto-plastic response and that the proposed integration method achieves approximately an15

order-of-magnitude improvement in computational efficiency compared to brute-force integration16

over a background mesh.17
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1 Introduction20

Accurate modeling of the nonlinear mechanical behavior of structures made of advanced materials21

with complex microstructures such as metal alloys, composites, and architected materials requires22

the development and application of multiscale methods [1]. A variety of such methods are available23

(e.g., computational homogenization [2], variational multiscale enrichment [3], multiscale finite24

elements [4, 5]) to address specific classes of problems and material systems. For scale separable25

problems, a classical strategy is the computational homogenization (CH) method, which requires26

solving coupled nonlinear boundary value problems (BVPs) at both the macroscale and microscale27

using finite elements or other numerical techniques [6, 7, 8]. CH has been successfully applied to28

investigate various multiscale phenomena, such as the influence of microscale and mesoscale defects29

on the multiscale response of additively manufactured composites [9], the role of microstructural30

morphology in the response of heterogeneous interfaces [10], among many others.31

The computational cost of CH implementations is typically high and significant computational32

resources for simulating realistic-sized structures are required. This challenge has limited its broader33

adoption. To address this limitation, reduced order models (ROMs) are employed by approximating34

the microscale response without resorting to full-field methods such as the finite element method35

(FEM) or the spectral method. A variety of ROM approaches have been developed in the literature36

including transformation field analysis (TFA) [11, 12], nonuniform TFA (NTFA) [13, 14, 15, 16, 17]37

and its extensions [18, 19, 20], numerical potentials [21], self-consistent clustering analysis [22], eigen-38

deformation methods [23, 24, 25, 26], eigenstrain-based reduced order homogenization (EHM) [27,39

28, 29, 30], deep material network [31] and proper orthogonal decomposition (POD) [32, 33, 34], with40

continuing developments exploring hybrid physics-informed and machine learning frameworks [35,41

36].42

ROM frameworks generally consist of two distinct stages: (1) “offline” model construction43

(or training); and (2) “online” execution. During the offline stage (i.e., prior to the execution of44

the multiscale simulation), the ROM is constructed based on a pre-defined set of microstructure45

simulations. Model construction for some ROM approaches such as the NTFA, POD, and machine46

learning-based surrogate models involves conducting a comprehensive set of nonlinear and history-47

dependent microscale simulations subjected to a wide range of loading paths. In EHM, a predefined48

set of linear elastic simulations independent of the loading path is needed. During the online stage,49

the microscale BVP is replaced by the ROM, a nonlinear algebraic system of equations posed over a50

coarse approximation space spanned by a small number of basis functions. This substitution leads51

to significant computational efficiency, as the reduced system is of much lower dimension and can be52

efficiently coupled with the macroscopic solver.53
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While EHM and other TFA-based ROMs offer significant efficiency gains for nonlinear multiscale54

simulations, they can exhibit limitations in capturing inelastic responses for certain loading paths55

and microstructures. A common issue is an artificially stiff response compared to direct numerical56

simulations, a phenomenon reported in multiple prior studies [37, 28, 38]. The prediction error57

is generally more severe in high phase-contrast materials (e.g., carbon fiber reinforced polymer58

composites) than in lower phase-contrast materials such as polycrystalline metals. To address this59

shortcoming, several strategies have been explored, including ROM refinement based on phase60

subpartitioning [23, 39, 40, 22], online ROM reconstruction using instantaneous moduli [37, 30, 41],61

and the use of nonuniform basis functions [42, 14, 19, 18]. Incorporating the instantaneous moduli62

yields substantial improvement for high-phase-contrast microstructures but offers limited benefit63

in low-phase-contrast cases and requires online reconstruction, which is computationally expensive.64

A straightforward alternative is to subdivide each phase domain into smaller reduced-order parts,65

analogous to h-refinement in finite element analysis. However, meaningful accuracy gains generally66

require many subpartitions, even with advanced algorithms, as shown for both polycrystalline [25]67

and composite [43] microstructures. In contrast, the incorporation of nonuniform basis functions has68

demonstrated significant performance improvements, particularly when the basis functions are well69

chosen.70

A broad range of basis constructions has been explored for composite materials, including71

piecewise-uniform [11, 12], piecewise-polynomial [19], mixed discretizations [15], and globally nonuni-72

form bases [14]. Michel and Suquet [14] introduced the use of globally nonuniform basis functions in73

the NTFA framework, deriving them from nonlinear full-field microstructure simulations. Similar74

strategies were later explored by Fritzen et al. [18] and by Beel and Fish [44] who advocated using a75

small set of six unidirectional loading simulations for the construction of the reduced basis. These ap-76

proaches generally achieve high accuracy, particularly when the applied loading remains close to that77

used in constructing the basis functions. Sepe et al. [19] proposed analytical basis functions to avoid78

the cost of such a priori nonlinear simulations, demonstrating their effectiveness for two-dimensional79

elastoplastic composites. Covezzi et al. [15] developed a mixed discretization for two-dimensional80

elastoviscoplastic composites, employing divergence-free stress bases alongside piecewise-linear strain81

and inelastic-strain functions. An additional challenge associated with the use of nonuniform basis82

functions is integrating the nonlinear constitutive law efficiently [19]. This challenge has been tackled83

by using reduced version of the constitutive model [14], Gauss point clustering [45], evolving Gauss84

points [44], second order Taylor expansions [46], and empirical quadrature method [47].85

The focus of the present study is achieving consistent improvement in ROM accuracy compared to86

the classical EHM approach in the context of low-phase-contrast polycrystalline materials regardless87
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of loading and microstructural morphology. We employ polynomial-type higher-order basis functions88

to achieve this consistent accuracy improvement and accurately capture intragrain heterogeneity.89

First, a set of microscale equilibrium problems for higher-order basis functions is derived to describe90

the offline stage. For the online stage, reduced order versions of the constitutive equations are91

derived using variational principles which include a computationally intensive integration of the92

viscoplastic flow rule. We reformulate the integration problem and propose a machine-learning-based93

surrogate model that performs constitutive integration more efficiently. The primary contributions94

of this work are twofold: (i) the application of the ROM enhanced with higher-order basis functions95

to three-dimensional polycrystal plasticity problems, and (ii) the development of a novel surrogate96

approach to significantly reduce integration time.97

The remainder of this manuscript is organized as follows: The EHM methodology is briefly98

summarized and the mathematical formulation for the proposed higher order model is derived and99

discussed in Section 2. Starting with a brief reintroduction of the key equations from classical EHM,100

Section 2.1 presents the higher-order discretization. Sections 2.2 and 2.3 use this discretization to101

derive the reduced constitutive law and evolution equations. Section 2.4 introduces the surrogate102

framework, followed by the offline stage comprising the influence-function problems in Section 2.5.103

Section 2.6 concludes with the description of the ROM algorithm. Numerical experiments performed104

to assess the accuracy of the proposed method are discussed in Section 3. Conclusions are presented105

in Section 4.106

The following notation is used unless otherwise stated. Tensor fields are provided in Cartesian107

coordinates and are denoted as italic lightface letters (Aijkl or σij), in indicial notation, or in boldface108

italic, (A or σ), in tensor notation. Scalars are denoted by lightface letters, α without indices.109

Parentheses in the subscript indicate the symmetric part of the tensor. A comma in the indices110

indicates partial spatial derivative. The top right superscript is used as a descriptor. The bottom111

left subscript denotes time increment. Overbar indicates macroscopic quantity averaged over the112

microstructural domain while overhead dot indicates time derivative. Nph denotes number of grains113

in the polycrystal, Nm the number of modes per grain, and NVoigt the number of Voigt components114

(six in three-dimensional simulations).115

2 Higher order EHM (HEHM)116

Consider a macroscopic domain, Ω ⊂ R3, that is made of a periodic polycrystalline microstructural117

volume, Θ ⊂ R3. The material constituents that occupy the domain behave in an inelastic manner,118
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which is idealized using the small strain theory and additive decomposition of the total strain119

σij(x,y, t) = Lijkl(y) [εkl(x,y, t)− µkl(x,y, t)] (1)

where σ is the stress tensor, L the tensor of elastic moduli, ε the total strain, and µ the inelastic120

strain. x denotes the macroscopic position vector defined over Ω, y is the microscopic position121

vector defined over Θ, and t is the time coordinate. The strain field over the microstructural volume122

at an arbitrary position x of the macroscale structure is decomposed as123

εij(x,y, t) = εij(x, t) + ε̃ij(x,y, t) (2)

where ε is the macroscale strain tensor, and ε̃ is the zero-mean microscale strain perturbation over124

the microstructural volume. The strain perturbation field is then expanded as follows [28]125

ε̃ij(x,y, t) = H(i,j)mn(y)εmn(x, t) +

∫
Θ

h(i,j)mn(y, ŷ)µmn(x, ŷ, t)dŷ (3)

where H(y) and h(y, ŷ) are elastic and phase influence functions, respectively.126

2.1 Field-discretization127

The ansatz in Eq. 3 forms the foundation of the EHM model. In the classical EHM formulation [28],128

the spatial distribution of the inelastic strain and the stress fields over the microstructural volume is129

approximated as piecewise-uniform over prescribed subdomains of Θ. In this section, we propose130

an extension of this approximation by including a hierarchy of higher-order basis functions. The131

goal of this extension is to monotonically increase the accuracy of a ROM prepared by a given132

set of basis functions by including additional higher-order basis functions from the hierarchy. Let133

{Θ(α) ∈ Θ |α = 1, . . . , Nph} denote a partition of Θ. We proceed with the following discretization of134

the inelastic strain and stress fields135

µij(x,y, t) =

Nph∑
α=1

Nm∑
p=1

N (α,p)(y)µ
(α,p)
ij (x, t) (4)

σij(x,y, t) =

Nph∑
α=1

Nm∑
p=1

N (α,p)(y)σ
(α,p)
ij (x, t) (5)

where N (α,p) is a basis function associated with part α and mode p, and µ(α,p) and σ(α,p) are the136

corresponding eigenstrain and stress coefficients, respectively.137
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In the present study, polynomial basis functions are used following the ideas proposed in138

Ref. [19]. The basis functions are chosen such that they have compact support within their parts,139

i.e., N (α,p)(y = Θ ∩Θ(α)) = 0. This property of the basis functions enables partial localization of140

the constitutive equations; for instance, the Schmid tensor remains constant within a grain and141

does not require additional treatment. Furthermore, the basis functions are constructed to satisfy142

orthonormality condition given as143

∫
Θ(β)

N (β,p)(y)N (β,q)(y)dy =

0, p ̸= q,

1, p = q.
(6)

Orthonormalizing the basis functions beforehand simplifies the numerical implementation and144

improves conditioning of the reduced system as elaborated in Section 2.3.145

Construction of the orthonormal basis functions can be achieved by the Gram-Schmidt orthonor-146

malization procedure. For consistency with the classical EHM formulation, the first basis function147

is constrained to be constant within its corresponding part: Ñ (β,1) = 1. To generate higher-order148

basis functions based on polynomial expansions, we begin by selecting a set of linearly independent,149

non-orthogonal functions. For instance, the set of linear polynomials are150

Ñ (β,2) = y1, Ñ
(β,3) = y2, Ñ

(β,4) = y3; y ∈ Θ(β). (7)

The orthonormalized basis functions are then obtained recursively via the Gram–Schmidt process,151

with the first mode given by152

N (β,1)(y) =
Ñ (β,1)(y)√∫

Θ(β) Ñ (β,1)(y)Ñ (β,1)(y)dy
(8)

and the rest of the modes given by153

N̂ (β,p)(y) = Ñ (β,p)(y)−
p−1∑
q=1

(∫
Θ(β) Ñ

(β,p)(y)N (β,q)(y)dy∫
Θ(β) N (β,q)(y)N (β,q)(y)dy

)
N (β,q)(y) (9)

N (β,p)(y) =
N̂ (β,p)(y)√∫

Θ(β) N̂ (β,p)(y)N̂ (β,p)(y)dy
. (10)

This approach is conceptually analogous to p-refinement in finite element analysis, where the order154

of interpolation within each element is increased to more accurately capture field nonuniformities. As155

an illustrative example, the functions Ñ (β,1) = 1, Ñ (β,2) = y1, Ñ
(β,3) = y2, Ñ

(β,4) = y21 are plotted over156
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y1 coordinate
0.0 0.2 0.40.60.81.0

y2 coordinate 0.00.20.40.60.81.0

Basis function value

0.0
0.2
0.4
0.6
0.8
1.0

N(1) = 1
N(2) = y1

N(3) = y2

N(4) = y2
1

(a)

y1 coordinate
0.0 0.2 0.40.60.81.0

y2 coordinate 0.00.20.40.60.81.0

Basis function value 1

0

1

2

N(1) = 1
N(2) = 2 3(y1 1/2)

N(3) = 2 3(y2 1/2)
N(4) = 6 5(y2

1 y1 + 1/6)

(b)

Figure 1: (a) Initial (non-orthonormal) basis functions over a square domain [0, 1]2 in 2D and (b)
modified basis functions after orthonormalization.

the unit square domain [0, 1]2 in Figure 1 both before and after orthonormalization, to demonstrate157

the transformation.158

2.2 Reduced Constitutive Equations159

In this section, the constitutive relations are projected onto the reduced basis introduced earlier160

to obtain a finite-dimensional representation of the microscale response. The resulting reduced161

constitutive equations introduce the localization and interaction tensors that encode the mechanical162

interactions within and between parts, and these tensors form the central building blocks of the163

ROM used in the subsequent development. Combining the prescribed discretization in Eq. 4 with164

Eqs. 1, 2, and 3 yields the following expression for the stress165

σij(x,y, t) = Lijkl(y)
[
εkl(x, t) +H(k,l)mn(y) εmn(x, t)

+

Nph∑
α=1

Nm∑
p=1

(
h
(α,p)
(k,l)mn(y) −N (α,p)(y) Iklmn

)
µ(α,p)
mn (x, t)

]
(11)

where h(α,p)(y) =
∫
Θ
h(y, ŷ)N (α,p)(ŷ)dŷ is the integrated phase influence function. Substituting166

discretizations in Eq. 5 into Eq. 11, premultiplying with N (β,q), and integrating over Θ(β) we get167
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M
(β)
klijσ

(β,q)
ij = A

(β,q)
klmnεmn +

Nph∑
α=1

Nm∑
p=1

P
(βα,qp)
klmn µ(α,p)

mn − µ
(β,q)
kl (12)

where168

A
(β,q)
klmn =

∫
Θ(β)

N (β,q)(y)
[
Iklmn +H(k,l)mn(y)

]
dy (13)

P
(βα,qp)
klmn =

∫
Θ(β)

N (β,q)(y)h
(α,p)
(k,l)mn(y)dy (14)

in which M (β) = L(β)−1, L(β) is the part-averaged stiffness tensor, A(β,q) is the localization tensor,169

and P (βα,qp) the interaction tensor representing interactions between mode q in part β and mode p170

in part α.171

2.3 Reduced Evolution Equations172

Equation 12 establishes a linear mapping between the stress and inelastic strain coefficients, both of173

which are unknown. In order to close the system, the constitutive laws that govern the viscoelasto-174

plastic response of the crystals within the microstructure are invoked. Various forms of evolution175

equations have been previously proposed to describe the nonlinear behavior of polycrystalline176

materials (e.g., [48, 49, 50]). In this study, we adopt a dislocation-glide based phenomenological177

crystal plasticity model. The flow rule [51, 28] at a material point is given by178

µ̇ij =
Nss∑
s=1

γ̇0

[
|τ s|
gs

]1/n
sign(τ s)Zs

ij (15)

where Zs is the Schmid tensor associated with a slip system s, γ̇0 is the reference self-shearing rate,179

n is the rate sensitivity parameter, gs is the slip system strength, and τ s = σ : Zs is the resolved180

shear stress over the sth slip system, and Nss is the number of slip systems in the lattice. The181

hardening rule [52, 53] is given by182

ġs = h0

[
gsa − gs

gsa − g0

] Nss∑
r=1

|γ̇0

[
|τ r|
gr

]1/n
sign(τ r)| (16)

where h0 is reference self-hardening, g0 is the initial strength of a slip system, and gsa is saturation183

strength.184
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When the basis functions of the reduced order model are piecewise uniform (e.g., in the classical185

EHM approach), the flow and hardening rules can be directly expressed in terms of stress and186

inelastic strain coefficients, as well as similarly defined hardening variable coefficients [28]. Hence,187

the flow and hardening evolution rules for the reduced order coefficients are of the same form as188

the point-wise evolution equations defined in Eqs. 15 and 16. However, when basis functions are189

nonuniform, the constitutive laws cannot be satisfied exactly at every point within a grain, while also190

considering the reduced order approximations for the stress and inelastic strain fields (i.e., Eqs. 5191

and 4). This is because the nonlinearity in the constitutive laws result in a spatial distribution of192

the fields within the part that is inconsistent with the polynomial basis. The approach in this paper193

is to construct a reduced-flow rule where Eq. 15 is satisfied in a weak sense. Consider the following194

weak form of the flow rule195 ∫
Θ(β)

N (β,p)(y)

(
µ̇ij(y)−

Nss∑
s=1

γ̇0

[
|τ s(y)|
gs(y)

]1/n
sign(τ s(y))Zs

ij

)
dy = 0. (17)

Substituting the reduced order discretizations of the stress and inelastic strain fields result in the196

following expression197

µ̇
(β,p)
ij =

∑
s

γ̇(β,p),sZ
(β),s
ij (18)

where198

γ̇(β,p),s = γ̇0

∫
Θ(β)

N (β,p)(y)

[∣∣∑Nm
q=1N

(β,q)(y)τ (β,q),s
∣∣

gs(y)

]1/n
sign(

Nm∑
q=1

N (β,q)(y)τ (β,q),s) dy (19)

and γ̇(β,p),s is the reduced plastic slip rate for grain β, mode p and slip system s, and τ (β,p),s =199

σ(β,p) : Z(β),s is the resolved shear stress coefficient corresponding to mode p. The right-hand side of200

Eq. 19 could be numerically integrated for a given input of stress coefficients, σ(β,p), and hardening201

coefficients, g(β,p),s. Similar procedure is applied to construct a reduced hardening rule using Eq. 16.202

Orthonormalizing the basis functions in advance eliminates cross-mode coupling terms and203

significantly simplifies the inversion required on the left-hand sides of Eqs. 12 and 18. Without204

orthonormalization, the reduced evolution equations retain all cross terms, leading to coupled systems205

of the form206

Nm∑
q=1

C
(β,pq)
ijkl µ̇

(β,q)
kl =

Nss∑
s=1

γ̇(β,p),sZ
(β),s
ij (20)
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where207

C
(β,pq)
ijmn =

∫
Θ(β)

N (β,p)(y)IijmnN
(β,q)(y)dy (21)

denotes the inner product between modes p and q. In the absence of orthonormality, C(β,pq) is208

generally dense, and each mode is coupled to all others, increasing both algebraic complexity and209

computational cost.210

2.4 Surrogate integration211

Accurate integration of Eq. 18 has a substantive effect on the overall accuracy of the reduced212

model predictions as demonstrated in Section 3. However, direct numerical integration of this term213

accurately over a complex three-dimensional microstructure is computationally expensive. This214

difficulty is particularly pronounced when the exponent n is small, as the integrand becomes highly215

nonlinear and requires a dense set of quadrature points for accurate evaluation. As discussed in216

the literature review, several algorithms have been proposed to reduce the number of quadrature217

points within each grain. A key limitation of most existing approaches is the inherent requirement218

that quadrature points lie strictly within the integration domain. This constraint is difficult to219

enforce for arbitrary three-dimensional geometries. We propose a new procedure that converts the220

integration problem into an interpolation problem, thereby relaxing the geometric constraint and221

enabling efficient evaluation over complex grain shapes. Consider a normalized resolved shear stress,222

τ
(β,p),s
norm , that is given by223

τ (β,p),snorm =
τ (β,p),s

τ
(β),s
max

∈ [−1, 1] (22)

where τ
(β),s
max = τ (β,p

⋆),s and p⋆ = argmaxp(|τ (β,p),s|). Without loss of generality, we assume hardening224

has only the average mode for simplicity. The integral for computing the reduced plastic slip rates225

(Eq. 19) is expressed as follows226

γ̇(β,p),s = γ̇0

[
|τ (β),smax |
g(β),s

]1/n
sign(τ (β),smax )I(β,p)(τ(β),snorm) (23)
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where227

I(β,p)(τ(β),snorm) =

∫
Θ(β)

N (β,p)(y)

[∣∣∣∣∑
q=1

N (β,q)(y)τ (β,q),snorm

∣∣∣∣
]1/n

sign(
∑
q=1

N (β,q)(y)τ (β,q),snorm )dy (24)

and τ
(β),s
norm indicates normalized resolved shear stresses over the modes combined into an array228

form. For given coefficients τ
(β),s
norm, the integral I(β,p)(τ(β),snorm) can be computed using, for example,229

composite integration rule over a background grid. This allows us to use interpolation methods230

over the [−1, 1]Nm space without dealing with the spatial constraints over subdomains within the231

microstructure. Depending on the number of modes Nm, this space could be classified as hyper-232

dimensional. Various methods can be used to interpolate functions in these spaces including sparse233

grids [54] or high-dimensional model representation (HDMR) methods [55]. In the present work, we234

employ neural-network–based surrogates due to their flexibility in approximating nonlinear mappings235

as detailed in Section 3.5.236

2.5 Influence function problems237

Before proceeding to the complete algorithm, the method of computing influence functions, H and238

h(α,p), appearing in Eqs. 13 and 14 must be specified. Substituting the stress expression from Eq. 11239

into the microscale equilibrium condition ∇ · σ = 0 over the microstructural volume yields240 {
Lijkl(y)

[
Iklmn +H(k,l)mn(y)

]
εmn+

+

Nph∑
α=1

Nm∑
q=1

Lijkl(y)
[
−N (α,q)(y) Iklmn + h

(α,q)
(k,l)mn(y)

]
µ(α,q)
mn

}
,j
= 0.

(25)

Considering the microscale equilibrium (Eq. 25) defined in the absence of any inelastic strain leads241

to following influence function problems (IFPs)242

[
Lijkl(y)

[
Iklmn +H(k,l)mn(y)

]]
,j
= 0 (26)

which are identical to those encountered in the classical linear elastic homogenization theory. The243

phase IFPs can be formulated by considering the case where only the inelastic strain coefficient244

corresponding to mode p in part α is nonzero, yielding245 [
Lijkl(y)

[
−N (α,p)(y)Iklmn + h

(α,p)
(k,l)mn(y)

]]
,j
= 0. (27)
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Periodic boundary conditions are applied on the edges and faces of the microstructural volume, while246

homogeneous Dirichlet boundary conditions are imposed at the vertices for both Eqs. 26 and 27. It247

is noteworthy that the phase IFPs are different from the classical EHM due to nonuniformity of248

the basis functions. Although the IFPs remain linear elastic boundary value problems, the number249

of required solves increases to Nph ×Nm, compared to only Nph in the original ROM formulation.250

Previous studies have employed various numerical techniques to solve these IFPs, including the finite251

element method [28, 56, 57, 58], the generalized finite element method [59], and the reduced spectral252

method [60].253

To illustrate the physical meaning of the higher order basis functions and their effect on the254

influence functions, deformation of a representative grain α is shown in Figure 2 computed from255

the phase influence function problem given in Eq. 27. The Figures 2(b)-(e) show the influence256

functions h
(α,1)
i11 , h(α,2)

i11 , h(α,3)
i11 , and h

(α,4)
i11 , respectively. The first influence function corresponds to257

the uniform applied strain mode, which manifests as a uniform expansion (tension) of all finite258

elements within the grain domain along direction 1. Figure 2(c) shows the effect of the higher-order259

mode N (α,2), characterized by a transition from compression to tension along direction 1. Similarly,260

Figures 2(d) and (e) show the actions of modes N (α,3) and N (α,4), which correspond to transitions261

from compression to tension along directions 2 and 3, respectively. These higher-order modes enable262

the ROM to capture grain-scale strain gradients and nonuniform deformation patterns that cannot263

be represented by the uniform mode alone.264

2.6 Algorithm265

The computational procedure consists of two stages: an offline precomputation stage and an online266

stage in which the reduced-order system is evolved. The offline stage of the model consists of solving267

the linear elastic problems shown in Eqs. 26 and 27 using the finite element method. Once the268

influence functions are obtained, the interaction tensors, P (βα,pq), and the localization tensors, A(β,p),269

are precomputed by evaluating Eqs. 13 and 14 using numerical integration.270

The online stage involves evolving the microstructural state using the reduced-order system271

summarized in Box 1. The online stage of the ROM takes macroscale strain increment, ∆ε, together272

with the state variables from the previous step, and computes the stress coefficients, σ(β,p), and273

hardening coefficients, g(β,p),s. The system is solved using a staggered scheme in which the stresses274

are obtained via a Newton–Raphson iteration and the hardening variables are updated explicitly,275

with the two updates iterated until convergence is reached. Newton–Raphson convergence was276

enforced when
∥∥ϕ(β,p)

∥∥
∞ < 10−10 where ϕ(β,p) is the residual for grain β and mode s, unless277

otherwise stated. State-variable convergence was enforced when
∥∥k+1
l+1 σ

(β,p) − k
l+1σ

(β,p)
∥∥
L2

< 10−5
278

12



2

3

1

(a)

𝒉𝟏𝟏
𝜶,$

(b)

𝒉𝟏𝟏
𝜶,$

(c)

𝒉𝟏𝟏
𝜶,$

(d)

𝒉𝟏𝟏
𝜶,$

(e)

Figure 2: Magnitude of deformation of (a) a single grain within a 10-grain SVE under the application
of (b) average mode, N (α,1)(y), (c) first mode, N (α,2)(y), (d) second mode, N (α,3)(y), and (e) third
mode, N (α,4)(y). The colorbars indicate the deformation magnitude.13



Reduced order system of equations:

M
(β)
klijσ

(β,p)
ij = A

(β,p)
klmnεmn +

∑Nph
α=1

∑Nm
q=1 P

(βα,pq)
klmn µ

(α,q)
mn − µ

(β,p)
kl

Flow rule: µ̇
(β,p)
ij =

∑Nss
s=1 γ̇

(β,p),sZ
(β),s
ij

Slip rate: γ̇(β,p),s = γ̇0
∫
Θ(β) N

(β,p)(y)

[
|τ (β),s(y)|
g(β),s

]1/n
sign(τ (β),s(y)) dy

Hardening rule : ġ(β),s = h0

[
gsa−g(β),s

gsa−g0

]∑Nss
r=1 |γ̇(β,1),r|

Schmid’s law : τ (β),s(y) =
∑Nm

q=1N
(β,q)(y)σ

(β,q)
kl Z

(β),s
kl

Box I : Microscale problem for higher order EHM

Given: Macroscopic strain increment ∆ε, the state variables lσ
(β,p), lg

(β,p),s at increment l.

Find : Macroscopic stress, l+1σ, and macroscopic tangent moduli,
∂l+1σ

∂l+1ε
at increment l + 1.

1. Initialize k ← 0, k
l+1σ

(β,p) ← lσ
(β,p), and k

l+1g
(β,p),s ← lg

(β,p),s.

2. Solve for k+1
l+1 σ

(β,p) using Eqs. 28 and 18 together with their derivatives in Eqs. 29 and 30
by Newton-Raphson iterations.

3. Update k+1
l+1 g

(β,p),s by explicitly integrating the hardening rule (Eq. 16).

4. Check for convergence of k+1
l+1 σ

(β,p) and k+1
l+1 g

(β,p),s.

If not converged, set k ← k + 1 and return to Step 2.

5. Compute the macroscopic tangent moduli,
∂l+1σ

∂l+1ε
, using Eq. 33.

6. Compute the macroscopic stress by averaging l+1σ =
∑

β c
(β)

l+1σ
(β,1).

Box II : Algorithm for stress update

14



and
∥∥k+1
l+1 g

(β,p),s − k
l+1g

(β,p),s
∥∥
L2

< 10−5, unless otherwise stated. The Newton–Raphson procedure279

requires evaluating the residual and Jacobian associated with the reduced microscale evolution280

equations. The residual follows from applying a backward-Euler time discretization to the time281

derivatives in Eqs. 12 and 18. For grain β and mode p, the residual is given by282

ϕ
(β,p)
ij = M

(β)
ijklσ̇

(β,p)
kl − A

(β,p)
ijkl ε̇kl −

Nph∑
α=1

Nm∑
q=1

P
(βα,pq)
ijkl µ̇

(α,q)
kl + µ̇

(β,p)
ij (28)

where all quantities are evaluated at the next increment, l + 1. The Jacobian with respect to the283

reduced stresses is derived as284

∂ϕ
(β,p)
ij

∂σ
(η,t)
mn

=
1

∆t
δ(βη)δ(pt)M

(β)
ijmn −

Nm∑
q=1

P
(βη,pq)
ijkl

∂µ̇
(η,q)
kl

∂σ
(η,t)
mn

+ δ(βη)
∂µ̇

(η,p)
ij

∂σ
(η,t)
mn

(29)

where δ(βη) = 1 if β = η and zero otherwise. The derivative
∂µ̇(η,p)

∂σ(η,t)
is obtained from285

∂µ̇
(η,p)
ij

∂σ
(η,t)
mn

=
∑
s

∂γ̇(η,p),s

∂σ
(η,t)
mn

Z
(η),s
ij (30)

where the slip-rate derivative is286

∂γ̇(η,p),s

∂σ
(η,t)
mn

=
γ̇0

n

[
1

g(η),s

]1/n ∫
Θ(η)

N (η,p)(y)N (η,t)(y)

[∣∣∣∣ Nm∑
q=1

N (η,q)τ (η,q),s
∣∣∣∣
]1/n−1

dy Z(η),s
mn . (31)

The integral on the right hand side is evaluated on the background finite element mesh when the287

full model (non-surrogate) is used. Alternatively, when using the surrogate representation of the288

integral, the slip-rate derivative becomes289

∂γ̇(η,p),s

∂σ
(η,t)
mn

= γ̇0

[
1

g(η),s

]1/n
|τ (η),smax |(1/n−1)×[

1

n
I(η,p)(τ(η),snorm)δ

(t) +
∂I(η,p)(τ

(η),s
norm)

∂τ
(η,t),s
norm

−
Nm∑
q=1

∂I(η,p)(τ
(η),s
norm)

∂τ
(η,q),s
norm

τ (η,q),snorm δ(t)

]
Z(η),s

mn (32)

where δ(t) = 1 if t = t⋆ (i.e., if mode t corresponds to the largest absolute resolved shear stress290

coefficient) and δ(t) = 0 otherwise. The derivative ∂I(β,p)(τ
(β),s
norm)/∂τ

(β,q),s
norm can be derived analytically291

or computed using numerical differentiation methods. For completeness, the macroscale Jacobian292
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can be obtained by solving the following system of equations293

[
1

∆t
δ(βη)δ(pq)M

(β)
ijrs −

Nm∑
t=1

P
(βη,pt)
ijmn

∂µ̇
(η,t)
mn

∂σ
(η,q)
rs

+ δ(βη)
∂µ̇

(η,p)
ij

∂σ
(η,q)
rs

]
∂σ

(η,q)
rs

∂εkl
=

1

∆t
A

(β,p)
ijkl . (33)

Once the the system is solved for ∂σ(β,p)/∂ε, the macroscale tangent modulus can be assembled294

as
∂σ

∂ε
=
∑Nph

β=1 c
(β)∂σ

(β,1)

∂ε
and the updated macroscopic stress is obtained by volume-averaging295

the updated grain-averaged stress coefficients across all grains. The computational algorithm is296

summarized in Box 2, where c(β) denotes volume fraction of grain β. The algorithm was implemented297

in Abaqus, and surrogate computations were executed using CalculiX [61], which provided a298

convenient environment for the required library interfaces.299

The total number of stress degrees of freedom in the Step 2 is equal to Nm×Nph×NVoigt, which300

makes the online stage computationally more expensive than the classical EHM. In the standard301

EHM formulation, this number reduces to Nph ×NVoigt by setting Nm = 1. In practice, we observed302

that the repeated integration of Eq. 19 during each iteration dominates the total computational cost.303

This is primarily due to the requirement for a refined integration mesh to accurately resolve the high304

nonlinearity introduced by the large exponent 1/n typically used in crystal plasticity flow rules.305

The implementation described above establishes the complete computational framework for306

the proposed reduced-order model. To assess its accuracy and efficiency, a series of numerical307

experiments were conducted on representative polycrystalline aggregates subjected to various loading308

conditions. These simulations aim to evaluate the model’s ability to reproduce microscale fields,309

capture intergranular heterogeneity, and predict the macroscopic response in comparison with310

full-field crystal plasticity finite element simulations.311

3 Numerical Experiments312

The capabilities of the higher order EHM (HEHM) model are assessed by comparing it to the original313

EHM model and crystal plasticity finite element (CPFE) simulations. The microstructures used in314

the numerical analyses were generated using the Neper [62] software. Although Neper generates315

microstructures with a voxel discretization, each voxel was subsequently and consistently subdivided316

into exactly six tetrahedral elements as described in Ref. [58]. The crystal orientations were randomly317

sampled from a uniform distribution and rescaled to the Bunge-Euler angle ranges [0, 360°] × [0,318

180°] × [0, 360°]. Property contrast between the phases arises solely from differences in crystal319

orientations within the polycrystal and the size of the microstructure is set to 10µm× 10µm× 10µm.320

The grains were modeled as aluminum, with the elastic and viscoplastic properties summarized in321
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Table 1: Elastic and viscoplastic properties of Aluminum.

C11 C12 C44 g0 gsa h0 n γ̇0

108.2 GPa 61.3 GPa 28.5 GPa 3.7 MPa 30.8 MPa 20.4 MPa 0.05 1 s−1

Table 1. For cubic elasticity, the single-crystal constants C11, C12 and C44 are reported in Voigt (or322

Kelvin) notation and are used to construct the fourth-order stiffness tensor, consistent with standard323

crystal plasticity conventions (see Ref. [63] for example). Aluminum has a face-centered cubic (FCC)324

structure with twelve slip systems.325

For the reduced order model simulations, a single reduced integration linear hexahedral finite326

element was employed to represent the macroscale domain. The macroscopic domain was subjected327

to strain-controlled loading with boundary conditions described in the following subsections. At328

the microscale, periodic boundary conditions were applied on the faces and edges of the polycrystal329

following the approach described in Ref. [58]. Displacements at the corners of the volume were fixed330

to eliminate rigid-body motion. For the HEHM simulations, the reduced order basis for inelastic331

strain and stress fields was constructed from the linear polynomial basis (Nm = 4) shown in Eq. 7.332

For simplicity, piecewise-uniform basis functions were used for the slip system strength, g(β),s (see333

Eq. 16).334

The reference CPFE simulations were performed directly on the microstructures using the335

commercial finite element analysis software, Abaqus [63]. Periodic boundary conditions were336

considered along the domain boundaries, and a macroscopic strain history was applied as loading337

using procedures detailed in Ref. [64]. Imposition of the periodic boundary conditions brings the338

conditions of the CPFE model closer to those considered in the computational homogenization339

method, alleviating differences induced by boundary effects. Domain discretization in the CPFE340

simulations was performed using hybrid tetrahedral elements (C3D4H) to mitigate volumetric locking341

effects, while retaining computational efficiency compared to quadratic tetrahedral elements (C3D10342

or C3D10HS) [65].343

3.1 Discretization effects344

The influence of microscale discretization on the performance of the EHM, HEHM, and CPFE345

models was examined for a 10-grain polycrystal. Three (coarse, medium and fine) microscale meshes346

were considered, containing 6,000, 48,000, and 384,000 tetrahedral elements as shown in Fig. 3. For347

the EHM, the meshes are used only to solve the IFPs. Since EHM employs piecewise-uniform basis348

functions, numerical integration is not needed to evaluate the constitutive response as discussed349

in Section 2.3. In the HEHM models, the meshes along with first-order (C3D4) and quadratic350
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Figure 3: Generated sample 10-grain microstructure with (a) 1,000, (b) 8,000, and (c) 64,000 voxels.

Table 2: Comparison of EHM, HEHM, and CPFE models in terms of stress at 5% strain, computa-
tional time, and speedup.

Method Element
type

# of
elements

Stress @
5% (MPa) Error (%) Time (s) Speedup

EHM – 6,000 13.1 21.2 18 207.1
EHM – 384,000 13.1 20.9 16 237.6

HEHM C3D4 6,000 12.7 17.7 51 73.1
HEHM C3D4 48,000 12.1 11.7 121 30.8
HEHM C3D4 384,000 11.7 8.1 667 5.6
HEHM C3D10 6,000 11.5 6.4 45 82.8
CPFE C3D4H 6,000 11.0 2.0 206 18.1
CPFE C3D4H 48,000 10.8 – 233 –
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Figure 4: Discretization effects on the performance of EHM, HEHM and CPFE models.

(C3D10) finite elements were used to solve the IFPs, and for numerical integrations. The HEHM351

simulations employ direct numerical integration of the constitutive model rather than the surrogate352

based approach. Figure 4 summarizes the overall stress-strain responses of the microstructure when353

subjected to volume-preserving tensile loading. The response predicted by the EHM is insensitive to354

mesh refinement as the influence functions are computed with sufficient accuracy using the coarse355

mesh. In contrast, the HEHM predictions (dashed lines) progressively converge toward the CPFE356

solutions as the integration grid is refined and higher-order elements (e.g., C3D10) are employed.357

Meanwhile, the CPFE results obtained using the 6k and 48k meshes (gray and blue markers) exhibit358

strong agreement, confirming mesh convergence of the reference model.359

A quantitative comparison of peak stress error and computational speedup is provided in Table 2.360

The reported speedup values are computed relative to the CPFE 48k simulation, which was performed361

in parallel using 16 cores, whereas the rest of the simulations were executed using a single core. The362

reference CPFE simulation was executed in parallel due to its high computational cost and because363

direct numerical simulations are typically parallelized, whereas the ROM-based simulations were364

run serially since the reduced system is small and computationally efficient. The speedup values365

reported herein are computed by normalizing the ROM wall-clock times to a 16-core equivalent366

assuming ideal linear scaling, and they should therefore be interpreted as implementation-dependent367

estimates that may be slightly reduced in practice if parallel efficiency is not perfectly linear. The368

consistent and monotonic improvement of the HEHM simulations using the C3D4 mesh points to the369
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Figure 5: Relative error in the stress (σ11) at onset of plasticity and end of simulation for various
number of modes used in the ROM.

importance of the integration accuracy on the overall accuracy of the ROM predictions. However,370

this comes with a substantial increase in the computational cost when direct numerical integration371

is employed. Among the tested configurations, the HEHM model with the 6k C3D10 mesh (red372

dashed line) achieves the most favorable balance between accuracy and computational cost. These373

results clearly demonstrate that HEHM can systematically reduce the stiffness over-prediction of the374

classical EHM while maintaining high efficiency. Based on this assessment, the quadratic-element375

HEHM configuration with approximately 6k elements, corresponding to roughly 24k numerical376

integration points, is adopted for the subsequent numerical studies.377

To examine the effect of increasing the number of modes on the ROM performance, we performed378

a brief sensitivity study in which the number of modes used in the reduced basis was varied while379

keeping all other settings fixed. To isolate the effect of basis enrichment on the stress response, the380

study was conducted without hardening so that additional modal enrichment of hardening-related381

internal variables is avoided. Figure 5 reports the relative error in σ11 at the onset of plasticity382

(ε=0.05%) and at the end of loading (ε=5%) for the classical EHM and several HEHM configurations383

with different mode counts. “HEHM 4 modes” employs a 3D linear polynomial basis (constant plus384

x, y, and z), while “HEHM 10 modes” employs a full 3D quadratic polynomial basis (constant,385

linear terms, and all quadratic terms). The intermediate cases use seven modes constructed from386

selected quadratic terms: “HEHM 7 modes (pure)” includes the pure quadratic components x2, y2,387
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and z2, whereas “HEHM 7 modes (mixed)” includes the mixed quadratic components xy, yz, and388

zx. Overall, HEHM reduces the stress error compared to EHM at both strain levels, particularly389

near the onset of plasticity. At the same time, the error does not decrease monotonically with mode390

count at 5% strain, indicating that the effect of adding higher-order modes can be more intricate391

than a strictly monotonic improvement across all outputs, and motivating the use of a moderate392

mode count as a practical choice to balance between accuracy and efficiency.393

3.2 Performance study over statistical volume elements (SVEs)394

The mechanical response of polycrystalline microstructures varies significantly depending on the395

grain size distribution, texture, among other statistical morphology parameters. To capture these396

effects on model performance, we have generated 81 ten-grain statistical volume elements (SVEs)397

and collectively analyzed the response of approximately 810 grains using EHM, HEHM and CPFE.398

The microstructures were generated using the grain growth option provided in Neper which results399

in varying grain shapes and sizes within the SVEs. Grain sizes, defined as equivalent diameter [62],400

were sampled from a lognormal distribution with mean and standard deviation of 1 µm and 0.35401

µm, respectively. Grain sphericity [62] was sampled from a lognormal distribution with mean and402

standard deviation of 0.145 and 0.03, respectively. Representative SVEs are shown in Figure 6(a–c).403

Each SVE was subjected to a strain history corresponding to 5% total strain under volume-404

preserving uniaxial tension, applied at the rate of 0.05/s. Volume preservation was enforced by405

prescribing the lateral strain components to satisfy ε22 = ε33 = −ε11/2, thereby maintaining zero406

macroscopic volumetric strain throughout the loading process. The stress–strain responses (σ11 vs.407

ε11) are plotted in Figure 7. In Figure 7(a), solid lines correspond to the mean response the SVE408

ensemble predicted by the EHM, HEHM and CPFE simulations, while the shaded regions indicate409

2σ confidence intervals, highlighting the uncertainty in the individual SVE within the ensemble. In410

addition, the dashed and dotted curves explicitly show the corresponding µ± 2σ bounds to improve411

readability when the intervals overlap. The variation from the mean prior to the elastic limit is412

small, whereas there is a substantial variation after the onset of plastic deformations. The large413

variation in the elasto-plastic behavior is largely due to the relatively small size of the individual414

SVEs and relatively high variability in grain morphologies. At 5% strain, the relative errors in415

the mean stresses computed with EHM and HEHM (compared to CPFE) are 11.81% and 5.39%,416

respectively. The nearly two-fold reduction in error underscores the improvement achieved by the417

HEHM. As seen in Figure 7(b), the HEHM model improves predictions starting from the onset of418

plasticity and throughout the loading history.419

Grain-averaged microscale von-Mises stresses were computed for all grains in all SVEs and are420
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Figure 6: Generated sample 10-grain SVEs geometries.
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Figure 7: (a) Means and 2σ confidence intervals for the stress-strain responses of the SVE ensemble,
and (b) stress-strain responses of three distinct SVEs from the ensemble. In (b), colors indicate
results from the same SVE within the ensemble.

22



Table 3: Morphological and statistical parameters used to generate SVEs.

Morphology Grain Size (µm) Grain Sphericity Aspect
RatioMean Standard deviation Mean Standard deviation

Equiaxed 1 0.05 0.145 0.03 (1,1,1)
Elongated 1 0.05 0.145 0.03 (2,1,1)

Low Sphericity 1 0.35 0.3 0.03 (1,1,1)

plotted as a histogram in Figure 8(a). Stress distribution for the EHM model has two peaks at about421

16 MPa and 24 MPa. By contrast, stress distributions from HEHM model resembles a unimodal,422

near-normal distribution similar to the CPFE results. Moreover, the HEHM distribution shows a423

reduced frequency at the higher stress range compared to the EHM model. Normal distributions were424

subsequently fitted to the datasets, as shown in Figure 8(b), yielding mean von Mises stresses of 19.7425

MPa, 18.6 MPa, and 17.4 MPa for the EHM, HEHM, and CPFE models, respectively. The reduction426

in the mean stress quantitatively confirms the enhanced predictive capability of the HEHM. Finally,427

Figure 8(c) plots the relative error between HEHM and CPFE grain-averaged von Mises stresses as a428

function of normalized grain size. Although grain size is not the sole parameter governing the error,429

a clear trend of decreasing relative error with increasing normalized grain size can be observed.430

3.3 Influence of grain morphology431

We further examined the influence of grain morphology by generating ensembles of five 30-grain432

SVEs. Three cases were considered: (1) equiaxed grains, (2) elongated grains, and (3) low-sphericity433

grains. The parameters for grain size and grain sphericity (sampled from lognormal distributions) as434

well as grain aspect ratio used in the three cases are shown in Table 3. The aspect ratio parameter,435

describing the relative grain dimensions along the 1, 2, and 3 directions, was employed to generate436

elongated grain morphologies. Figure 9 shows sample morphologies of the SVE ensembles for the437

three cases considered in this study. In case (1), the SVEs primarily consist of equiaxed grains438

(Figure 9(a)), whereas in case (2), the grain are equiaxed in 2-3 plane, but are elongated along the439

1-direction (Figure 9(b)). The grains in case (3) demonstrate lower sphericity (Figure 9(c)). The440

histogram of grain shapes in Figure 9(d) shows that SVEs with equiaxed and elongated morphologies441

have much narrower size distributions compared to those produced using the grain growth model442

used to generate the 10-grain SVEs. The 10-grain SVEs and those with lower sphericity exhibit443

considerably broader size distributions.444

The mean stress-strain behavior as well as the variability observed under volume-preserving445

tension loading for the three cases are reported in Figure 10. Comparing the CPFE simulations of446

the ensembles for the three cases, the mean stress-strain behavior is not significantly affected by the447
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Figure 8: (a) Histograms of microscale grain-averaged von Mises stresses computed from EHM,
HEHM and CPFE models. (b) Normal distributions fitted to the corresponding histograms of
grain-averaged von Mises stresses predicted by EHM, HEHM, and CPFE. (c) Relative error between
HEHM and CPFE grain-averaged von Mises stresses against normalized grain size.
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microstructure morphology. In contrast, the variability in case (3) is noticeably higher compared448

to the equiaxed and elongated microstructures. This is expected due to the higher variability of449

grain shape and size in the low sphericity microstructures. The microstructural morphologies do450

have a significant affect on the performance of the ROMs. The relative errors in the mean stress at451

5% strain are 13.68%, 12.39%, and 13.56% for EHM, and 11.85%, 9.97%, and 8.94% for HEHM,452

for equiaxed, elongated, and lower sphericity SVE ensembles, respectively. The relative error of453

the classical EHM model does not change as a function of morphology, but there is an observable454

improvement in the performance of HEHM for case of (3), compared to cases of (1) and (2).455

The microscale stress distributions are shown in Figure 11 for a 10-grain polycrystal and in456

Figure 12 for a 30-grain equiaxed polycrystal. In the 10-grain case, the HEHM solution exhibits457

larger stress gradients compared to EHM, while for the 30-grain equiaxed polycrystal, the gradients458

in the HEHM fields are less pronounced. Smaller gradients correspond to lower higher order terms in459

the field expansions, which may explain the reduced improvement provided by HEHM for equiaxed460

microstructures.461

This observation aligns with intuition from Eshelby’s inclusion problem: for nearly spherical462

inclusions (a subset of ellipsoidal morphologies), the internal fields tend to be more uniform, enabling463

the original EHM to provide relatively accurate approximations. Overall, the results indicate that464

grain morphology plays a critical role in the relative performance of HEHM compared to EHM and465

CPFE. Thus, HEHM may be most beneficial for microstructures with highly irregular morphologies.466

3.4 Influence of complex loading conditions467

The performance of the HEHM model was further evaluated under several additional loading468

conditions to assess its generality and robustness. Figure 13a presents the stress–strain response of469

a 10-grain polycrystal subjected to fully reversed cyclic loading in 1 direction with a stress ratio of470

R = −1. The loading was prescribed as a strain history under a volume-preserving constraint to471

minimize pressure effects, which would otherwise lead to unrealistically large stresses. The relative472

errors in peak stress are 18.3% and 4.3% for EHM and HEHM, respectively. The HEHM accurately473

reproduces the cyclic behavior, exhibiting significantly smaller deviations from the CPFE results474

compared to the classical EHM.475

To examine the rate sensitivity, simulations were conducted at strain rates of 5 s−1, 5×10−2 s−1,476

and 5×10−4 s−1, as shown in Figure 13b. Similar to previous sections, volume-preserving tensile477

loading was considered. The relative errors in peak stress are in the range of ∼16% for EHM478

and ∼6% for HEHM. The HEHM consistently delivers improved predictions across all strain rates,479

demonstrating its robustness with respect to loading rate variations.480
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Figure 9: Sample 30-grain polycrystal with (a) equiaxed, (b) elongated and (c) low sphericity grain
morphology. (d) Histogram of grain sizes for grain-growth (10-grain SVEs), equiaxed, elongated,
and lower sphericity morphologies.
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(c)

Figure 10: Mean and variance of stress-strain responses of 30 grain polycrystal SVEs under volume-
preserving tension with (a) equiaxed, (b) elongated and (c) lower sphericity morphologies.
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(c)

Figure 11: Microscale von Mises distribution computed from (a) EHM (b) HEHM (c) CPFE
simulations plotted over the 10-grain polycrystal.
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Figure 12: Microscale von Mises distribution computed from (a) EHM (b) HEHM (c) CPFE
simulations plotted over 30-grain equiaxed polycrystal.

29



Table 4: Strain history applied in the numerical experiment.

Step ε11 ε22 ε33 ε12 ε13 ε23

1 0.025 0.025 -0.05 0 0 0
2 0.025 0.025 -0.05 0 0 0
3 0.025 0.025 -0.05 0 0 0.05

The model’s capability under simple shear was also assessed, with the corresponding results481

displayed in Figure 13c. The improvement achieved by HEHM is comparable to the previous test482

cases, with errors in peak shear stress of 8.6% and 2.2% for EHM and HEHM, respectively.483

Finally, a complex, multiaxial strain history (summarized in Table 4), consisting of biaxial,484

volume-preserving tension followed by relaxation and subsequent unidirectional shear, was applied485

in both ROM and CPFE simulations. The resulting von Mises stress–strain responses are shown486

in Figure 13d. The HEHM demonstrates notably higher accuracy under shear and significant487

improvement throughout the full strain history, with errors in peak shear stress of 13.5% and 7.3%488

for EHM and HEHM, respectively.489

Overall, these results confirm that the proposed HEHM framework maintains high accuracy490

across a broad range of loading paths and strain rates, highlighting its potential as a reliable and491

general reduced-order model for nonlinear polycrystal plasticity simulations.492

3.5 Surrogate model experiments493

This section evaluates the efficiency gains achieved by replacing the direct numerical integration494

of the constitutive model with a surrogate approximation, while ensuring that accuracy remains495

comparable to the fully integrated solution.496

3.5.1 Architecture selection497

To construct the surrogate function I(β,p)(τ
(β)
norm) introduced earlier, several neural network archi-498

tectures were tested, as summarized in Table 5. Three representative cases were considered. The499

first architecture consisted of a three-layer fully connected network with eight neurons per layer and500

ReLU activation function. The second architecture used the same layout but replaced ReLU with501

the ELU activation function, which offers improved smoothness and continuity. The third case was502

a single-layer perceptron with forty neurons and an activation function defined as503

f(x) = |x|1/n sign(x) (34)
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(a) (b)

(c) (d)

Figure 13: Stress-strain response of a 10-grain polycrystal under (a) cyclical loading, (b) varying
strain rates, (c) unidirectional shear, and (d) varying strain history.
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Table 5: Loss as a function of the architecture for a single grain.

Case Activation Layers Neurons RMSE
1 RELU 3 8 1.52× 10−2

2 ELU 3 8 3.23× 10−4

3 Flow Rule 1 40 3.41× 10−5

chosen to mimic the nonlinearity present in the flow rule itself. The biases were set to zero to504

make sure that integral evaluates to zero at vanishing inputs (i.e., zero slip rate at zero resolved505

shear stresses). All architectures were designed to contain approximately two hundred trainable506

parameters so that comparisons would primarily reflect differences in the activation functions rather507

than differences in model capacity.508

Training data was generated by sampling the normalized resolved shear stresses, τ (β,p),snorm , for one509

representative grain and every mode of the reduced basis. Since after normalization, one of the510

normalized resolved shear stresses is equal to unity, for every mode p, we fix the mode p at unity511

and uniformly sample the other modes in the space [−1, 1]Nmodes−1 with 21 points. The networks512

were trained by initializing with the Nelder-Mead algorithm and refining using BFGS algorithm513

from the SciPy package [66]. The exact form of the loss function is given by514

L(β,p) =
||I(β,p),i − I

(β,p),i||
I
(β,p),max (35)

where I(β,p),i is the integral value for input data point i, the I
(β,p),max is a normalization parameter515

indicating maximum value of the observed integral. Overline indicates true value of the integral516

computed from the underlying finite element mesh. Training was performed using a plastic rate517

sensitivity corresponding to a flow-rule exponent of approximately nine.518

The root-mean-square errors (RMSE) between the surrogate predictions and the exact integrals519

are reported in Table 5. The ReLU-based model exhibits the largest error, likely because the integrand520

is highly nonlinear and contains sharp transitions that ReLU cannot approximate smoothly. The521

ELU architecture provides a substantial improvement, indicating that increased smoothness in522

the activation function is beneficial. The best performance is obtained with the flow-rule-inspired523

activation, which reduces the RMSE by roughly an order of magnitude relative to the ELU network.524

These results demonstrate that incorporating physics-based nonlinearities directly into the activation525

function yields a significantly more accurate surrogate approximation for the reduced integral. The526

flow-rule inspired activation function is used for the rest of numerical examples below.527
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Table 6: RMSE between surrogate and reference integral outputs for a single grain as a function of
the exponent.

Exponent RMSE

5 6.18× 10−6

9 3.41× 10−5

20 1.97× 10−3

3.5.2 Effect of the rate parameter528

Building on the architectural comparisons presented in the previous subsection, we next examine how529

the intrinsic nonlinearity of the flow rule influences surrogate accuracy. The nonlinearity is governed530

by the exponent in the viscoplastic flow rule, and this parameter directly controls the sharpness of531

the integrand that the surrogate must approximate. To assess this effect, three surrogate models532

were independently trained using exponents of 5, 9, and 20.533

Using the same sampling procedure described in Section 3.5.1, the surrogate-based integral534

was then evaluated for every mode of a single grain and compared with the corresponding value535

obtained from direct numerical integration over the background mesh. The resulting RMSE values,536

summarized in Table 6, reveal a clear trend: lower exponents produce excellent agreement with537

the reference integrals, while higher exponents introduce significantly sharper nonlinearities that538

degrade surrogate accuracy. These results highlight the importance of considering the exponent539

when developing surrogate models for viscoplastic integration, as it fundamentally influences the540

complexity of the approximation task.541

3.5.3 Effect of the grain morphology542

The surrogate models trained for a single grain were then used as initial guess and subsequently fine543

tuned for all grains in a single 10-grain polycrystal. Using the same sampling procedure described in544

Section 3.5.1, the surrogate-based integral was evaluated for every mode of every grain and compared545

against the corresponding exact integral computed using the background mesh. A flow-rule exponent546

of nine was used for this study.547

The resulting comparison is shown in Figure 14a. Over the full domain of the outputs ([-1, 1]),548

surrogate errors are visually negligible. A closer examination near the origin ([-1× 10−4, 1× 10−4])549

reveals small but discernible discrepancies, consistent with the increased sensitivity of the integrand550

in this region. The computed RMSE of 3.386× 10−5 aligns with the error scale visible in the inset551

plot. We further plot comparison between reference and surrogate integral output in Figure 14b. The552

33



1.0 0.5 0.0 0.5 1.0
Exact integral

1.0

0.5

0.0

0.5

1.0

Su
rro

ga
te

 o
ut

pu
t

1 0 1
1e 4

1

0

1 1e 4

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized resolved shear stress

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

In
te

gr
al

 v
al

ue

n = 0.2
n = 0.11111
n = 0.05
Reference
Surrogate Output

9.3959.4009.405
1e 1

6.50

6.55

1e 2

9.35 9.40 9.45
1e 1

5.0

5.5
1e 2

(b)

Figure 14: (a) Truth plot for all grains and modes with inset showing deviations in the proximity of
zero and (b) comparison of the reference and surrogate integral values as a function of the normalized
resolved shear stress for different exponents.

integral I(α,1) for a representative grain α was evaluated over the full range of τ (α,1) ∈ [−1, 1] while553

remaining components τ (α,2), τ (α,3) and τ (α,4) were fixed at 0.2. Results are shown for exponents554

of 5, 9, and 20. For the exponent of 5, the surrogate output is nearly indistinguishable from the555

reference across the entire domain. For exponents of 9 and 20, small deviations become visible upon556

magnification, with the exponent of 20 requiring less zoom to reveal the discrepancies. It is also557

noteworthy that the surrogate predictions remain smooth, reflecting the smoothness of the activation558

functions used in the neural network architecture.559

Overall, these results show that the surrogate accurately captures the dominant nonlinear560

structure of the integrand. Moreover, the surrogate performs consistently across all grains, indicating561

that the model generalizes effectively across the variations in grain morphology present within the562

polycrystal.563

3.5.4 Accuracy and efficiency study564

HEHM combined with surrogate integration model was evaluated for both accuracy and computa-565

tional efficiency by subjecting a 10-grain polycrystal in tension in 1, 2, and 3 as well as loading it in566

shear in 12, 23, and 31 directions.567

Figure 15 presents the macroscopic stress–strain responses obtained from the HEHM with568

surrogate-based integration and compares them with the responses from the HEHM using full finite569
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element integration. For the HEHM simulations with surrogate-based integration, the Newton–570

Raphson residual tolerance was relaxed to 10−2 and the state-variable convergence tolerance was571

relaxed to 10−3 to improve robustness. All simulations and surrogate training were performed572

using a plastic rate sensitivity of n = 1/9 (corresponding to an exponent of approximately nine).573

Across most loading cases, the surrogate-based HEHM reproduces the fully integrated HEHM574

response with high fidelity. Only small deviations are observed for case of shear loading in the575

31 direction. The offline cost of the HEHM with surrogate approach is comprised of integral576

data generation and surrogate training. The integral data generation cost is negligible relative577

to the influence-function solves that dominate the ROM offline stage. In the current prototype,578

surrogate training is dominated by implementation overhead because the code is serial and not579

performance-optimized, and it is therefore expected to decrease in an optimized implementation.580

The associated computational times are reported in Table 7. The reference simulation reported in581

Table 7 corresponds to the CPFE 6k setup used in Table 2 with the same element type and number582

of elements. The Table 7 reference timing was obtained using 4 cores, a rate-sensitivity exponent583

of 9 (instead of 20), and was run on an Intel(R) Core i7-4578U CPU @ 3.00GHz rather than an584

Intel Xeon Gold compute node. Relative to the reference CPFE simulation, the HEHM with full585

integration provides roughly a 7× speedup, the surrogate-enhanced HEHM achieves approximately586

a 70× speedup, and the classical EHM attains nearly a 300× speedup. These results demonstrate587

that the surrogate integration reduces the computational cost of the HEHM by about an order of588

magnitude while preserving its accuracy across a broad range of loading conditions. This subsection589

does not re-quantify HEHM accuracy versus CPFE because that comparison is already established590

in the preceding three subsections, and instead it focuses on whether the surrogate preserves HEHM591

accuracy while improving computational efficiency.592

It is important to emphasize that the intent of this work is not to advocate for a specific593

neural-network architecture, but rather to demonstrate a general methodology for constructing594

surrogate integrators for ROMs with nonuniform basis functions. The architectures examined here595

serve only as representative examples for evaluating the approach. As shown in Tables 5 and 6,596

surrogate accuracy inevitably degrades as the flow-rule exponent increases, reflecting the sharper597

nonlinearities the network must approximate. Consequently, alternative architectures, including598

deeper networks, different activation functions, or other physics informed formulations, may be more599

suitable depending on the material system and modeling requirements. The proposed framework is600

therefore flexible, and the surrogate model may be tailored to specific application without loss of601

generality.602
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Stress-strain response of 10 grain polycrystal under volume-preserving tension in (a) 1
(b) 2 (c) 3 directions and shear in (d) 12 (e) 23 (f) 31 directions.
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Table 7: Comparison of computational time and speedup for different methods, computed for the
full 5% strain loading under direction 1.

Method Time (s) Speedup Cores
CPFE 82.89 – 4
HEHM 50.18 6.6 1

HEHM Surrogate 4.78 69.4 1
EHM 0.98 338.0 1

4 Conclusion603

This manuscript demonstrated the capabilities of the EHM framework when higher-order basis604

functions are employed in the model order reduction. The general objective of incorporating the605

specific type of higher order functions is to achieve consistent and non-trivial (across microstructures606

and loading conditions) improvement of model accuracy, while retaining the primary function of the607

ROM, i.e., reduced computational cost. We also presented a surrogate model for the integrals arising608

from the weak enforcement of the constitutive equations. By introducing normalized coefficients,609

this surrogate transforms the integration problem into an interpolation problem, achieving an order610

of magnitude reduction in computational cost without any reduction in integration accuracy.611

The performance of the model is demonstrated on low-phase contrast polycrystalline microstruc-612

tures, accounting for stochastic variations in grain morphology and crystal orientations. The613

higher-order model consistently exhibits softer mechanical behavior compared to the original EHM,614

reducing the discrepancy with the reference CPFE simulations. However, the level of improvement615

depends on grain size and morphology. More specifically, and rather intuitively, the level of im-616

provement is high when the response fields are better approximated with the basis functions being617

included in the ROM. While more complex basis functions, e.g., those generated by preliminary618

nonlinear CPFE (training) simulations as typically used in NTFA models could yield better accuracy619

when loading is similar to the training simulations, the proposed approach guarantees that the620

prediction accuracy is no less than EHM regardless of loading, but could be improved substantially621

from this baseline. While the presented results capture stochastic variations in grain morphology622

and crystal orientations, the scope of this study is limited to low-phase-contrast polycrystalline623

materials, and extension to higher phase-contrast systems remains a subject of future work.624

The key advantage of the HEHM model lies in the enhanced reduced basis without requiring625

nonlinear simulations during the offline stage, keeping offline costs relatively low. In the online626

stage, most of the computational cost arises from integrating the constitutive law over a large set627

of quadrature points. This cost is substantially mitigated by the surrogate model; however, the628
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surrogate can degrade Newton–Raphson convergence for high plastic rate sensitivities.629
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