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Abstract4

In this manuscript, we extend the variational multiscale enrichment (VME) method to5

model the dynamic response of hyperelastic materials undergoing large deformations. This6

approach enables the simulation of wave propagation under scale-inseparable conditions, in-7

cluding short-wavelength regimes, while accounting for material and geometric nonlinearities8

that lead to wave steepening or flattening. By employing an additive decomposition of the9

displacement field, we derive multiscale governing equations for the coarse- and fine-scale prob-10

lems, which naturally incorporate micro-inertial effects. The framework allows the discretiza-11

tion of each unit cell with a patch of coarse-scale elements, which is essential to accurately12

capture wave propagation in short-wavelength regimes. An operator-split procedure is used to13

iteratively solve the semi-discrete equations at both scales until convergence is achieved. The14

coarse-scale problem is integrated explicitly, while the fine-scale problem is solved using either15

explicit or implicit time integration schemes, including both dissipative and non-dissipative16

methods. Numerical examples demonstrate that multiscale dissipative schemes effectively sup-17

press spurious oscillations. The multiscale framework was applied to investigate how material18

and geometric nonlinearities, along with elastic stiffness contrast in heterogeneous microstruc-19

tures, influence key wave characteristics such as dispersion, attenuation, and steepening. This20

multiscale computational framework provides a foundation for studying the dynamic response21

of architected materials.22
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1 Introduction24

Architected materials have attracted widespread interest in the research community due to25

their ability to achieve exceptional properties by tailoring geometric features across multiple26

length scales, often outperforming conventional materials in terms of mechanical, thermal, or27

functional performance. Energy-absorbing architected materials such as honeycombs and aux-28

etic metamaterials demonstrate favorable impact resistance and deformation behavior, making29

them excellent candidates for crash protection and vibration damping applications (see e.g.,30

[22, 58, 53, 18, 10]). Computational simulation of the transient dynamic response of structures31

composed of architected unit cells using direct numerical simulations (DNS) is computation-32

ally expensive and cumbersome, especially in scenarios involving large structural domains or33

complex microstructural features. As a result, there is a critical need to develop multiscale34

modeling techniques that can efficiently simulate the dynamic response of such structures while35

preserving accuracy.36

Various homogenization approaches have been proposed to model the dynamic response37

of heterogeneous materials based on the assumption that the microstructural size is much38

smaller than the wavelength, commonly referred to as the scale separation limit. In the com-39

putational homogenization approach [49, 9, 35, 50], the fundamental idea is to characterize40

the material response locally at each quadrature point of the finite element discretization41

of the macroscopic domain by the numerical evaluation of a representative volume element42

(RVE) or a periodic unit cell. Nested initial-boundary value problems at the macro- and mi-43

croscales are evaluated, with scale bridging relations that satisfy energy consistency between44

scales, i.e., the Hill-Mandel condition. Higher-order asymptotic homogenization approaches45

were developed to capture the dynamic homogenized response at the short-wavelength regime46

[1, 17, 31, 26, 27, 28]. Some alternative multiscale methods that do not rely on the assump-47

tion of scale separation, including the elastodynamic homogenization methods based on Willis’48

theory [52, 39, 41, 40, 38], multiscale finite element method [11, 12], and the method of com-49

putational continua [16, 14] have been used for wave propagation in short-wavelength regime.50

The computational homogenization framework has also been extended to lattice metamateri-51

als, including both truss- and beam-based architectures [23, 24, 34], though most developments52

to date have primarily focused on quasistatic loading conditions.53

The variational multiscale method (VMM) [30] is an alternative multiscale strategy that54

does not assume scale separation. This method is based on the additive split of the cardi-55

nal response field into coarse and fine-scale components, resulting in separate but coupled56

multiscale problems. Numerical efficiency is achieved by evaluating the fine-scale problem57

analytically (when an analytical form that approximates fine-scale response is known; e.g.,58

see [46]). Problems that involve complex micro-morphologies and nonlinearities may not have59
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analytical forms to represent the fine-scale response with sufficient accuracy. This prompted60

VMM variants that treat the fine-scale problem numerically, such as the numerical subgrid61

upscaling method [2], the stochastic variational multiscale method [3, 21], and the variational62

multiscale enrichment method [47, 48, 55, 56, 57]. Of particular relevance is the spectral vari-63

ational multiscale enrichment [29], which was developed to model the transient dynamics and64

wave propagation of phononic crystals and acoustic metamaterials. This study focused on65

the linear material behavior, and the effects of geometric and material nonlinearities on wave66

propagation were not considered.67

Obtaining accurate solutions for transient dynamics or wave propagation problems in the68

short-wavelength regime (using either direct numerical simulations or multiscale methods) is69

a challenge. Numerical errors due to spatial and time discretizations using finite element70

methods and time integration schemes lead to artificial period elongations and amplitude71

decays, which manifest themselves as numerical dispersion and dissipation errors [4, 44]. A72

plethora of approaches have been developed to address the dispersion and dissipation errors,73

including the use of higher-order spatial discretizations [25, 20], finite element interpolations74

enriched with wave packets for multiscale wave propagation problems [32], or the use of spectral75

elements in the context of multiscale description [29].76

Higher-order elements can improve accuracy but are often too expensive, motivating the use77

of time integration schemes with lower-order elements that incorporate controlled numerical78

dissipation [4, 33, 19]. The Bathe implicit method [5] addresses this by filtering out unresolved79

high-frequency modes while accurately integrating the resolvable ones, thereby reducing dis-80

persion errors. Extending this idea, Noh and Bathe [43] proposed an explicit scheme with81

high-frequency dissipation that preserves second-order accuracy and produces the desired be-82

havior for period elongations and amplitude decays, small for small time steps and rapidly83

increasing for larger ones. In contrast, the Tchamwa–Wielgosz scheme [51], though only first-84

order accurate, performs better than many classical explicit schemes [42, 13, 54, 45], but is85

still outperformed by Noh and Bathe’s method.86

In this study, we present a robust multiscale simulation framework based on the varia-87

tional multiscale enrichment (VME) method for modeling the transient dynamic response of88

hyperelastic composite materials undergoing large deformations. The approach employs an89

additive decomposition of displacement, velocity, and acceleration fields into coarse- and fine-90

scale components, enabling a consistent derivation of the multiscale governing equations within91

a Lagrangian setting. To accurately resolve wave propagation in short-wavelength regimes, the92

formulation allows each unit cell to be discretized into multiple coarse-scale elements. The cou-93

pled coarse- and fine-scale problems are solved iteratively using an operator-split procedure94

until convergence is achieved.95

The semi-discrete multiscale equations are integrated explicitly using either the non-dissipative96
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central difference method or the dissipative explicit scheme of Noh and Bathe [43]. Although97

the VME formulation is designed for scale-inseparable problems, differences in characteris-98

tic time scales between coarse and fine discretizations can arise. In such cases, particularly99

when accuracy requirements permit larger time steps than the stability limits of the fine-scale100

problem, a mixed integration strategy can be adopted – explicit integration for the coarse-101

scale problem and implicit integration of the fine-scale problem, for example, with the Bathe102

implicit method [5]. Numerical investigations show that spurious oscillations appear in both103

direct numerical and multiscale simulations when using the central difference method, but104

these are effectively suppressed by dissipative integration schemes. The proposed multiscale105

framework is shown to capture wave dispersion, attenuation, and wave steepening driven by106

microstructural heterogeneity, unit cell size, and geometric and material nonlinearities. Fi-107

nally, the computational performance of different time integration schemes is assessed for108

microstructures with varying elastic modulus contrasts.109

The remainder of this manuscript is organized as follows: Section 2 presents the formulation110

of the multiscale method. Section 3 provides the computational approximation of the resulting111

coarse- and fine-scale partial differential equations (PDEs) from the VME method, along with112

the time integration schemes for the multiscale problem. Further details about the evaluation113

of non-standard element-level matrices and vectors in multiscale discretization, and estimation114

of stable time increment for the multiscale problem are discussed. Section 4 provides examples115

of wave propagation in 1-D problems with homogeneous and heterogeneous microstructures.116

Section 5 discusses concluding remarks and future research directions.117

2 Variational Multiscale Enrichment Formulation118

In this section, we introduce the formulation of the proposed VME approach for modeling the119

dynamic response of hyperelastic materials. Let us denote a heterogeneous body with Ω ∈ Rnsd120

(nsd=1,2 or 3), an open and bounded domain composed of repeated unit cells. The governing121

equations for linear and angular momentum balance in the Lagrangian setting are as follows:122

∇X ·P(X, t) +B(X, t) = ρ0 ü(X, t); X ∈ Ω, t ∈ [0, T ] (1a)

P(X, t) FT (X, t) = F(X, t)PT (X, t); X ∈ Ω, t ∈ [0, T ] (1b)

where X denotes the Cartesian coordinates in the reference (undeformed) configuration, t the123

time coordinate, P the First Piola-Kirchhoff stress, F the deformation gradient, B the body124

force, ρ0 the mass density in the reference configuration, and u the displacement field. ∇X·125

denotes the divergence operator in the reference configuration, and (̈·) denotes the second time126

derivative.127
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The Dirichlet and Neumann boundary conditions are specified respectively on Γu ⊆ ∂Ω128

and Γt ⊆ ∂Ω, such that Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅:129

u(X, t) = ũ(X, t); X ∈ Γu (2a)

P(X, t) ·N = T̃(X, t); X ∈ Γt (2b)

where N denotes the outward unit normal in the reference configuration, ũ and T̃ are the130

prescribed displacement and traction vectors, respectively. The initial conditions are specified131

as follows:132

u(X, 0) = û(X); X ∈ Ω (3a)

u̇(X, 0) = v̂(X); X ∈ Ω (3b)

in which û and v̂ denote the prescribed displacement and velocity fields respectively at t = 0.133

At any given material point, X, the constituent material is taken to follow a hyperelastic134

constitutive law. The first Piola-Kirchhoff stress tensor is given by:135

P =
∂ψ(F)

∂F
, (4)

where ψ denotes the strain energy density function. The angular momentum balance given by136

Eq. (1b) is satisfied by the objectivity of the strain energy density function.137

The weak form of the linear momentum balance (Eq. (1a)) with the boundary conditions138

in Eq. (3) is:139 ∫
Ω
∇Xδu : P dV +

∫
Ω
ρ0δu · ü dV =

∫
Ω
δu ·B dV +

∫
Γt

δu · T̃ dA, (5)

where δu denotes the test function. The function spaces for the trial and test functions are,140

respectively:141

V =
{
u | u ∈ H1(Ω), u = ũ on Γu

}
, (6a)

W =
{
δu | δu ∈ H1(Ω), δu = 0 on Γu

}
, (6b)

where H1 is the Sobolev space consisting of functions whose values and first weak derivatives142

are square-integrable.143

We make some assumptions about the problem domain and discretization: The geometry144

of the domain Ω can be partitioned into nes non-overlapping identically shaped enrichment145

subdomains. Each enrichment subdomain is associated with a unit cell and discretized using a146

coarse patch of elements, and the number of coarse-scale finite elements in a patch is denoted147
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by necp. The total number of coarse-scale elements is given by nec = nes × necp. The interior148

of a subdomain, α, is denoted as Ωα and its boundary is denoted as Γα, with the overall149

domain partitioning into subdomains is performed such that Ω = ∪nes
α=1 Ωα with (·) represents150

the closure of (·). In addition to the coarse-scale discretization, each subdomain is separately151

discretized using nef fine-scale elements that resolve the features of the underlying unit cell.152

The displacement field over the problem domain is decomposed into coarse and fine-scale153

contributions using a two-scale additive decomposition:154

u = uc +

nes∑
α=1

H(Ωα)u
f,α, (7)

where H(·) is an indicator function defined below:155

H(Ωα) =

1, forX ∈ Ωα

0, elsewhere.
(8)

The indicator function in Eq. (8) ensures that only the fine-scale response associated with156

subdomain Ωα contributes to the displacement field within the subdomain. The coarse-scale157

field captures the slowly varying component of the solution, whereas the fine-scale fields resolve158

the rapidly varying solution due to material heterogeneity. We note that Eq. 7 does not directly159

satisfy the continuity condition on u. The continuity is satisfied by appropriately selecting the160

boundary conditions for the fine-scale response field [47]. The test function is decomposed161

similarly:162

δu = δuc +

nes∑
α=1

H(Ωα) δu
f,α. (9)

The finite-dimensional subspaces (following the finite dimensional approximation consistent163

with the standard finite element method) for the coarse-scale trial and test functions are164

denoted as Vc and Wc, respectively, and the corresponding fine-scale function spaces are V fα165

and W f
α. These spaces are selected such that their direct sum forms the finite-dimensional166

subspaces for the original (single-scale) trial and test functions:167

Vh = Vc ⊕
nes⊕
α=1

V fα, Wh =Wc ⊕
nes⊕
α=1

W f
α. (10)

The fine-scale spaces are defined (W f
α = V fα) such that the trial and test functions are non-168

zero only within the corresponding enrichment subdomain Ωα and vanish elsewhere except at169

the subdomain boundary where the external traction (denoted by Γt
α) is applied:170

V fα ∋ u = 0; when X ∈ Γu
α, (11)
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where Γu
α = Γα\Γt

α. Equation (11) implies that homogeneous Dirichlet boundary conditions are171

imposed at the boundary of each subdomain Ωα for fine-scale displacement fields, except at Γt
α172

boundary where the external traction is applied. This boundary condition has been previously173

used in similar work [29] for modeling transient dynamical response of phononic crystals and174

acoustic metamaterials and in other works [47, 56, 36, 37]. Other boundary conditions (e.g.,175

mixed boundary conditions) have also been previously investigated [55]. Moreover, it follows176

from the direct sum decomposition given in Eq. (10) that V fα ∩ V fβ = ∅. Similarly, in order to177

ensure direct sum decomposition, the finite-dimensional coarse-scale function spaces Vc ⊂ V178

and Wc ⊂ W are selected such that:179

∥u− v∥Ωα
̸= 0; u ∈ Vc; v ∈ V fα, (12)

for any (u,v) pair, and ∥ · ∥Ωα is L2 norm over Ωα.180

Substituting Eqs. (7) and (9) in Eq. (5), one can decompose the weak form of the linear181

momentum balance equation into two tightly coupled problems. The coarse-scale problem is182

defined over the entire problem domain as follows:183 ∫
Ω
δuc · ρ0 üc dV +

∫
Ω
∇Xδu

c : P
(
X, t,uc,uf,α

)
dV =

−
nes∑
α=1

∫
Ωα

δuc · ρ0 üf,α dV +

∫
Ω
δuc ·B dV +

∫
Γt

δuc · T̃ dA.

(13)

The terms on the left-hand side of Eq. 13 correspond to kinetic energy and strain energy at the184

coarse scale, respectively, while the right-hand side terms correspond to the external work due185

to fine-scale dynamics, body force, and traction, respectively. Similarly, the fine-scale problem186

in each subdomain Ωα is obtained as:187 ∫
Ωα

δuf,α · ρ0üf,α dV +

∫
Ωα

∇Xδu
f,α : P

(
X, t,uc,uf,α

)
dV =

−
∫
Ωα

δuf,α · ρ0üc dV +

∫
Ωα

δuf,α ·B dV +

∫
Γt
α

δuf,α · T̃ dA.
(14)

The terms of Eq. 14 are interpreted in an analogous fashion to the coarse scale problem. The188

traction term is only present at the subdomain boundaries that coincide with the exterior189

Neumann boundaries of the problem domain, as the fine-scale test function vanishes at all190

other subdomain boundaries (see Eq. (11)). The coupling terms in the coarse and fine-scale191

problems are highlighted in red, shown respectively in Eqs. (13) and (14).192

The boundary and initial conditions for the coarse-scale problem and the initial conditions193

for the fine-scale problems complete the multiscale governing equations. The initial state at194
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the fine-scale is taken to be undeformed and stationary:195

uf,α(X, 0) = 0, u̇f,α(X, 0) = 0, X ∈ Ωα. (15)

The boundary and initial conditions for the coarse-scale problem are:196

uc(X, t) = ũ(X, t), X ∈ Γu; P(X, t) ·N = T̃(X, t), X ∈ Γt; (16a)

uc(X, 0) = û(X), u̇c(X, 0) = v̂(X), X ∈ Ω. (16b)

The initial displacement (û) and velocity (v̂) fields are selected such that they can be accurately197

described by the coarse-scale discretization.198

3 Computational Approximation of Two-Scale PDEs199

This section first describes the spatial and temporal discretization methods used for the mul-200

tiscale governing equations in the proposed VME formulation. The details of the evaluation201

of non-standard element matrices and vectors due to multiscale discretization and estimation202

of stable time increments based on the time integration scheme are discussed later.203

Numerical simulation of the dynamic response of complex microstructures, particularly204

in short-wavelength regimes, is often performed using higher-order elements or dissipative205

time integration schemes. In a related work, spectral elements up to the seventh order were206

employed for coarse-scale discretization, where each coarse-scale element corresponded to a207

unit cell [29]. In this study, we employ a strategy that resembles h−refinement by discretizing208

each unit cell with a patch of coarse-scale elements to accurately capture wave propagation in209

short-wavelength regimes.210

3.1 Spatial discretization211

Consider the decomposition of an enrichment subdomain, Ωα into a patch of coarse elements:212

Ωα =
⋃necp

E=1∆
c
αE

, where a coarse finite element within that patch is denoted with ∆c
αE

. Using213

the classical Bubnov-Galerkin approach, the coarse-scale displacement, weighting function,214

and their gradients for a coarse-scale element are written as:215

uc
αE

= Nc
αE

dc
αE

= Nc
αE

Lc
αE

dc, (17a)

[∇uc
αE

] = Bc
αE

dc
αE

= Bc
αE

Lc
αE

dc, (17b)

where uc
αE

(X, t) := uc
(
X ∈ ∆c

αE
, t
)
. [·] denotes the vectorized form of the tensorial entities.216

Einstein’s summation convention does not apply to the index, αE . Nc
αE

(X) and Bc
αE

(X)217
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are the coarse-scale element shape function matrix and shape function gradient matrix, re-218

spectively, for the coarse-scale element, ∆c
αE

. dc
αE

(t) is the nodal displacement vector for the219

coarse-scale element. The local vector is mapped to the corresponding global vector, dc(t)220

through the gather matrix, Lc
αE

. The conventional forms typically used in the finite element221

literature is employed for these matrices (see e.g., Ref. [15]). The discretizations of the weight222

function and its gradient are similarly defined.223

Each enrichment subdomain is discretized a second time, using nef fine-scale elements that224

resolves the underlying heterogeneous microstructure: Ωα =
⋃nef

e=1∆
f
αe
. The fine and coarse-225

scale discretizations are performed in a compatible fashion; i.e., ∆c
αE

=
⋃

e∈IαE
∆f

αe
for any226

macroscale element. IαE denotes an index set of fine scale elements that resolve the coarse227

scale element, αE . The displacement, weighting function, and their gradients for a fine-scale228

element are given as:229

uf
αe

= Nf
αe
df
αe

= Nf
αe
Lf
αe
df,α, (18a)

[∇uf
αe
] = Bf

αe
df
αe

= Bf
αe
Lf
αe
df,α, (18b)

in which, uf
αe
, Nf

αe
and Bf

αe
are defined analogously to their coarse scale counterparts. The230

gather matrix, Lf
αe

maps the nodal displacement vector associated with element, αe (i.e., d
f
αe
)231

with the nodal displacement vector for the whole enrichment subdomain, df,α.232

Using Eqs. (17) and (18), the discretized forms of Eqs. (13) and (14) are obtained as:233

Mcd̈c +

nes∑
α=1

Mcfαd̈fα + f cint

(
dc, {df,α}

)
= f cext; (19a)

Mfαd̈fα +Mfαcd̈c,α + f fαint

(
dc,α,df,α

)
= f fαext, α = 1 to nes; (19b)

where dc,α denotes the nodal displacement vector corresponding to the enrichment subdomain,234

Ωα and related to the total displacement vector through a gather matrix: dc,α = Lc
αd

c. Mc
235

and Mfα are the coarse- and fine-scale mass matrices, respectively; Mcfα and Mfαc are the236

mass matrices that describe scale interactions. The internal force vectors at the coarse and237

fine-scales are given by f cint, f fαint respectively, and the external force vectors at coarse and238

fine-scale are f cext and f fαext, respectively. These are obtained by assembling the element-level239
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matrices and internal and external force vectors as shown below:240

Mc =
∑
α,E

(
Lc
αE

)T
Mc

αE
Lc
αE

; Mcfα =
(
Mfαc

)T
=

∑
E, e∈IαE

(
Lc
αE

)T
Mα

E,eL
f
αe
; (20a)

Mfα =
∑
e

(
Lf
αe

)T
Mfα

e Lf
αe
; f cint =

∑
α,E

(
Lc
αE

)T
f c,αE
int ; (20b)

f fαint =
∑
e

(
Lf
αe

)T
f fα,eint ; f cext =

∑
α,E

(
Lc
αE

)T
f c,αE
ext ; f fαext =

∑
e

(
Lf
αe

)T
f fα,eext . (20c)

The corresponding coarse-scale element-level matrices and force vectors are obtained as:241

Mc
αE

=

∫
ΩαE

(
Nc

αE

)T
ρ0N

c
αE

dV ; f c,αE
int =

∫
ΩαE

(
Bc

αE

)T
[P] dV ; (21a)

f c,αE
ext =

∫
ΩαE

(
Nc

αE

)T
B dV +

∫
Γt

(
Nc

αE

)T
T̃ dA ; (21b)

where [P] is the vectorized form of the first Piola-Kirchhoff stress tensor. The vectorized form242

(distinct from the Voigt notation) includes all components of the stress tensor since it is not243

symmetric. In the case of a composite microstructure where the density spatially varies, the244

integrations for Mc
αE

and f c,αE
ext are performed by further discretizing the coarse-scale elements245

into its fine-scale counterparts or by approximating the integration by averaging the density.246

The integration for the internal force vector is performed over the underlying fine-scale grid247

to capture the stress variations within the microstructure.248

The fine-scale element-level matrices and force vectors are obtained as:249

Mfα
e =

∫
Ωαe

(
Nf

αe

)T
ρ0N

f
αe
dV ; Mα

E,e =

∫
Ωαe

(
Nc

αE

)T
ρ0N

f
αe
dV ; (22a)

f fα,eint =

∫
Ωαe

(
Bf

αe

)T
[P] dV ; f fα,eext =

∫
Ωαe

(
Nf

αe

)T
B dV +

∫
Γt
αe

(
Nf

αe

)T
T̃ dA. (22b)

The evaluation of Mc
αE

and Mα
E,e, f

c,αE
int and f fα,eint is non-standard and further discussed in250

Section 3.4. The remaining entities in Eqs. (21) and (22) are evaluated using the standard251

element-level integration procedure.252

3.2 Time integration253

The coupled two-scale semi-discrete multiscale equations given in Eq. (19) are integrated it-254

eratively using an operator-split procedure until convergence is obtained for each time step.255

Within the operator-split procedure, various time-integration schemes for the coarse-scale and256

fine-scale equations are employed in this work, namely: (1) explicit update for both equa-257

tions using the central difference method, (2) explicit Noh and Bathe [43] scheme for both258
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equations, and (3) mixed explicit-implicit time integration scheme with explicit integration for259

the coarse-scale equations using Noh and Bathe [43] scheme and implicit integration for the260

fine-scale equations using Bathe and Baig [5] scheme. The performance of these integration261

schemes is assessed in Section 4.4.262

The following notation is adopted: Consider that the global displacement, velocity, and263

acceleration vectors at the coarse and fine scales are known at time, tn (also referred to as the264

nth time step). These vectors are denoted by
(
dc
n, ḋ

c
n, d̈

c
n

)
and

(
df,α
n , ḋf,α

n , d̈f,α
n

)
respectively.265

The time integration results in the corresponding coarse and fine-scale fields at the (n + 1)th266

time step, which are denoted as
(
dc
n+1, ḋ

c
n+1, d̈

c
n+1

)
and

(
df,α
n+1, ḋ

f,α
n+1, d̈

f,α
n+1

)
respectively. The267

state of a vector at the kth iteration of the operator-split procedure within [tn, tn+1] is denoted268

by a second subscript
(
e.g., d̈c

n+1,k

)
.269

3.2.1 Explicit-explicit central difference method (EE-CDM)270

In this method, both the coarse- and the fine-scale equations (Eqs. (19)a-b) are integrated271

using the explicit central difference method. The implementation procedure is provided in272

Algorithm 1. At a given time increment, tn, the algorithm updates the multiscale nodal dis-273

placement vectors, first. The acceleration vectors are computed iteratively until convergence.274

Convergence is assessed based on discrete L∞ norm, in order to ensure that the accuracy toler-275

ance is strictly enforced component-wise. Upon convergence, the velocity vectors are updated.276

EE-CDM is the most straightforward and efficient method among the three investigated, but,277

similar to the single-scale implementation, the multiscale implementation proposed here also278

could suffer from instability.279

3.2.2 Explicit-explicit sub-step method (EE-SSM)280

Despite its large time step stability limit among explicit schemes, it is well-known that disper-281

sion errors in high-frequency modes can lead to degraded solution accuracy when the central282

difference method is employed. The integration procedure for EE-SSM, which is used to allevi-283

ate spurious high frequency dispersion, is described in Algorithm 2. The coarse and fine-scale284

problems are integrated using an explicit sub-step time integration scheme proposed by Noh285

and Bathe [43]. In this scheme, the coarse and fine-scale fields are integrated in two steps,286

first at a sub-step denoted by tn+p (0 < p < 1) and then at the full step denoted by tn+1. In287

both updates, the operator-split procedure is used to iteratively solve for coarse- and fine-scale288

fields.289
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Algorithm 1 Implementation of EE-CDM.
1: Input: Given the state at tn and the external force vectors at tn+1.
2: Estimate a stable time increment, ∆t, for the multiscale problem as described in Section 3.5. Set
tn+1 = tn +∆t and iteration count k = 1.

3: Set the initial guess for the fine-scale acceleration: d̈f,α
n+1,0 = d̈f,α

n .
4: Update the displacement fields:

df,α
n+1 = df,α

n +∆t ḋf,α
n +

(∆t)2

2
d̈f,α
n ; α = 1, 2, . . . , nes,

dc
n+1 = dc

n +∆t ḋc
n +

(∆t)2

2
d̈c
n.

5: At any arbitrary iteration count, k:
a: Explicitly integrate the coarse-scale acceleration:

Mcd̈c
n+1,k +

nec∑
α=1

Mcfαd̈f,α
n+1,k−1 + f cint

(
dc
n+1,d

f
n+1

)
= f cext.

b: Explicitly integrate the fine-scale acceleration for each subdomain, α:

Mfαd̈f,α
n+1,k +MfαcLc

αd̈
c
n+1,k + f fαint

(
dc,α
n+1,d

f,α
n+1

)
= f fαext.

c: Check for convergence :

ef,αn+1 :=
||d̈f,α

n+1,k − d̈f,α
n+1,k−1||∞

||d̈f,α
n+1,k−1||∞

< tolf ; ecn+1 :=
||d̈c

n+1,k − d̈c
n+1,k−1||∞

||d̈c
n+1,k−1||∞

< tolc .

6: If 5.c is met then d̈f,α
n+1 ← d̈f,α

n+1,k and d̈c
n+1 ← d̈c

n+1,k.
7: Else k ← k + 1, and go to 5 for the next iteration.
8: Update the velocity fields:

ḋf,α
n+1 = ḋf,α

n +
∆t

2

(
d̈f,α
n + d̈f,α

n+1

)
; α = 1, 2, . . . , nes,

ḋc
n+1 = ḋc

n +
∆t

2

(
d̈c
n + d̈c

n+1

)
.

9: return
(
dc
n+1, ḋ

c
n+1, d̈

c
n+1

)
and

(
df,α
n+1, ḋ

f,α
n+1, d̈

f,α
n+1

)
.

3.2.3 Explicit-implicit sub-step method (EI-SSM)290

We also explore an explicit-implicit sub-step time integration method, where the coarse-scale291

problem is integrated explicitly using the Noh and Bathe [43] scheme and the fine-scale prob-292

lems are implicitly integrated using the Bathe and Baig [5] scheme. The resulting multiscale293

scheme is not unconditionally stable as the coarse-scale equation is updated explicitly, but294

the stable time increment of the coarse-scale problem is expected to be larger than that of295
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Algorithm 2 Implementation of EE-SSM.
1: Input: Given the state at tn and the external force vectors at tn+1.
2: Estimate a stable time increment, ∆t, and set the sub-step ratio p. tn+p = tn + p∆t and iteration

count k = 1. Set the constants of integration:

q1 =
1− 2p

2p(1− p)
; q2 =

1

2
− pq1; q0 = −q1 − q2 +

1

2
; a0 = p∆t; a1 =

1

2
(p∆t)2 ;

a2 = a0/2; a3 = (1− p)∆t; a4 =
1

2
a23; a5 = q0a3; a6 = (0.5 + q1) a3; a7 = q2a3.

Sub-step:
3: Compute the external force vectors at tn+p.

4: Set the initial guess for the fine-scale acceleration: d̈f,α
n+p,0 = d̈f,α

n .
5: Update the fine- and coarse-scale displacement fields:

df,α
n+p = df,α

n + a0 ḋ
f,α
n + a1d̈

f,α
n ; dc

n+p = dc
n + a0ḋ

c
n + a1d̈

c
n.

6: At an arbitrary increment, k > 0:
a: Explicitly integrate the coarse- and fine-scale accelerations:

Mcd̈c
n+p,k +

nes∑
α=1

Mcfαd̈f,α
n+p,k−1 + f cint

(
dc
n+p,d

f
n+p

)
= f cext,

Mfαd̈f,α
n+p,k +MfαcLc

αd̈
c
n+p,k + f fαint

(
dc,α
n+p,d

f,α
n+p

)
= f fαext.

b: Check for convergence:
ef,αn+p < tolf ; ecn+p < tolc .

7: If 6.b is met then d̈f,α
n+p ← d̈f,α

n+p,k and d̈c
n+p ← d̈c

n+p,k.
8: Else k ← k + 1, and go to 6 for the next iteration.
9: Update the velocity fields:

ḋf,α
n+p = ḋf,α

n + a2
(
d̈f,α
n + d̈f,α

n+p

)
; ḋc

n+p = ḋc
n + a2

(
d̈c
n + d̈c

n+p

)
.

Full-step:
10: Set k = 1; Compute the external force vectors at tn+1 and set the initial guess for the fine-scale

acceleration: d̈f,α
n+1,0 = d̈f,α

n+p.
11: Update the fine- and coarse-scale displacement fields:

df,α
n+1 = df,α

n+p + a3ḋ
f,α
n+p + a4d̈

f,α
n+p; dc

n+1 = dc
n+p + a3ḋ

c
n+p + a4d̈

c
n+p.

12: Iterate the coarse- and fine-scale accelerations until convergence by following step 5 of the Algorithm
1 provided for the central difference method.

13: Update the velocity fields:

ḋf,α
n+1 = ḋf,α

n+p + a5d̈
f,α
n + a6d̈

f,α
n+p + a7d̈

f,α
n+1; ḋc

n+1 = ḋc
n+p + a5d̈

c
n + a6d̈

c
n+p + a7d̈

c
n+1.

14: return
(
dc
n+1, ḋ

c
n+1, d̈

c
n+1

)
and

(
df,α
n+1, ḋ

f,α
n+1, d̈

f,α
n+1

)
.
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fine-scale problems. Hence, the time increment for this scheme is expected to be governed by296

accuracy requirements rather than the stability constraints of the fine-scale equations. This297

approach could be advantageous compared to the explicit-explicit sub-step method, if the time298

step required to ensure accuracy is sufficiently larger than the stability limit such that the over-299

all integration method is computationally beneficial despite the added computational cost of300

the implicit update. A microstructure with high stiffness contrast, where the stability of the301

fine-scale explicit update severely constrains the time step size, is such a problem.302

As the model exhibits geometric and material nonlinearity, the Newton-Raphson method is303

employed to solve the nonlinear fine-scale equations in EI-SSM. To solve the fine-scale equations304

using the Newton-Raphson method, the first variation of the residual given in Eq. (14) is taken305

along the direction
(
d̃uf,α, d̃üf,α

)
to obtain the corresponding Jacobian. The incremental fine-306

scale fields are discretized analogously as described in Eq. (18) to obtain
(
d̃df,α, d̃d̈f,α

)
and307

using the classical Bubnov-Galerkin approach, the semi-discrete version of the Jacobian is308

obtained. The semi-discrete Jacobian and the semi-discrete residual (given in Eq. (19)b) form309

the linearized system of equations for the incremental fine-scale fields as shown below:310

Mfα d̃d̈f,α +Kfα
(
dc,α,df,α

)
d̃df,α = −

(
Mfαd̈f,α + f fαint

(
dc,α,df,α

)
+Mfαcd̈c − f fαext

)
, (23)

where Kfα is the fine-scale tangent stiffness matrix. It can be obtained using the corresponding311

element-level matrix as shown below:312

Kfα =
∑
e

(
Lf
αe

)T
Kfα

e Lf
αe
, where Kfα

e =

∫
Ωαe

(
Bf

αe

)T
[D]Bf

αe
dV. (24)

The [D] is the matrix form of the fourth-order tensor ∂P/∂F
(
dc,α,df,α

)
. The fully-discrete313

version of the linearized system of fine-scale fields is obtained by substituting the incremental314

acceleration in terms of incremental displacement in Eq. (23). To do the same, the implicit315

acceleration update is linearized in terms of the unknown displacement field, both at the sub-316

step and full-step. For the sub-step, the following linear system of equations is obtained which317

is solved iteratively using the Newton-Raphson (N-R) method:318 (
4

p2∆t2
Mfα +Kfα

(
dc,α
n+p,

(
df,α
n+p,k

)(i−1)
))(

d̃d
f,α
n+p,k

)(i)
=

−Mfα
(
d̈f,α
n+p,k

)(i−1) − f fαint

(
dc,α
n+p,

(
df,α
n+p,k

)(i−1)
)
−Mfαcd̈c

n+p,k + f fαext,

(25)

where (i) superscript corresponds to the vectorial fields at the ith iteration of the N-R method.319
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Similarly, the following linear system of equations is obtained at the full-step:320 (
c3c3M

fα +Kfα
(
dc,α
n+1,

(
df,α
n+1,k

)(i−1)
)) (

d̃d
f,α
n+1,k

)(i)
=

−Mfα
(
d̈f,α
n+1,k

)(i−1) − f fαint

(
dc,α
n+1,

(
df,α
n+1,k

)(i−1)
)
−Mfαcd̈c

n+1,k + f fαext,
(26)

which can be similarly solved using N-R method.321

The implicit update of the fine-scale problem for the sub-step and full-step are described322

in Algorithm 3. The coarse-scale problem update remains the same as discussed in Algorithm323

2. The sub-step ratio, p, is taken to be the same for both coarse and fine-scale problems for324

consistent evaluation of fields for both scales at the sub-step and full-step. Unlike EE-CDM325

and EE-SSM, the stable time increment is chosen based on the coarse-scale problem.

Algorithm 3 Implementation of EI-SSM.
1: Input: Given the state at tn and the external force vectors at tn+1.
2: Estimate a stable time increment, ∆t, and set the sub-step ratio p. tn+p = tn + p∆t and iteration

count k = 1. Get the integration constants for the implicit scheme as given below:

c1 = (1− p)/(p∆t); c2 = −1/((1− p)p∆t); c3 = (2− p)/((1− p)∆t).

Sub-step:
3: Compute the external force vector at tn+p; and set the initial guesses: df,α

n+p,0 = df,α
n , d̈f,α

n+p,0 = d̈f,α
n .

4: At an arbitrary increment, k > 0:
a: The coarse-scale acceleration vector is updated as given in step 5 of Algorithm 2.
b: Solve Eq.(25) iteratively for the fine-scale displacement and acceleration corresponding to each
subdomain, α, and the updates for the ith N-R iteration are shown below:(

df,α
n+p,k

)(i)
=
(
df,α
n+p,k

)(i−1)
+
(
d̃d

f,α
n+p,k

)(i)
;(

d̈f,α
n+p,k

)(i)
=
((

df,α
n+p,k

)(i) − df,α
n − ḋf,α

n p∆t
) 4

p2∆t2
− d̈f,α

n .

The Newton iterations are performed until the norm of the discrete residual vector (the right-hand side
of the Eq. (25)) is below a set tolerance value.
c: Check the following error quantities in addition to those mentioned in step 6.b of Algorithm 2:

||df,α
n+p,k − df,α

n+p,k−1||∞
||df,α

n+p,k−1||∞
< tolf .

5: If 4.c is met, then df,α
n+p ← df,α

n+p,k, d̈
f,α
n+p ← d̈f,α

n+p,k, and d̈c
n+p ← d̈c

n+p,k.
6: Else k ← k + 1, and go to 4 for the next iteration.
7: The coarse-scale velocity is updated as in step 9 of Algorithm 2, and the fine-scale velocity update is:

ḋf,α
n+p =

(
df,α
n+p − df,α

n

) 2

p∆t
− ḋf,α

n ; α = 1, 2, . . . , nes.

326
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Algorithm 3 Implementation of EI-SSM (cont.)
8: Full-step:
9: Set k = 1; Compute the external force vectors at tn+1 and set the initial guesses: df,α

n+1,0 = df,α
n+p,

d̈f,α
n+1,0 = d̈f,α

n+p.
10: At an arbitrary increment, k > 0:

a: Update the coarse-scale accelerations as given in step 11 of Algorithm 2.
b: Solve Eq.(26) iteratively for fine-scale displacement and acceleration, and the updates for the ith

iteration are shown below:(
df,α
n+1,k

)(i)
=
(
df,α
n+1,k

)(i−1)
+
(
d̃d

f,α
n+1,k

)(i)
;(

d̈f,α
n+1,k

)(i)
= c3

(
c3
(
df,α
n+1,k

)(i)
+ c2d

f,α
n+p + c1d

f,α
n

)
+ c2ḋ

f,α
n+p + c1ḋ

f,α
n .

The Newton iterations are performed until the norm of the residual vector (the right-hand side of the
Eq. (26)) is below a set tolerance value.
c: Check the following error quantities in addition to those mentioned in step 5.c of Algorithm 1:

||df,α
n+1,k − df,α

n+1,k−1||∞
||df,α

n+1,k−1||∞
< tolf ; α = 1, 2, . . . , nes.

11: If 10.c is met, then df,α
n+1 ← df,α

n+1,k, d̈
f,α
n+1 ← d̈f,α

n+1,k, and d̈c
n+1 ← d̈c

n+1,k.
12: Else k ← k + 1, and go to 10 for the next iteration.
13: The coarse-scale velocity is updated as in step 13 of Algorithm 2 and the fine-scale velocity update is:

ḋf,α
n+1 = c3d

f,α
n+1 + c2d

f,α
n+p + c1d

f,α
n .

14: return
(
dc
n+1, ḋ

c
n+1, d̈

c
n+1

)
and

(
df,α
n+1, ḋ

f,α
n+1, d̈

f,α
n+1

)
.

3.3 Overall algorithm327

The overall algorithm for the semi-discrete multiscale equations is described in Algorithm 4.328

Given the initial displacement and velocity conditions at coarse- and fine-scales, the initial329

accelerations at both scales are obtained iteratively until convergence is achieved. For an arbi-330

trary time step, the stable time increment is obtained based on the time integration method,331

and appropriate updates to the coarse- and fine-scale fields are performed.332

3.4 Element matrices and vectors333

The evaluation of element-level matrices and vectors given in Eqs. (21), (22) requires numerical334

integration of the appropriate entities that involve coarse-scale basis functions only, fine-scale335

basis functions only, and some involving both coarse and fine-scale basis functions. For brevity,336

the non-standard integration procedure for the internal force vector (f c,αE
int ) in the coarse-337

scale problem is discussed below, and other non-standard element-level entities are evaluated338
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Algorithm 4 Algorithm for multiscale problem

1: Input: Given an initial displacement and velocity condition for the coarse-scale problem
(
dc
0, ḋ

c
0

)
,

along with loading and boundary conditions. The initial fine-scale displacement and velocity are(
df,α
0 = 0, ḋf,α

0 = 0
)
.

2: Initial acceleration: The initial acceleration for coarse-scale
(
d̈c
0

)
and fine-scale

(
d̈f,α
0

)
problems are

obtained from iteratively solving Eq. (19a) and Eq. (19b), until convergence is achieved. Set n = 0.
3: Update for (n+ 1)th time step:

a: Known fields at nth time step: coarse-scale
(
dc
n, ḋ

c
n, d̈

c
n

)
and fine-scale

(
df,α
n , ḋf,α

n , d̈f,α
n

)
.

b: Get a stable time increment (∆t) for the multiscale problem as discussed in Sec. 3.5, which depends
on the time integration method being employed.

c: The coarse-scale
(
dc
n+1, ḋ

c
n+1, d̈

c
n+1

)
and fine-scale

(
df,α
n+1, ḋ

f,α
n+1, d̈

f,α
n+1

)
using Algorithm 1 for EE-

CDM, Algorithm 2 for EE-SSM, and Algorithm 3 for EI-SSM.
4: Set n← n+ 1, and repeat Step 3 until desired.

similarly. The internal force vector in the coarse-scale problem is shown below:339

f c,αE
int =

∫
ΩαE

(
Bc

αE

)T
[P](X) dV =

∑
e∈IαE

∫
Ωαe

(
Bc

αE

)T
[P] dV, (27)

where IαE is index set of fine-scale elements resolving the coarse-scale element, αE . The340

evaluation of each of the element-level entities at the fine scale in the summation given in341

Eq. (27) requires the interpolated values of the coarse-scale basis functions and their derivatives342

at the integration points of the fine-scale parent domain. This is not readily available as the343

coarse-scale functions are defined on the coarse-scale parent domain. To obtain the interpolated344

values, a two-scale mapping procedure is employed as discussed in Ref. [29]. This procedure345

involves first finding the coordinate of the integration point in the physical domain, using the346

fine-scale element isoparametric mapping, and then applying the coarse-scale element inverse347

isoparametric mapping to find the coordinates of the same integration point in the coarse-scale348

parent domain. The coordinate of the integration point of the fine-scale parent domain (ξf,αe)349

in the coarse-scale parent domain (ξc,αE ) is given by:350

ξc,αE =M−1
c

(
Mf

(
ξf,αe

))
(28)

whereMf andMc denote the fine-scale and coarse-scale isoparameteric mappings.351
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3.5 Critical time increment for multiscale and direct numerical352

simulations353

For direct numerical simulations of a nonlinear system of governing equations for structural354

dynamics, linearized stability analysis is performed to determine the critical time increment355

associated with a time integration method. Firstly, the generalized amplification matrix form356

is obtained by employing the updates in the time integration scheme to the semi-discrete357

equations. Then, the generalized amplification eigenvalue problem is decoupled into modal358

equations by expanding its eigenvectors in terms of the system eigenvectors KΦ = ω2
0MΦ359

[8]. The critical time increment is obtained by restricting the moduli of the complex roots of360

the characteristic equation for the highest frequency mode in the uncoupled equations to be361

less than or equal to 1. Noh and Bathe [43] employed the Routh-Hurwitz stability criteria on362

the characteristic polynomial of the amplification matrix in decoupled modal equations for the363

explicit sub-step method to obtain a critical time increment as shown below:364

∆tcrit = CFLmax
I

2

(ω0)I
, (29)

where I is the index for eigenvalues (ω0)I , and the maximum value of Courant–Friedrichs–Lewy365

(CFL) allowed is 1/p, where p is the sub-step ratio. It is important to note that the explicit366

sub-step method [43] has a higher stability limit than the explicit central difference method,367

for which the maximum value of CFL allowed is 1.0.368

In summary, for direct numerical simulations, the critical time increment is obtained in369

terms of the maximum eigenvalue of the system KΦ = ω2
0MΦ. The maximum eigenvalue370

is estimated based on the element level eigenvalue problem, as the maximum absolute eigen-371

value of the unconstrained system is upper-bounded by the maximum absolute element level372

eigenvalue [7]. Moreover, by the Rayleigh nesting theorem, the maximum eigenvalue of the373

assembled system with essential boundary conditions enforced is bounded by the maximum374

eigenvalue of the unconstrained element level eigenvalue problem [8]. The estimate of the max-375

imum eigenvalue for the element level eigenvalue problem in DNS for the examples considered376

here is discussed in Appendix B.377

For the multiscale problem, similar ideas are employed to determine the critical time in-378

crements for both coarse- and fine-scale equations. As the operator-split procedure is used to379

solve coarse and fine-scale problems iteratively, the stable time increment for both problems380

can be deduced based on the linearized stability analysis of individual problems.381

The linearized weak forms of the coarse- and fine-scale PDEs are required for the stability382

analysis. The discrete form of the linearized weak form for the fine-scale problem is shown in383

Eq. (23). Following a similar procedure, the discretized form of the linearized weak form for384
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the coarse-scale PDE is obtained as follows:385

Mcd̃d̈c +Kcd̃dc = −Mcd̈c −
nes∑
α=1

Mcfαd̈fα − f cint

(
dc,df

)
+ f cext, (30)

where Kc is the coarse-scale stiffness matrix, and (d̃dc, d̃d̈c) denote the discrete perturbations386

in coarse-scale fields. Kc can be obtained using the element-level contributions as shown below:387

Kc =
∑
α,E

(
Lc
αE

)T
Kc

αE
Lc
αE
, where Kc

αE
=
∑

e∈IαE

∫
Ωαe

(
Bc

αE

)T
[D]Bc

αE
dV. (31)

Following the procedure discussed for DNS, one can obtain the critical time increments for388

linearized coarse-scale and fine-scale systems given by:389

coarse-scale system- KcΦc = (ωc
0)

2McΦc,

fine-scale system- KfαΦfα =
(
ωfα
0

)2
MfαΦfα .

(32)

The critical time increments for the coarse-scale and fine-scale problems are as follows:390

∆tccrit = CFLmax
I

2

(ωc
0)I

,

∆tfαcrit = CFLmax
α

(
max

I

2

(ωfα
0 )I

)
.

(33)

The maximum eigenvalues for the coarse-scale and fine-scale problems are estimated based391

on the corresponding element-level problems, similar to DNS. The estimate of the maximum392

eigenvalue for the element-level eigenvalue problem in coarse and fine-scale differential equa-393

tions in VME simulations for the examples considered here is discussed in Appendix C. It is394

expected that the stable time increment of the coarse-scale problem will be larger than that395

of the fine-scale problem, as ωfα
0 >> ωc

0. Hence, the stable time increment for the multiscale396

problems based on the integration schemes can be deduced as follows:397

• For EE-CDM or EE-SSM algorithm, ∆tcrit = ∆tfαcrit. The CFL is chosen based on the398

integration scheme employed.399

• For the EI-SSM algorithm, it is given by ∆tcrit = ∆tccrit, as the implicit update for the400

fine-scale problem is unconditionally stable.401

4 Numerical Verification402

This section presents numerical examples of wave propagation in a one-dimensional domain403

modeled using the compressible Neo-Hookean material model (see Appendix A). While the404
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numerical schemes developed in this manuscript apply to multidimensional problems, one-405

dimensional cases directly address the issues associated with multiscale time integration sta-406

bility. We therefore restricted the numerical analysis to one-dimensional cases. First, the407

performance of time integration methods, including the explicit central difference method,408

explicit-explicit sub-step method, and explicit-implicit sub-step method, is evaluated for wave409

propagation in VME simulations for a homogeneous microstructure. Next, the effect of con-410

trast in the elastic modulus of a heterogeneous microstructure on wave propagation is exam-411

ined. Then, the effect of different initial displacement fields on wave propagation is examined in412

multiscale simulations, demonstrating that the VME approach accurately reproduces key wave413

propagation characteristics such as dispersion and attenuation, consistent with DNS results.414

Finally, the computational performance of explicit-explicit and explicit-implicit time integra-415

tion schemes is assessed under varying contrasts in the elastic modulus of a heterogeneous416

microstructure.417

The original equation of motion in the 1-D case is expressed in the following form:418

∂P (X, t)

∂X
= ρ0(X)

∂2u(X, t)

∂t2
, (34)

where P denotes the first Piola-Kirchhoff stress, and u is the displacement. The non-dimensional419

form of Eq. (34) is obtained by introducing the following entities:420

X̃ =
X

L
; t̃ =

v t

L
; P̃ =

P

EA
; ũ =

u

L
, (35)

where L is the length of the domain, v =
√
EA/ρA0 is the wave speed of material A, EA is421

the Young’s modulus of material A, and ρA0 is the mass density of material A in the reference422

configuration. Substituting Eq. (35) into Eq. (34), we obtain the non-dimensional form of the423

equation of motion:424

∂P̃ (X̃, t̃)

∂X̃
=
ρ0(X̃)

ρA0

∂2ũ(X̃, t̃)

∂t̃2
. (36)

The corresponding multiscale system is derived as described in Section 2. In what follows, the425

non-dimensional form of the governing equation is solved for all numerical examples demon-426

strated below. The (̃·) symbol is omitted from the non-dimensional entities for simplicity of427

the presentation.428

The initial conditions considered for all the examples demonstrated below are as follows429

(X ∈ [−1/2, 1/2]):430

u(X, 0) = a

(
1− tanh2

(
X

c

))
,

u̇(X, 0) = 0,

(37)
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and, the boundary conditions are u(−1/2, t) = 0 and u(1/2, t) = 0, unless stated otherwise.431

For all multiscale simulations (referred to as VME below) reported in this work, unless432

otherwise mentioned, the 1-D domain is discretized using nes = 100 unit cells, necp = 1 coarse433

element per unit cell, and nef = 8 fine-scale quadratic elements for each unit cell. The results434

of the multiscale simulations are compared with the direct numerical simulations (DNS), which435

are obtained using the finite element method, where the material microstructure is resolved436

throughout the problem domain. To be consistent, the domain is discretized into 800 quadratic437

elements for DNS. Further refinement of the domain does not result in significant accuracy438

improvements in the cases discussed below. The sub-step ratio for the EE-SSM or EI-SSM of439

time integration in VME simulations and explicit sub-step integration in DNS is taken to be440

p = 0.54, as suggested in Ref. [43]. The tolerance value for convergence between coarse and441

fine-scale problems in VME simulations is 1E-3 for all time-integration methods. The tolerance442

value for the Newton-Raphson iterations in the fine-scale problem for implicit updates at both443

sub-step and full step is 1E-10.444

4.1 Homogeneous domain445

In this section, we assess the performance of different time integration schemes for wave prop-446

agation for both VME and DNS simulations. The initial displacement profile is obtained using447

Eq. (37) with a = 0.04 and c = 0.05.448

(a) (b)

Figure 1: Evolution of displacement with time predicted using the explicit central difference methods for
the homogeneous material case with (a) DNS and (b) VME methods.

We first consider the homogeneous microstructure within all coarse-scale elements, by which449

ρ0/ρ
A
0 = 1 and E/EA = 1. Figure 1 shows the evolution of the total displacement profile for450

21



a homogeneous microstructure using the explicit central difference method for both DNS and451

VME (using the EE-CDM approach) simulations. The results of the VME simulations are452

reported in the total form where the fine- and coarse-scale parts of the solution are evaluated453

separately and summed. Both the DNS and VME simulation results show that the initial454

displacement profile induces two waves traveling in opposite directions, consistent with the455

D’Alembert solution for linear wave propagation. The evolution of (element-averaged) stretch456

along the X direction given by F = 1+du/dX, is shown in Fig. 2. Material points with F > 1457

indicate stretching, while those with F < 1 indicate compression.458

Due to the geometric and material nonlinearities in the Neo-Hookean model, the local wave459

speed becomes amplitude-dependent, leading to wave steepening. Specifically, the wave speed460

is lower in the tensile region than in the compressive region as the tangent modulus in compres-461

sion is larger than in tension, for the same magnitude of displacement gradient (see Eq. (B.3)462

in Appendix B), resulting in asymmetric propagation. As shown in Fig. 1, this asymmetry463

manifests as a narrower crest on the tensile (left) side and a broader crest on the compressive464

(right) side, along with a reduction in amplitude on the tensile side. The compressive part of465

the traveling wave on the left side travels faster than the tensile part, leading to a reduction466

of the peak of the displacement wave as a function of time. Spurious oscillations appear in467

the displacement and strain wave profiles due to numerical dispersion errors introduced by468

the central difference method, particularly affecting high-frequency components of the solu-469

tion. The numerical dispersion effects are apparent after t = 0.249 for both DNS and VME470

simulations.471

Figure 2: Averaged stretch over the element for the homogeneous material case in DNS.

Figure 3 shows a comparison of the displacement waves predicted by the VME and DNS472

approaches using dissipative integration schemes. The DNS simulation employs the explicit473
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sub-step integration method proposed in Ref. [43], whereas for VME simulations, the EE-SSM474

and EI-SSM are utilized. CFL = 1 is used for both DNS and EE-SSM-based VME simulations,475

while CFL = 0.5 is taken for EI-SSM-based VME simulations. As evident in Fig. 3, spurious476

oscillations do not develop when the dissipative methods are employed. This is because the477

contribution of high-frequency modes to the overall solution is reduced in these methods by478

decreasing the spectral radius of the amplification matrix for shorter wavelengths [5, 43]. In479

Fig. 3, the relative error based on the L∞ norm of the total displacement field between the VME480

and DNS simulations is 0.0051 for EE-SSM at t = 0.2993, and 0.0259 for EI-SSM at t = 0.2998.481

Hence, for the same discretization, the EE-SSM and EI-SSM-based VME simulations remove482

the high-frequency oscillations that are present for the CDM-based VME simulations. We note483

that, unlike computational homogenization-based methods, the fine-scale solution in VME is484

not necessarily induced by heterogeneity in the microstructure. In the case of a homogeneous485

domain, the fine-scale solution captures the discretization errors induced by the coarse-scale486

grid and effectively improves the accuracy of the solution. Figure 3a includes the results487

obtained using the coarse grid approximation alone, which deviates from the multiscale and488

the DNS solutions, especially at later times, where the relative error of the total displacement489

compared to DNS is 0.1504 at t = 0.2993. This is due to the accumulation of large numerical490

dispersion errors with coarse-grid approximation alone in the VME simulation.491

(a) (b)

Figure 3: Evolution of displacement profile with time for homogeneous microstructures using (a) EE-SSM,
(b) EI-SSM in VME simulations. In both figures, the colored solid lines correspond to VME results, while
the dotted lines in (a) correspond to the EE-SSM-based VME with coarse-grid approximation alone, and
in (b) correspond to DNS, at the same non-dimensional times as the colored solid lines.
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4.2 Heterogeneous domain492

In this section, we study the effect of contrast in the elastic modulus in a heterogeneous493

microstructure on wave propagation. Let the domain consist of a repeated two-phase mi-494

crostructure such that:495

E =

 EA, if X ∈ ΩA;

C EA, if X ∈ ΩB;
(38)

where C is the modulus contrast ratio, ΩA = [−kl − L/2, (k + β)l − L/2) and ΩB = [(k +496

β)l − L/2, (k + 1)l − L/2), with l the size of the microstructure, β the fraction of material497

A, and k ∈ {0, 1, . . . , (L/l) − 1}. The impedance mismatch is taken to be generated by498

the modulus contrast alone, and the mass density in the reference configuration is taken as499

constant, i.e. ρ0 = ρA0 .500

(a) (b)

Figure 4: Evolution of displacement profile with time using EE-SSM for VME and explicit sub-step method
for DNS simulations of heterogeneous microstructures (a) C = 2, (b) C = 0.2. In both figures, the colored
solid lines correspond to VME results, and the black dashed lines correspond to the DNS results.

Figures 4a-b show the propagation of the displacement wave induced by the initial displace-501

ment profile obtained using Eq. 37 with a = 0.04 and c = 0.05 for C = 2 (i.e., phase contrast502

of 2) and C = 0.2 (phase contrast of 5), respectively. The microstructure parameters are set to503

l = 0.01, β = 0.5, and each unit cell is associated with one coarse-scale element i.e., necp = 1.504

The DNS simulations were performed using the explicit sub-step integration method, whereas505

the VME simulations employ EE-SSM for time integration. A CFL number of 1 is used for506

C = 2, while CFL = 0.2 is used for C = 0.2. The CFL was reduced for the C = 0.2 case,507

as it was observed that using larger values of CFL led to numerical instability. This can hap-508

pen in nonlinear problems, as the stable time increment is obtained from linearized stability509
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analysis, and the actual response may deviate from the linear approximation. As observed510

in Fig. 4, the displacement waves travel faster or slower depending on the increase/decrease511

in the elastic modulus compared to the homogeneous microstructure. Due to contrast in the512

elastic modulus, especially for C = 0.2, wave reflections are more prominent, leading to os-513

cillations in the wave profile with evolution in time. However, no significant wave dispersion514

arises from the microstructural heterogeneity, as the initial wavelength is substantially larger515

than the microstructural length scale. As a result, the propagating wave interaction with the516

microstructure is limited. The VME simulation captures the resulting oscillations with reason-517

able accuracy compared to the DNS results, with the relative error in the total displacement518

compared to DNS being 0.02496 for C = 2, and 0.1218 for C = 0.2, both at t = 0.299.519

Figure 5 shows the evolution of the displacement field for a heterogeneous microstructure520

with C = 0.01 (phase contrast of 100) using EE-SSM for VME simulations and explicit sub-521

step method for DNS. The initial displacement profile is chosen with a = 0.005 in Eq. (37),522

and this is because if larger amplitudes are taken, then it results in unphysical compressive523

strains with stretch, F < 0.01. The CFL = 0.1 is taken for both VME and DNS results. The524

relative error in the displacement field obtained from VME compared to DNS is 0.27138 at525

t = 0.299, and this is resulting from a relatively larger tolerance chosen for convergence in526

iterations between coarse- and fine-scale problems.527

Figure 5: Evolution of displacement profile with time using EE-SSM for VME simulations for a heteroge-
neous microstructure with C = 0.01 and CFL = 0.1. The dashed black lines show DNS results at the same
non-dimensional times using the explicit sub-step method.

To investigate wave dispersion effects, the size of the microstructure is increased, thereby528

promoting the interaction between the propagating wave and the material heterogeneity. We529

consider l = 0.04, i.e., nes = 25 microstructures in the domain, and use a fine-scale grid530

nef = 32 per unit cell, and three coarse-scale grids are considered: (a) necp = 1, (b) necp = 2,531
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and (c) necp = 4. The error in the wave propagation is evaluated as a function of the number532

of elements in a patch of coarse-scale elements that discretize a unit cell. Figure 6a shows533

the evolution of the displacement profiles for smaller (l = 0.01, necp = 1) and larger (l =534

0.04, necp = 4) microstructures. The VME simulations employ the EE-SSM time integration535

scheme with a CFL number of 0.5. When the microstructure is larger, the displacement wave536

has a stronger interaction with the microstructure, resulting in wave dispersion. When the537

microstructural size increases, the propagating displacement wave interacts more strongly with538

the microstructure, and dispersive effects become significant. For example, the left-traveling539

peak is smaller for l = 0.04 compared to l = 0.01 – a consequence of dispersion. Similarly, on540

the right side, the broadening of the wave profile further confirms the presence of dispersive541

behavior. Figure 6b shows the relative error for l = 0.04 compared to DNS for an increasing542

number of elements in a patch of coarse elements, i.e., necp. The DNS were obtained with543

nel = 800 elements with a CFL = 0.5. As expected, the relative errors decrease with an544

increase in necp and also increase with time. This will become even more critical as the545

microstructural size increases, particularly in higher-dimensional problems.546

(a) (b)

Figure 6: Wave dispersion using EE-SSM for VME simulations of heterogeneous microstructure with C = 2,
nes = 25, and nef = 32. (a) necp = 4 for l = 0.04, and necp = 1 for l = 0.01, (b) comparison of relative
error with respect to DNS as a function of necp for l = 0.04.

4.3 Effect of initial displacement conditions547

In this section, we examine how the initial displacement profile influences wave propagation.548

In particular, we focus on the role of wavelength, controlled by the parameter c in Eq. (37),549

for a heterogeneous microstructure. The effect of amplitude on the solution has already been550
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demonstrated through its deviation from the D’Alembert solution as discussed in Section 4.1.551

For the heterogeneous case, the microstructure is defined with a phase contrast of 2 (by setting552

C = 0.5), size l = 0.01, and the coarse-scale mesh with necp = 1. The initial displacement field553

is specified with a = 0.01, c = 0.01 in Eq. (37). To distinguish the roles of nonlinearity and554

heterogeneity, we also compare the results with those of the homogeneous problem.555

Figure 7 shows the results obtained from the VME simulations for both heterogeneous556

and homogeneous problems. The relative error in the displacement field compared to DNS at557

t = 0.199 is 0.0976 for the heterogeneous case, and 0.2226 for the homogeneous case. Since558

the initial wavelength is small, it is observed that the propagating wave interacts with the het-559

erogeneous microstructure, resulting in oscillations as evident in Fig. 7a. In the homogeneous560

case, the oscillations are relatively small and are primarily caused by the variation in the local561

wave speed, unlike the heterogeneous problem.562

(a) (b)

Figure 7: Effect of initial displacement profile on wave propagation using a = 0.01, c = 0.01 for (a)
heterogeneous case (C = 0.5), and (b) homogeneous case (C = 1.0), in VME simulations.

4.4 Computational cost comparison for integration schemes563

We compare the computation time for different time integration schemes in VME for different564

contrast values in the elastic modulus for a heterogeneous microstructure. Table 1 reports the565

run time in seconds and the relative error with respect to DNS for various contrast values566

in elastic modulus and corresponding initial displacement condition (by setting a and c in567

Eq. (37)) up to non-dimensional time t = 0.2 using EE-SSM and EI-SSM integration schemes.568

The size of the microstructure in all cases is l = 0.01, and each unit cell is mapped to a single569

coarse-scale element i.e., necp = 1. The CFL values are chosen to obtain stable evolution for570
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the multiscale problem, and the relative errors are reported for different CFL, specifically for571

EI-SSM-based time integration to demonstrate the relative gain in the accuracy at the expense572

of compute time.573

The reported computational times are obtained from a single-processor implementation574

and are higher than those of DNS, since the multiscale coupled problems are solved iteratively575

at each time increment. The formulation, however, naturally lends itself to parallelization,576

as the uncoupled fine-scale problems for individual unit cells can be computed independently,577

thereby enabling a reduction in overall runtime. Without model order reduction, the VME578

approach involves essentially the same number of degrees of freedom as DNS. Nevertheless, its579

structure provides a foundation for more efficient methods in which the fine-scale problem can580

be replaced by a data-driven surrogate model.581

Table 1: Comparison of computational cost and relative error with respect to DNS of different time
integration methods for varying contrasts in elastic modulus and different CFL values.

Contrast
Initial Integration

nef CFL
Compute time Relative

displacement method (secs) error

C = 1.0 a = 0.04, c = 0.05
EE-SSM

8
1.0 264.03 0.00187

EI-SSM 1.0 148.35 0.0242
EI-SSM 0.5 487.07 0.0168

C = 0.5 a = 0.04, c = 0.05

EE-SSM
8

1.0 289.49 0.0104
EI-SSM 1.0 174.02 0.0806
EI-SSM 0.5 550.82 0.0588
EI-SSM 0.25 1726.32 0.0557

C = 0.2 a = 0.04, c = 0.05
EE-SSM 8 0.2 1549.77 0.07801
EI-SSM 16 0.5 544.48 0.3467
EI-SSM 16 0.1 5171.20 0.2014

C = 0.01 a = 0.005, c = 0.05
EE-SSM 8 0.1 1059.19 0.0415
EI-SSM 16 0.05 6515.87 0.2166

As shown in Table 1, for the homogeneous case, the EI-SSM scheme is less expensive than582

EE-SSM while maintaining a relative error within 2.5% for EI-SSM. The lower cost of EI-SSM583

arises because the stable time increment is controlled by the coarse-scale problem, allowing584

for larger time steps that offset the additional expense of solving nonlinear systems at the fine585

scale. For the heterogeneous case with moderate stiffness contrast (C = 0.5), EI-SSM still586

permits large stable time increments; however, achieving a relative error within 6% compared587

to DNS requires smaller time steps. For higher contrasts, C = 0.2 and C = 0.01, EI-SSM588

yields relatively large errors, and EE-SSM outperforms it in both accuracy and computational589

cost. In fact, even with fewer fine-scale elements, EE-SSM achieves higher accuracy.590

Overall, while the implicit scheme benefits from larger stability limits, it suffers from re-591

duced accuracy. This is because the difference between the stable time increment for explicit592
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evolution of the fine-scale problem and the time increment required for accurate evolution is593

small, given the second-order accuracy of the current scheme [43, 6, 5]. This limitation could594

be alleviated by adopting higher-order integration schemes, which would allow larger implicit595

time steps while retaining the required accuracy for the multiscale problem. Another way596

to improve the accuracy of the EI-SSM scheme is to impose a tighter convergence tolerance597

between the fine- and coarse-scale problems within the operator-split procedure. However, this598

would also increase the overall computational cost.599

5 Conclusion600

The proposed multiscale computational framework enables the simulation of wave propagation601

under scale-inseparable conditions, including short-wavelength regimes, while accounting for602

both material and geometric nonlinearities. By employing an additive decomposition of the603

solution fields into coarse- and fine-scale components, a coupled two-scale system of equations604

is derived. The framework allows the discretization of each unit cell with a patch of coarse-605

scale elements, which is essential to accurately capture wave propagation, especially in short-606

wavelength regimes. The coarse-scale semi-discrete equations are integrated explicitly, while607

the fine-scale equations are integrated either explicitly or implicitly, using both dissipative and608

non-dissipative time integration schemes.609

The numerical examples demonstrate that the VME method accurately captures wave610

dispersion, attenuation, and wave steepening arising from microstructural heterogeneity, mi-611

crostructural size, and nonlinearities in the constitutive model, with results in close agreement612

with DNS. It is shown how the relative error reduces using multiple coarse-scale elements that613

discretize a unit cell, when the microstructure size is large, leading to wave dispersion due to614

heterogeneity. It is also observed that the EE-SSM scheme is computationally less expensive615

than EI-SSM for heterogeneous one-dimensional problems. Although EI-SSM permits larger616

stability limits, its accuracy is limited by the second-order nature of the integration schemes.617

In higher-dimensional heterogeneous problems, however, the explicit-implicit approach may618

provide computational advantages, depending on the relative constraints imposed by stability619

and accuracy requirements for the fine-scale problem.620

Future work will focus on implementing the current framework in higher dimensions for621

modeling the dynamic response of architected materials. An additional key direction is the622

development of reduced-order VME models using data-driven surrogate approaches, where the623

fine-scale problem is replaced with a trained surrogate model, thereby achieving computational624

efficiency beyond DNS.625
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A Neo-Hookean material630

The one-dimensional energy density function for the Neo-Hookean material model is obtained631

from the multi-dimensional form shown below:632

ψ(F) =
µ

2

[
tr(FT · F)− ndim

]
− µ ln(J) + λ

2
ln2(J), (A.1)

where J denotes the Jacobian of deformation gradient tensor J = det(F), µ and λ are Lame’s633

parameters, and ndim denotes the number of spatial dimensions. The first Piola-Kirchhoff634

stress for the multi-dimensional case is given below:635

P =
∂ψ(F)

∂F
=
[
λ ln(J)− µ

]
F−T + µF. (A.2)

In the one-dimensional case, the deformation gradient tensor can be written as:636

F =

(
1 +

∂u

∂X

)
e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. (A.3)

Furthermore, assuming Poisson’s ratio to be ν = 0, yields the Lamé parameters in the model637

to be λ = 0 and µ = E/2. Denoting F := 1 + ∂u
∂X , the energy density function and the only638

non-zero component of the first Piola-Kirchhoff stress tensor, denoted as P , in the 1-D case639

are obtained as given below:640

ψ(F ) =
E

4

((
1 +

∂u

∂X

)2

− 1− 2 ln

(
1 +

∂u

∂X

))
,

P =
∂ψ

∂F
≡ E

2

(
1 +

∂u

∂X
−
(
1 +

∂u

∂X

)−1
)
.

(A.4)

B Estimate of critical time step in 1-D: DNS641

The element-level eigenvalue problem for the DNS is obtained by taking the variation of the642

weak form of the governing equations given in Eq. (5). In the 1-D case, the first variation643

along the direction (d̃u, d̃ü) of the weak form with the Neo-Hookean material (ignoring the644
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forcing terms), is obtained as given below:645

∫
Ω
δu ρ0

∂2(d̃u)

∂t2
dX +

∫
Ω

∂δu

∂X

E

2

(
1 +

1

(∂x/∂X)2

)
∂d̃u

∂X
dX = 0, (B.1)

where the current displacement field is u, and the current deformed configuration is x = X+u.646

The element-level mass matrix and linearized stiffness matrix are given by:647

Ke =

∫
Ωe

E

2

(
1 +

1

(∂x/∂X)2

)
(Be)

TBe dX,

Me =

∫
Ωe

ρ0(Ne)
TNe dX,

(B.2)

where Ne and Be are the shape function matrix and shape function gradient matrix for an ele-648

ment Ωe. The maximum eigenvalue of the element-level problem is bounded by the maximum649

eigenvalue of the integrands of stiffness and mass matrices at each quadrature point [7, 8].650

For a quadratic element with a diagonal mass matrix by row-sum lumping, the maximum651

element-level eigenvalue is estimated to be [8]:652

(ω0)e =
2
√
6

he
max
ζQ,e

(√
E

2ρ0

(
1 +

1

(∂x/∂X)2

))
, (B.3)

where max(·) denotes the maximum over all the quadrature points in an element (ζQ,e), and653

he denotes the length of an element. The critical time step is then obtained by taking the654

maximum eigenvalue over all elements as given below:655

∆tcrit = CFLmax
e

2

(ω0)e
= CFLmin

e

 he√
6
min
ζQ,e

 1√
E
2ρ0

(
1 + 1

(∂x/∂X)2

)

 . (B.4)

As noted in [8], these estimates are good for problems with C1 constitutive laws and smooth656

response, and for rough problems like impact, reductions in time steps are advised by appro-657

priately choosing smaller values of CFL.658

C Estimate of critical time step in 1-D: multiscale659

problem660

The critical element-level eigenvalue problems for the coarse and fine-scale problems in VME661

are obtained by taking the first variation of the weak form of the corresponding equations.662

Following the procedure discussed in Appendix B, one can obtain maximum element-level663
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eigenvalues for fine and coarse-scale elements for a 1-D problem as given below:664

(ωfα
0 )e =

2
√
6

hfαe
max
ζQ,e

(√
E

2ρ0

(
1 +

1

(∂x/∂X)2

))
,

(ωc
0)α,E =

2
√
6

hcα,E
max
ζQ,α,E

(√
E

2ρ0

(
1 +

1

(∂x/∂X)2

))
,

(C.1)

where (ωfα
0 )e and (ωc

0)α,E are the fine and coarse-scale maximum eigenvalues for the corre-665

sponding fine-scale element (e) and coarse-scale element (α,E). hfαe and hcα,E are the element666

lengths for fine and coarse-scale elements, respectively. It must be noted that, for the coarse-667

scale estimate above, the maximum is defined over all the quadrature points in all fine-scale668

elements (e) within a coarse-scale element (α,E). Finally, the critical time steps for fine and669

coarse-scale problems are given by:670

∆tfαcrit = CFLmax
e

2

(ωfα
0 )e

= CFLmin
e

hfαe√6 min
ζQ,e

 1√
E
2ρ0

(
1 + 1

(∂x/∂X)2

)

 ,

∆tccrit = CFLmax
α,E

2

(ωc
0)α,E

= CFLmin
α,E

hcα,E√6 min
ζQ,α,E

 1√
E
2ρ0

(
1 + 1

(∂x/∂X)2

)

 .

(C.2)
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