
Over the past several decades,
computational mechanics heavily

relied on advances in semiconductor-
based computing technology to solve
increasingly complex mechanics and
multi-physics problems.  As transistors
approach their physical limits, the
advancement in “classical” computing
technology no longer follows the celebrated
“Moore’s Law” – hence the expected
speed-up and scaling in mechanics
computations due to hardware improve-
ments have stagnated (Figure 1a).  

This stagnation underscores the necessity
for alternative computing paradigms that
are being currently developed such as 
in-memory computing [Sun et al. (2023)],
neuromorphic computing [Kudithipudi et 
al. (2025)], biological computing [Grozinger
et al. (2019)] among several others.
Quantum computing (QC) emerges as a
viable solution, leveraging the principles 
of quantum mechanics to perform 
computations that would be infeasible 
on classical systems.

While measurable impact on everyday
mechanics computing is still some time
away, QC is a very rapidly developing field.
Qubit and gate scalability, and circuit depth

iacm expressions 55/25 2

– Q– Q uantumuantum CC omputingomputing – – 
PP romise of  a romise of  a NN ewew FF uture for uture for 

CC omputationalomputational MM echanicsechanics
by 

Caglar Oskay
Department of Civil &

Environmental
Engineering

Vanderbilt University
Nashville, USA
caglar.oskay@
Vanderbilt.Edu

Figure 1:
(a) Moore’s law no more – loss of scalability in transistor and hence speed-up since 2010s. 
TOPS: Terra operations per second. 
(b) technology pull for quantum computing in computational mechanics – multiscale 
modeling; digital twins. 
Figure sources: (a) NVIDIA; (b) top left: Montagnat et al. (2014); bottom left: AZoBuild; 
center: Live Science; top right: Saccone et al. (2022); bottom right: Pvplive.  

are increasing at an impressive rate
[IBM (2024)].  Moreover, developments in

quantum error mitigation and correction
algorithms are progressively enhancing the
reliability of quantum computations.  These
rapid hardware improvements are bringing
practical applications of QC in engineering
fields closer to reality. 

Unlike classical binary systems that utilize
bits as the smallest unit of data, QC relies
on quantum bits or qubits.  Qubits exhibit
unique properties such as superposition
(existing in multiple states simultaneously)
and entanglement (inherent link between
the states of multiple qubits regardless 
of physical distance between them) that 
do not exist in classical devices.  These
characteristics enable quantum systems 
to store, process and analyze large
datasets exponentially faster than 
classical systems. 

These advancements not only promise
increased computational power but also 
a new class of computational algorithms
needed to evaluate mechanics problems 
at scale.  Establishing high fidelity digital
twins, predictive multiscale computations,
and reliable machine learning models
require both the computational power 
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and the algorithmic scale up promised by
QC (Figure 1b).  Optimization problems
prevalent in structural mechanics, materials
science, and fluid dynamics are also 
prime candidates for quantum algorithms,
which could outperform their classical 
counterparts.  A shift away from classical
architectures heralds a new era where
complex simulations can occur in real-time,

responsive to live data, and under various
constraints.

Quantum algorithms for mechanics – 

A key development that prompted interest
from computational community is the 
availability of quantum solver algorithms 
for linear systems of equations that exhibit
exponential scaling compared to existing
classical algorithms. Harrow-Hassidim-
Lloyd (HHL) [Harrow et al. (2009)] is 
considered the foundational quantum 
algorithm for linear systems, which has
polylogarithmic complexity in terms of 
system size, compared to polynomial 
complexity of classical iterative solvers. 

Subsequent research has led to the 
development of other algorithms and
improvements that extend their applicability
and efficiency.  More recent quantum 
linear system solvers exhibit polynomial
complexity with sparsity, condition number,
and polylogarithmic complexity with inverse
of error tolerance, and with system size
dependence only through block encoding
[Morales et al. (2025)].  The general frame-
work for use of such linear systems in the
context of finite element (or other) method-
ologies lie in efficient encoding of the sys-
tem properties (i.e., the stiffness matrix and
the force vector) such that the exponential
scaling of the solvers could be leveraged. 

The quantum linear system solvers 
mentioned above are designed to operate
on error-corrected (i.e., fault tolerant) 
quantum computers. Existing systems
remain to be noisy (hence the terminology
“noisy intermediate scale quantum” or 
NISQ era).  The variational quantum linear
solver (VQLS) algorithm relies on hybrid
computers and more amenable to 
computations using available NISQ 
devices [Bravo-Prieto et al. (2020)]. 

In VQLS, the solution of the linear system 
is posed as an optimization problem, where
a cost function is minimized using classical
optimization algorithms (in a classical 
computer).  The function, and if needed,
Jacobian and Hessian are computed in a

quantum computer.  This approach has
recently been deployed to solve a limited
number of solid and structural mechanics
problems [Liu et al. (2024), Lu et al. (2023),
Trahan et al. (2023)].  

In addition to quantum algorithms that rely
on linear system solvers, alternative
approaches are also being investigated
including iterative solvers [Raisuddin and
De (2024)], quantum Fourier transform 
[Liu et al. (2024)], Hamiltonian simulations
[Sato et al. (2024)], quantum annealing
[Raisuddin and De (2022)] among several
others. 

There is also a growing literature on 
quantum algorithms for evaluating nonlinear
partial differential equations (PDEs).  In
view of the fundamentally linear nature of
quantum systems, many of the proposed
algorithms rely on linearization of the 
underlying nonlinear PDE system.  One
approach is direct mapping of the nonlinear
PDE to a linear PDE by using the level set
method [Jin and  Liu (2024)].  

The second and more common approach
relies on semi-discretization (i.e., spatial) 
of the underlying PDE to obtain a discrete
nonlinear ordinary differential equation
(ODE) system, linearization of the ODE
system, and evaluation of the linearized
ODEs with an established quantum ODE
solver (e.g., Lloyd et al. (2020), Costa et al.
(2023)).  Spatial discretizations have so far
(almost exclusively) relied on strong form
finite difference method, which naturally
places restrictions on domain morphology
and the grid structure.  Two approaches to
ODE linearization are the Carleman method
(e.g., Gnanasekaran et al. (2024), Krovi
(2023)), which replaces a nonlinear term
that is a polynomial of the cardinal variable
with an infinite linear series; and the
Koopman-Von Neumann approach 
(e.g., Jin et al. (2023),Tanaka and Fujii
(2025)) which maps the nonlinear ODE to
Hamiltonian dynamics via observables 
(i.e., functions) of the cardinal variable.

An early finite element implementation

We recently began exploring a quantum
computing implementation of the finite 
element method named the Quantum 
Finite Element Method (Q-FEM) [Arora 
et al. (2025)]. QFEM is a methodology 
for implementing finite element analysis 
on noisy intermediate-scale quantum
(NISQ) computers based on the variational
quantum linear solver (VQLS) algorithm.
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We developed a framework that leverages
classical FEM procedures to decompose
stiffness matrices into unitary operations
and design explicit quantum circuits that
maintain the structure of traditional FEM
discretization, allowing for element and
material coefficient variability.

The key contributions of the new 
implementation include a novel 
methodology for unitary decomposition 
of the global stiffness matrix leveraging 
the classical FEM construction procedure; 
a systematic approach to generate 
quantum circuits corresponding to the 
unitaries for linear and quadratic elements;
a framework that allows for variable 
element lengths, material coefficients, 
and different boundary conditions; and
introduction of the concept of "identical 
non-interacting elements" that reduces the
number of required unitaries.  Reduction 
of the unitary matrices do come with 
a price, the circuit depths and circuit 
complexity increases, albeit linearly with
respect to the number of identical 
non-interacting elements.  

VQLS for FEM

The overall methodology of the QFEM
approach using the VQLS algorithm is 
summarized in Figure 2.  

The methodology consists of three steps:
(1) preparation of quantum circuits needed
in the cost function evaluations, 
(2) execution of the VQLS optimization in a
hybrid computer, and 
(3) extraction of the solution following 
successful completion of the algorithm. 

In the first step, the stiffness matrix is 
represented using a linear combination 
of unitary matrices, the quantum circuit
associated with each unitary matrix is 
constructed.  The force vector, typically 
an arbitrary vector is prepared using a 
state preparation algorithm.  We note that
efficiency of force vector preparation 
typically relies on knowledge of the 
structure (e.g., sparsity) of the force vector,
since state preparation is a computationally
complex operation.  In this step, the circuit
that represents the chosen variational
ansatz is also prepared. 

Figure 2:
The overall methodology for the variational quantum linear solver applied to a finite element
problem. Figure reproduced from Arora et al. (2025).
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In the second step, a classical optimization
is performed using a hybrid (quantum–
classical) computer to minimize the 
cost function.  The variational ansatz
parameterizes the space within which the
cost function is minimized.  The selection 
of the form of variational ansatz and the
associated parameterization is important 
as this selection defines the topology of 
the cost function space. 

Naturally, the ability of the selected 
classical optimization algorithm to find 
the cost function minimum (and the rate 
at which it finds it) is directly related to 
the cost function topology.  Components 
of the cost function as well as the gradients
of the cost function are performed in the
quantum computer using the Hadamard
test or other Hamiltonian expectation 
estimation techniques.  The cost function is
then assembled in the classical computer,
where the search direction is computed 
by the optimization algorithm.  Upon 
convergence, the optimized variational
ansatz parameter set is used to obtain the
solution vector (third step). 

It is important to note that the aforemen-
tioned process only computes the direction
of the solution vector as the state vector of
the main qubit register.  The magnitude of
the solution vector is also computed in the
post processing step.  

Figure 3:
(a) statistics of cost function evaluation with number of iterations; 
(b) cost function topology that demonstrate deep gorges and plateau regions. 
Figures reproduced from Arora et al. (2025). 

Efficient Unitary/Circuit Construction

While there are several ways of 
generating unitary representation of the
stiffness matrix such as block encoding or
Pauli decomposition, in the absence of
knowledge of the specific sparsity structure,
they are computationally expensive.  In the
most general case, complexity of Pauli
decomposition of a matrix with unknown
sparsity structure is exponential. Such an
approach cannot compete with classical
finite element algorithms.  In this study, 
we presented an approach to leverage the
well-known finite element construction 
procedure in efficiently constructing the 
unitary decomposition of the stiffness
matrix.  

The proposed approach relies on two 
concepts.  The first is the use of direct 
stiffness assembly: the stiffness matrix is
expressed as a simple sum of “global” 
versions of the element stiffness matrices,
where the local-global mapping is applied
on element stiffness matrices.  These are
very sparse matrices which can be trivially
represented by a unitary decomposition. 

The second concept is the automated 
generation of the circuit representations of
the unitaries.  This is achieved through the
concept of generator functions, which map
the unitaries associated with each element
to quantum circuit generators. 

“ ... the ability of the selected classical optimization algorithm to find the cost function minimum

(and the rate at which it finds it) is directly related to the cost function topology.  ”
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In order to further reduce number of 
unitaries in the stiffness matrix decomposi-
tion, we introduce the concept of identical
non-interacting elements.  Two elements
that are identical non-interacting have 
the same element stiffness matrix, but do
not interact with each other (i.e., they are
physically not neighboring elements).  This
allows concatenation of the corresponding
circuits.  We note that the circuit depth
increases linearly with the number of 
non-interacting elements.  

This approach could significantly simplify
the unitary decomposition especially in
meshes that are structured in parts of the
problem domain.

Some Results and Discussion

We have assessed the capabilities of 
the Q-FEM approach in the context of a
steady state heat equation discretized 
using linear and quadratic elements, in 
the presence of Dirichlet and Neumann
boundary conditions, and with homoge-
neous and heterogeneous material con-
stants.  Q-FEM successfully converges to
correct solutions for various problems and
model discretizations, and the approach
works effectively with variable element
lengths, coefficients, and boundary 
conditions. 

Figure 3a shows the statistical (i.e., the
evolution of mean and the standard 
deviation) evolution of the cost function 
of a suite of simulations.  The difference
between simulations in the suite is the 
random initial ansatz parameter state.  
For any individual simulation, we observe 
a highly oscillatory convergence pattern,
which points to the complexity of the cost
function topology.  The mean of the 
simulation ensemble demonstrates a 
relatively monotonic convergence behavior.
A field plot of a cost function subspace near
the optimal point when two of the ansatz
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parameters are varied indicates some of
the features of the cost function topology.
We observe that the topology is rather flat
generally with hidden valleys and narrow
gorges within which the optimal point is
located (Figure 3b).  As the size of the
problem is increased, the cost function
topology further flattens over large swaths
of the parameter hyperspace leading to
what is commonly known as the “barren
plateau” problem [Cerezo et al. (2021)].

These features of the cost function topology
point to the importance of appropriate
ansatz and optimizer selection in quickly
achieving the optimal solution. 

The Path Ahead – 

QC is a very fast-moving field that 
promises to potentially make a step change
in the state of computing. Computational
mechanics is set to gain significantly from
QC, and there is a tremendous opportunity
to introduce a completely new way of 
thinking to algorithm development in 
computational mechanics. 

However, quite a lot is yet to be done
before tangible impact is observed in 
academic and industry applications 
both from the hardware and software 
perspectives.  QC software stack is not 
yet available to perform high level 
computations that are hardware blind 
and that rely on existence of tools that are
typically taken for granted (e.g., general
purpose linear solvers, matrix-vector 
operations, etc.).  The existing hardware
computes with significant noise and bias
that limit demonstration of algorithm 
efficacy on real devices.

Despite these and many other challenges,
this is the right time for the computational
mechanics community to become part of
the quantum computing revolution.    
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“ Despite these and many other challenges, 
this is the right time for the computational mechanics community 

to become part of the quantum computing revolution.  ”
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