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Abstract

In this manuscript, we extend the variational multiscale enrichment (VME) method to
model the dynamic response of hyperelastic materials undergoing large deformations. This
approach enables the simulation of wave propagation under scale-inseparable conditions, in-
cluding short-wavelength regimes, while accounting for material and geometric nonlinearities
that lead to wave steepening or flattening. By employing an additive decomposition of the
displacement field, we derive multiscale governing equations for the coarse- and fine-scale prob-
lems, which naturally incorporate micro-inertial effects. The framework allows the discretiza-
tion of each unit cell with a patch of coarse-scale elements, which is essential to accurately
capture wave propagation in short-wavelength regimes. An operator-split procedure is used to
iteratively solve the semi-discrete equations at both scales until convergence is achieved. The
coarse-scale problem is integrated explicitly, while the fine-scale problem is solved using either
explicit or implicit time integration schemes, including both dissipative and non-dissipative
methods. Numerical examples demonstrate that multiscale dissipative schemes effectively sup-
press spurious oscillations. The multiscale framework was applied to investigate how material
and geometric nonlinearities, along with elastic stiffness contrast in heterogeneous microstruc-
tures, influence key wave characteristics such as dispersion, attenuation, and steepening. This
multiscale computational framework provides a foundation for studying the dynamic response

of architected materials.
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1 Introduction

Architected materials have attracted widespread interest in the research community due to
their ability to achieve exceptional properties by tailoring geometric features across multiple
length scales, often outperforming conventional materials in terms of mechanical, thermal, or
functional performance. Energy-absorbing architected materials such as honeycombs and aux-
etic metamaterials demonstrate favorable impact resistance and deformation behavior, making
them excellent candidates for crash protection and vibration damping applications (see e.g.,
[22, 58] 53|, 18], [10]). Computational simulation of the transient dynamic response of structures
composed of architected unit cells using direct numerical simulations (DNS) is computation-
ally expensive and cumbersome, especially in scenarios involving large structural domains or
complex microstructural features. As a result, there is a critical need to develop multiscale
modeling techniques that can efficiently simulate the dynamic response of such structures while
preserving accuracy.

Various homogenization approaches have been proposed to model the dynamic response
of heterogeneous materials based on the assumption that the microstructural size is much
smaller than the wavelength, commonly referred to as the scale separation limit. In the com-
putational homogenization approach [49, [, 35, [50], the fundamental idea is to characterize
the material response locally at each quadrature point of the finite element discretization
of the macroscopic domain by the numerical evaluation of a representative volume element
(RVE) or a periodic unit cell. Nested initial-boundary value problems at the macro- and mi-
croscales are evaluated, with scale bridging relations that satisfy energy consistency between
scales, i.e., the Hill-Mandel condition. Higher-order asymptotic homogenization approaches
were developed to capture the dynamic homogenized response at the short-wavelength regime
[1L 17, BT, 26, 27, 28]. Some alternative multiscale methods that do not rely on the assump-
tion of scale separation, including the elastodynamic homogenization methods based on Willis’
theory [52], 39, 41, [40], [38], multiscale finite element method [11l, 12], and the method of com-
putational continua [16] 4] have been used for wave propagation in short-wavelength regime.
The computational homogenization framework has also been extended to lattice metamateri-
als, including both truss- and beam-based architectures [23] 24}, [34], though most developments
to date have primarily focused on quasistatic loading conditions.

The variational multiscale method (VMM) [30] is an alternative multiscale strategy that
does not assume scale separation. This method is based on the additive split of the cardi-
nal response field into coarse and fine-scale components, resulting in separate but coupled
multiscale problems. Numerical efficiency is achieved by evaluating the fine-scale problem
analytically (when an analytical form that approximates fine-scale response is known; e.g.,

see [46]). Problems that involve complex micro-morphologies and nonlinearities may not have
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analytical forms to represent the fine-scale response with sufficient accuracy. This prompted
VMM variants that treat the fine-scale problem numerically, such as the numerical subgrid
upscaling method [2], the stochastic variational multiscale method [3|, 21], and the variational
multiscale enrichment method [47, 48, 55| 56, [57]. Of particular relevance is the spectral vari-
ational multiscale enrichment [29], which was developed to model the transient dynamics and
wave propagation of phononic crystals and acoustic metamaterials. This study focused on
the linear material behavior, and the effects of geometric and material nonlinearities on wave
propagation were not considered.

Obtaining accurate solutions for transient dynamics or wave propagation problems in the
short-wavelength regime (using either direct numerical simulations or multiscale methods) is
a challenge. Numerical errors due to spatial and time discretizations using finite element
methods and time integration schemes lead to artificial period elongations and amplitude
decays, which manifest themselves as numerical dispersion and dissipation errors [4, 44]. A
plethora of approaches have been developed to address the dispersion and dissipation errors,
including the use of higher-order spatial discretizations [25] [20], finite element interpolations
enriched with wave packets for multiscale wave propagation problems [32], or the use of spectral
elements in the context of multiscale description [29].

Higher-order elements can improve accuracy but are often too expensive, motivating the use
of time integration schemes with lower-order elements that incorporate controlled numerical
dissipation [4} [33,[19]. The Bathe implicit method [5] addresses this by filtering out unresolved
high-frequency modes while accurately integrating the resolvable ones, thereby reducing dis-
persion errors. Extending this idea, Noh and Bathe [43] proposed an explicit scheme with
high-frequency dissipation that preserves second-order accuracy and produces the desired be-
havior for period elongations and amplitude decays, small for small time steps and rapidly
increasing for larger ones. In contrast, the Tchamwa—Wielgosz scheme [51], though only first-
order accurate, performs better than many classical explicit schemes [42] 13, 54} [45], but is
still outperformed by Noh and Bathe’s method.

In this study, we present a robust multiscale simulation framework based on the varia-
tional multiscale enrichment (VME) method for modeling the transient dynamic response of
hyperelastic composite materials undergoing large deformations. The approach employs an
additive decomposition of displacement, velocity, and acceleration fields into coarse- and fine-
scale components, enabling a consistent derivation of the multiscale governing equations within
a Lagrangian setting. To accurately resolve wave propagation in short-wavelength regimes, the
formulation allows each unit cell to be discretized into multiple coarse-scale elements. The cou-
pled coarse- and fine-scale problems are solved iteratively using an operator-split procedure

until convergence is achieved.

The semi-discrete multiscale equations are integrated explicitly using either the non-dissipative
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central difference method or the dissipative explicit scheme of Noh and Bathe [43]. Although
the VME formulation is designed for scale-inseparable problems, differences in characteris-
tic time scales between coarse and fine discretizations can arise. In such cases, particularly
when accuracy requirements permit larger time steps than the stability limits of the fine-scale
problem, a mixed integration strategy can be adopted — explicit integration for the coarse-
scale problem and implicit integration of the fine-scale problem, for example, with the Bathe
implicit method [5]. Numerical investigations show that spurious oscillations appear in both
direct numerical and multiscale simulations when using the central difference method, but
these are effectively suppressed by dissipative integration schemes. The proposed multiscale
framework is shown to capture wave dispersion, attenuation, and wave steepening driven by
microstructural heterogeneity, unit cell size, and geometric and material nonlinearities. Fi-
nally, the computational performance of different time integration schemes is assessed for
microstructures with varying elastic modulus contrasts.

The remainder of this manuscript is organized as follows: Section [2| presents the formulation
of the multiscale method. Section |3|provides the computational approximation of the resulting
coarse- and fine-scale partial differential equations (PDEs) from the VME method, along with
the time integration schemes for the multiscale problem. Further details about the evaluation
of non-standard element-level matrices and vectors in multiscale discretization, and estimation
of stable time increment for the multiscale problem are discussed. Section [4] provides examples
of wave propagation in 1-D problems with homogeneous and heterogeneous microstructures.

Section |9 discusses concluding remarks and future research directions.

2 Variational Multiscale Enrichment Formulation

In this section, we introduce the formulation of the proposed VME approach for modeling the
dynamic response of hyperelastic materials. Let us denote a heterogeneous body with 2 € R"sd
(nsg=1,2 or 3), an open and bounded domain composed of repeated unit cells. The governing

equations for linear and angular momentum balance in the Lagrangian setting are as follows:

Vx -P(X,t)+B(X,t) =pou(X,t); XeQ, tel0,T] (1a)
PX,t)FI(X,t) = F(X,t) PT(X,t); XeQ, tel0,T] (1b)

where X denotes the Cartesian coordinates in the reference (undeformed) configuration, ¢ the
time coordinate, P the First Piola-Kirchhoff stress, F the deformation gradient, B the body
force, pg the mass density in the reference configuration, and u the displacement field. Vx-
denotes the divergence operator in the reference configuration, and () denotes the second time

derivative.



128

129

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

The Dirichlet and Neumann boundary conditions are specified respectively on I'* C 992
and I' C 09, such that T* UT? = 0Q and T NI = @:

u(X,t) =u(X,t); XelI™ (2a)
P(X,t)-N=T(X,t); XeTl! (2b)

where N denotes the outward unit normal in the reference configuration, @ and T are the
prescribed displacement and traction vectors, respectively. The initial conditions are specified

as follows:

u(X,0)=uX); Xe (3a)
u(X,0)=v(X); Xe (3b)

in which & and v denote the prescribed displacement and velocity fields respectively at t = 0.
At any given material point, X, the constituent material is taken to follow a hyperelastic
constitutive law. The first Piola-Kirchhoff stress tensor is given by:
OY(F)

P = aTv (4)

where 1 denotes the strain energy density function. The angular momentum balance given by
Eq. is satisfied by the objectivity of the strain energy density function.
The weak form of the linear momentum balance (Eq. ) with the boundary conditions

in Eq. is:

/anuzpdv+/p05u-ﬁdvz/5u.de+ du-TdA, (5)
Q Q Q It

where du denotes the test function. The function spaces for the trial and test functions are,

respectively:

V={ulue H'(Q), u=1a onI"}, (6a)
W = {éu|due H(Q), fu=0 onI"}, (6b)

where H'! is the Sobolev space consisting of functions whose values and first weak derivatives
are square-integrable.

We make some assumptions about the problem domain and discretization: The geometry
of the domain ) can be partitioned into nes non-overlapping identically shaped enrichment
subdomains. Each enrichment subdomain is associated with a unit cell and discretized using a

coarse patch of elements, and the number of coarse-scale finite elements in a patch is denoted
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by necp. The total number of coarse-scale elements is given by nec = 7es X Necp. The interior

of a subdomain, «, is denoted as €}, and its boundary is denoted as I'y,, with the overall

domain partitioning into subdomains is performed such that Q = Ul Q, with (-) represents

the closure of (+). In addition to the coarse-scale discretization, each subdomain is separately
discretized using ner fine-scale elements that resolve the features of the underlying unit cell.

The displacement field over the problem domain is decomposed into coarse and fine-scale
contributions using a two-scale additive decomposition:

Tes

u=u+y H(Q)u", (7)
a=1

where H(+) is an indicator function defined below:

1, forX € Q,
H(Qo) = (8)
0, elsewhere.

The indicator function in Eq. ensures that only the fine-scale response associated with
subdomain €2, contributes to the displacement field within the subdomain. The coarse-scale
field captures the slowly varying component of the solution, whereas the fine-scale fields resolve
the rapidly varying solution due to material heterogeneity. We note that Eq.[7]does not directly
satisfy the continuity condition on u. The continuity is satisfied by appropriately selecting the
boundary conditions for the fine-scale response field [47]. The test function is decomposed

similarly:
Tes

du = du’ + Z H(Qy) dub, 9)

a=1
The finite-dimensional subspaces (following the finite dimensional approximation consistent
with the standard finite element method) for the coarse-scale trial and test functions are
denoted as V¢ and W¢, respectively, and the corresponding fine-scale function spaces are V',
and W!. These spaces are selected such that their direct sum forms the finite-dimensional

subspaces for the original (single-scale) trial and test functions:

V=V PV, wh=woPwi. (10)
a=1 a=1

The fine-scale spaces are defined (W' = V') such that the trial and test functions are non-
zero only within the corresponding enrichment subdomain €2, and vanish elsewhere except at

the subdomain boundary where the external traction (denoted by I'}) is applied:

VI 5 u=0; when X €T, (11)
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where 'Y = T',\I',. Equation implies that homogeneous Dirichlet boundary conditions are
imposed at the boundary of each subdomain €, for fine-scale displacement fields, except at T,
boundary where the external traction is applied. This boundary condition has been previously
used in similar work [29] for modeling transient dynamical response of phononic crystals and
acoustic metamaterials and in other works [47, 56, 36, [37]. Other boundary conditions (e.g.,
mixed boundary conditions) have also been previously investigated [55]. Moreover, it follows
from the direct sum decomposition given in Eq. that Vé N Vé = @. Similarly, in order to
ensure direct sum decomposition, the finite-dimensional coarse-scale function spaces V¢ C V
and W€° C W are selected such that:

lu—vlg, #0; ueV veli, (12)

for any (u,v) pair, and || - ||q, is L? norm over €.
Substituting Egs. and @ in Eq. , one can decompose the weak form of the linear
momentum balance equation into two tightly coupled problems. The coarse-scale problem is

defined over the entire problem domain as follows:

/ ou’ - poudv +/ Vxou®: P (X,t,uc, uf’”) dv =
Q Q
s | ~ (13)
—Z/ 5u°'p0ﬁf’adv+/5uc'BdV—i— du® - T dA.
o Q It

The terms on the left-hand side of Eq. [L3|correspond to kinetic energy and strain energy at the
coarse scale, respectively, while the right-hand side terms correspond to the external work due
to fine-scale dynamics, body force, and traction, respectively. Similarly, the fine-scale problem

in each subdomain €, is obtained as:

/ sub - poit dv +/ Vxou'® ;P (X, ul,ut) av =
Qa Qa
(14
—/ sub® . poin dV+/ sub® . Bdv + [ sul®.TdA.
Qa Qa

184
The terms of Eq. [14] are interpreted in an analogous fashion to the coarse scale problem. The
traction term is only present at the subdomain boundaries that coincide with the exterior
Neumann boundaries of the problem domain, as the fine-scale test function vanishes at all
other subdomain boundaries (see Eq. ) The coupling terms in the coarse and fine-scale
problems are highlighted in red, shown respectively in Egs. and .
The boundary and initial conditions for the coarse-scale problem and the initial conditions

for the fine-scale problems complete the multiscale governing equations. The initial state at
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the fine-scale is taken to be undeformed and stationary:
uh(X,0) =0, ub*(X,0)=0, XeQ,. (15)
The boundary and initial conditions for the coarse-scale problem are:

u(X,t) =a(X,t), Xel“ P(X,t)-N=T(X,t), Xel (16a)
u'(X,0) =a(X), u‘X,0)=vX), XeQ. (16D)

The initial displacement (1) and velocity (v) fields are selected such that they can be accurately

described by the coarse-scale discretization.

3 Computational Approximation of Two-Scale PDEs

This section first describes the spatial and temporal discretization methods used for the mul-
tiscale governing equations in the proposed VME formulation. The details of the evaluation
of non-standard element matrices and vectors due to multiscale discretization and estimation
of stable time increments based on the time integration scheme are discussed later.
Numerical simulation of the dynamic response of complex microstructures, particularly
in short-wavelength regimes, is often performed using higher-order elements or dissipative
time integration schemes. In a related work, spectral elements up to the seventh order were
employed for coarse-scale discretization, where each coarse-scale element corresponded to a
unit cell [29]. In this study, we employ a strategy that resembles h—refinement by discretizing
each unit cell with a patch of coarse-scale elements to accurately capture wave propagation in

short-wavelength regimes.

3.1 Spatial discretization

Consider the decomposition of an enrichment subdomain, €2, into a patch of coarse elements:
Qo =Ups AS » Where a coarse finite element within that patch is denoted with Af . Using
the classical Bubnov-Galerkin approach, the coarse-scale displacement, weighting function,

and their gradients for a coarse-scale element are written as:

Uy = Nopdag = NopLoyd, (17a)
[Vu,, | =Bg d;, =B, L d (17b)
where uf,(X,t) :=u® (X € A% _,t). [] denotes the vectorized form of the tensorial entities.

Einstein’s summation convention does not apply to the index, ag. N (X) and B, (X)



218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

are the coarse-scale element shape function matrix and shape function gradient matrix, re-
spectively, for the coarse-scale element, Af, . df, (t) is the nodal displacement vector for the
coarse-scale element. The local vector is mapped to the corresponding global vector, d°(t)
through the gather matrix, L¢, .. The conventional forms typically used in the finite element
literature is employed for these matrices (see e.g., Ref. [15]). The discretizations of the weight
function and its gradient are similarly defined.

Each enrichment subdomain is discretized a second time, using n.s fine-scale elements that
resolves the underlying heterogeneous microstructure: Qq = [Jo<f; Age. The fine and coarse-
e€lay Age for any

macroscale element. I,, denotes an index set of fine scale elements that resolve the coarse

scale discretizations are performed in a compatible fashion; i.e., Af = U

scale element, ag. The displacement, weighting function, and their gradients for a fine-scale
element are given as:

uf, =N d, =N L ", (15)

a

(Vug,] =B, do, = Bg, L, d, (18b)

in which, ufle, Ngﬁ and Bfle are defined analogously to their coarse scale counterparts. The
gather matrix, Lge maps the nodal displacement vector associated with element, a. (i.e., dge)

with the nodal displacement vector for the whole enrichment subdomain, df*.
Using Eqs. and , the discretized forms of Egs. and are obtained as:

Tes

Med® + Z Ml gle 4 £, (dc7 {df’a}> = fous; (19a)
a=1

Mfa(':'lfa + Mfac(':'lc,a + f'lf;fllt (dc,a’ df,a) — ffa

ext?

o =110 Neg; (19b)

where d“® denotes the nodal displacement vector corresponding to the enrichment subdomain,
2, and related to the total displacement vector through a gather matrix: d“® = L{d¢. M°
and M'e are the coarse- and fine-scale mass matrices, respectively; Me and M are the

mass matrices that describe scale interactions. The internal force vectors at the coarse and

fine-scales are given by f,, fifn‘);: respectively, and the external force vectors at coarse and
fine-scale are g and feff;t, respectively. These are obtained by assembling the element-level
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matrices and internal and external force vectors as shown below:

c c T c c . cfa fac T _ c T « f .
M= 30 (L) MG L M = (M) = 3 (L) ME L (200)
Q,E E, eEIaE
T c ¢ \I pc,a
M = Z (Lge> MLy s £ = Z (Les)” for™s (20b)
e o, B
f £\ pfae. o ¢ \T gcap, e £\ ptae
fint = Z (LOée) fint ) fext = Z (LaE) fext ) fext = Z (Lae) fext . (200)
e o, F e
The corresponding coarse-scale element-level matrices and force vectors are obtained as:
c c \T c Nel c \T
My, = [N N v g = [ (B Rl e
QaE QO‘E
£o0F — / (Ng,) Bav + / (Ne,) TdA; (21b)
Q rt

*E

where [P] is the vectorized form of the first Piola-Kirchhoff stress tensor. The vectorized form
(distinct from the Voigt notation) includes all components of the stress tensor since it is not

symmetric. In the case of a composite microstructure where the density spatially varies, the

fc)aE

ot~ are performed by further discretizing the coarse-scale elements

integrations for M, = and
into its fine-scale counterparts or by approximating the integration by averaging the density.
The integration for the internal force vector is performed over the underlying fine-scale grid
to capture the stress variations within the microstructure.

The fine-scale element-level matrices and force vectors are obtained as:

M= [ (NL) NG v M= [ (N G v (220
QOL&

fifr?t’e = /Qae (BQE)T [P] dV; fiféée = /Q% (1\;26>TBdV+/F

The evaluation of M, = and Mg, f'” and fl"¢ is non-standard and further discussed in

Section . The remaining entities in Eqgs. and are evaluated using the standard

element-level integration procedure.

(N36>T TdA.  (22b)

t
Qe

3.2 Time integration

The coupled two-scale semi-discrete multiscale equations given in Eq. are integrated it-
eratively using an operator-split procedure until convergence is obtained for each time step.
Within the operator-split procedure, various time-integration schemes for the coarse-scale and
fine-scale equations are employed in this work, namely: (1) explicit update for both equa-

tions using the central difference method, (2) explicit Noh and Bathe [43] scheme for both

10
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equations, and (3) mixed explicit-implicit time integration scheme with explicit integration for
the coarse-scale equations using Noh and Bathe [43] scheme and implicit integration for the
fine-scale equations using Bathe and Baig [5] scheme. The performance of these integration
schemes is assessed in Section [£.4

The following notation is adopted: Consider that the global displacement, velocity, and
acceleration vectors at the coarse and fine scales are known at time, t,, (also referred to as the
n'™ time step). These vectors are denoted by (d%,d%,d%) and (df{a,df{a,afia) respectively.
The time integration results in the corresponding coarse and fine-scale fields at the (n 4 1)t
time step, which are denoted as (dS_,dS,,dS ) and (di’il, aye,,dhe,

state of a vector at the k™ iteration of the operator-split procedure within [tn, tnt1] is denoted

) respectively. The

by a second subscript (e.g., d%+17k).

3.2.1 Explicit-explicit central difference method (EE-CDM)

In this method, both the coarse- and the fine-scale equations (Egs. a—b) are integrated
using the explicit central difference method. The implementation procedure is provided in
Algorithm [I} At a given time increment, t,, the algorithm updates the multiscale nodal dis-
placement vectors, first. The acceleration vectors are computed iteratively until convergence.
Convergence is assessed based on discrete L norm, in order to ensure that the accuracy toler-
ance is strictly enforced component-wise. Upon convergence, the velocity vectors are updated.
EE-CDM is the most straightforward and efficient method among the three investigated, but,
similar to the single-scale implementation, the multiscale implementation proposed here also

could suffer from instability.

3.2.2 Explicit-explicit sub-step method (EE-SSM)

Despite its large time step stability limit among explicit schemes, it is well-known that disper-
sion errors in high-frequency modes can lead to degraded solution accuracy when the central
difference method is employed. The integration procedure for EE-SSM, which is used to allevi-
ate spurious high frequency dispersion, is described in Algorithm [2l The coarse and fine-scale
problems are integrated using an explicit sub-step time integration scheme proposed by Noh
and Bathe [43]. In this scheme, the coarse and fine-scale fields are integrated in two steps,
first at a sub-step denoted by t,4, (0 < p < 1) and then at the full step denoted by ¢,41. In
both updates, the operator-split procedure is used to iteratively solve for coarse- and fine-scale
fields.

11
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Algorithm 1 Implementation of EE-CDM.

1:
2:

Input: Given the state at t,, and the external force vectors at t,1.
Estimate a stable time increment, At, for the multiscale problem as described in Section
tn+1 =ty + At and iteration count k = 1.

: Set the initial guess for the fine-scale acceleration: dn 10 = =die.

Update the displacement fields:

(At)?
2
(At) IC
S d,

d;%) = di* + Atdy® + die a=1,2,... ne,

dS , =dS+AtdS +

: At any arbitrary iteration count, k:

a: Explicitly integrate the coarse-scale acceleration:

Nec
fo 3,0 f _
Meds, , + Z M B (A dl ) = B
b: Explicitly integrate the fine-scale acceleration for each subdomain, «:

Miedhe

foc c,x f,a fo
n+1,k +M La n+1,k + f1nt (dnJrl’ dn+1) - fext

c: Check for convergence :

f7
fa . Hdn+1k dni17k71||oo < tolf' o€ . ||dn+1k d161+1,k71‘|oo < tol
+1 - ) +1 - c -
" 15 11l ! 15, 1 g1l

: If is met then d,H_1 — diilk and EI%H — c"lflﬂ’k.

Else k < k + 1, and go to 5] for the next iteration.

: Update the velocity fields:

At .
f,a e f.o if,«
d, = dhe+ 5 (dhe 4+ dy

n+1
C At C
i1 =dy, +*(d +dn+1>

)' a=1,2,...,Nes,

. c Jc Jc f,a  Sfa
: return (dn—i-l’ dn+17 dn+1) and (dn+17 dn+1’ dn+1)'

Set

3.2.3 Explicit-implicit sub-step method (EI-SSM)

We also explore an explicit-implicit sub-step time integration method, where the coarse-scale
problem is integrated explicitly using the Noh and Bathe [43] scheme and the fine-scale prob-
lems are implicitly integrated using the Bathe and Baig [5] scheme. The resulting multiscale
scheme is not unconditionally stable as the coarse-scale equation is updated explicitly, but

the stable time increment of the coarse-scale problem is expected to be larger than that of

12



Algorithm 2 Implementation of EE-SSM.

1:
2:

10:

11:

12:

13:

14:

: Set the initial guess for the fine-scale acceleration: dhe
: Update the fine- and coarse-scale displacement fields:

Input: Given the state at t,, and the external force vectors at t,1.
Estimate a stable time increment, At, and set the sub-step ratio p. t,1, = t, + pAt and iteration
count k = 1. Set the constants of integration:

1-2p 1 1 1 )
— . — _ _ . — _ _ . — At — _ At .
U=y BT TPM =G etg d=pAt o 5 (PAL)™;
1
az = ap/2; a3 = (1—-p)At; a4 = §a§; as = qoas; ag = (0.54+q1)az; ar = qeas.
Sub-step:

: Compute the external force vectors at ¢,p.

if,«a
n+p,0 — d :

dht, =dhe v agdi® +ardh; dS,, =dS + apdS + arde.

n 7

: At an arbitrary increment, k > 0:

a: Explicitly integrate the coarse- and fine-scale accelerations:

Nes

f,a
Mcdc n+p,k + Z MCfad n+p,k—1 + fl?at (d%—&-’p’ d£1+p) ngt,

fo 3t fo f, _ pfn
M dnip .+ MEeLede ok F mt (d;j‘_p,dnip) fo,.

b: Check for convergence:
n+p <tolg; epq, < tole.

If [6.5] is met then df5, « di%, , and dS,, « d

n—+p, n—+p n+p,k*

: Else k< k+1, and go to [0] for the next iteration.
: Update the velocity fields:

avf{ip - df ¢+ ay (df o dnﬂ))' ntp = d + a2 (d + dn+p)

Full-step:
Set £k = 1; Compute the external force vectors at t,41 and set the initial guess for the fine-scale

if,a
acceleration: dn 41,0 = =d) tp-

Update the fine- and coarse-scale displacement fields:
f f f . .
4, =dp+ a3dn?rp + a’4dn+p’ nt1 = dpy, +asdy, +asdy

Iterate the coarse- and fine-scale accelerations until convergence by following step [5] of the Algorithm
provided for the central difference method.
Update the velocity fields:

o fa o o e v e o o
d +1 — dn+p + a’5d + a6dn+p + a7dn+1? n+1l = dn+p + a5dn + a6dn+p + a7dn+l'

. o “ fo f
return (dn+1,dn+1,dn+1) and ( n+1,dn+1,dn+1).
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319

fine-scale problems. Hence, the time increment for this scheme is expected to be governed by
accuracy requirements rather than the stability constraints of the fine-scale equations. This
approach could be advantageous compared to the explicit-explicit sub-step method, if the time
step required to ensure accuracy is sufficiently larger than the stability limit such that the over-
all integration method is computationally beneficial despite the added computational cost of
the implicit update. A microstructure with high stiffness contrast, where the stability of the
fine-scale explicit update severely constrains the time step size, is such a problem.

As the model exhibits geometric and material nonlinearity, the Newton-Raphson method is
employed to solve the nonlinear fine-scale equations in EI-SSM. To solve the fine-scale equations
using the Newton-Raphson method, the first variation of the residual given in Eq. is taken
along the direction (Juf7a, Jﬁf7°‘) to obtain the corresponding Jacobian. The incremental fine-
scale fields are discretized analogously as described in Eq. to obtain (de’a,d&f’o‘) and
using the classical Bubnov-Galerkin approach, the semi-discrete version of the Jacobian is
obtained. The semi-discrete Jacobian and the semi-discrete residual (given in Eq. (19)b) form
the linearized system of equations for the incremental fine-scale fields as shown below:

MPdde + K (a5, ) da" = - (MPd" 4 £y (a0, a") + MPod® — £l ), (28)
where Ko is the fine-scale tangent stiffness matrix. It can be obtained using the corresponding
element-level matrix as shown below:

T
K :Z(LQJ K"L! | where Ki = /

[ (o) DB

The [D] is the matrix form of the fourth-order tensor 0P /OF (d%®,d"). The fully-discrete
version of the linearized system of fine-scale fields is obtained by substituting the incremental
acceleration in terms of incremental displacement in Eq. . To do the same, the implicit
acceleration update is linearized in terms of the unknown displacement field, both at the sub-
step and full-step. For the sub-step, the following linear system of equations is obtained which

is solved iteratively using the Newton-Raphson (N-R) method:

4 c,x Q i— ~ fa i
<p2At2 M’ + K <dn+p’ (dfb+p,kz)( 1)>> (ddn—l—p,k)( )=

a “fv i—1 fa ; fv i—1 e R fa
.V (dniw)(z ) _ flo (dfﬁp, (dnJarp,k)(Z )) M Cdfl+p7k +1£2,

(25)

where (7) superscript corresponds to the vectorial fields at the ith iteration of the N-R method.
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320 Similarly, the following linear system of equations is obtained at the full-step:

K 5, 02,0 0

M @)t (a0 (0, )O) M
321 which can be similarly solved using N-R method.
322 The implicit update of the fine-scale problem for the sub-step and full-step are described
323 in Algorithm [3] The coarse-scale problem update remains the same as discussed in Algorithm
324 The sub-step ratio, p, is taken to be the same for both coarse and fine-scale problems for
325 consistent evaluation of fields for both scales at the sub-step and full-step. Unlike EE-CDM

and EE-SSM, the stable time increment is chosen based on the coarse-scale problem.

Algorithm 3 Implementation of EI-SSM.

1: Input: Given the state at t,, and the external force vectors at ¢,,41.
2: Estimate a stable time increment, At, and set the sub-step ratio p. ¢,4, = t, + pAt and iteration
count k = 1. Get the integration constants for the implicit scheme as given below:

ca=(1-p)/(pAt); ca=—1/((1-p)pAt); c3=(2-p)/((1—p)AL).

Sub-step:
3: Compute the external force vector at ¢,4,; and set the initial guesses: dfl’ip
4: At an arbitrary increment, k£ > 0:
a: The coarse-scale acceleration vector is updated as given in step [5] of Algorithm
b: Solve Eq. iteratively for the fine-scale displacement and acceleration corresponding to each
subdomain, a, and the updates for the i*® N-R iteration are shown below:

_ 4fa fa _ Sfa
0 — dr ’ dn+p,0 =dy .

a 7 o 11— 7 fyoé 7
(@, = (@f,0) ) + (5, ),

n+p, n+p,k
b i ! i @ K e 4 o
(@207 = (2,0 = di = diwae) oy - i

The Newton iterations are performed until the norm of the discrete residual vector (the right-hand side

of the Eq. (25)) is below a set tolerance value.
c: Check the following error quantities in addition to those mentioned in step of Algorithm

fa f,a
I, — dyy I
k Jk—1l100
P P < tolg.
1l
n+p,k—11100
) . fLa f,a “f.a “fa e o
5: If 4.|is met, then d,\ ) < d,7 ;. d, < d 7, anddy,, < d7 ..

6: Else k < k + 1, and go to [4 for the next iteration.
7: The coarse-scale velocity is updated as in step [9) of Algorithm 2] and the fine-scale velocity update is:

2

df{ip = (di’f’f_p - d;’a) AL (if;a; a=1,2,..., Nes.

326
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Algorithm 3 Implementation of EI-SSM (cont.)

8:
9:

10:

11:
12:
13:

14:

Full-step:
Set k = 1; Compute the external force vectors at t,.1 and set the initial guesses: dfﬁ_m = di

n+p?

.« It § e
dn+1,0 - dn+p'

At an arbitrary increment, k > O:

a: Update the coarse-scale accelerations as given in step [11] of Algorithm [2]

b: Solve Eq. iteratively for fine-scale displacement and acceleration, and the updates for the i*®

iteration are shown below:

« i ,Q i— 5 fa i
(di’ﬂ,k)() = (dfwl,k)( Y + (ddn—f—Lk)( );
(32’11,1@)(1) = C3 (C?» (di’im)(l) +oad,S, + Cldfia) +epdy S, + erd.

The Newton iterations are performed until the norm of the residual vector (the right-hand side of the
Eq. (26))) is below a set tolerance value.
c: Check the following error quantities in addition to those mentioned in step [5.c| of Algorithm
f,a f,a
Hdn—s—l,k - dn—i—l,k—lH‘X’

f,
14551 1l

<toly; a=1,2,..., Nes.

. f,a f,a af,o 3 e
If is met, then d,; «d, ¢, ;. d. %) < d. 7,

Else k + k + 1, and go to [10| for the next iteration.
The coarse-scale velocity is updated as in step [13] of Algorithm [2] and the fine-scale velocity update is:

‘e "
and dj, ;<= dj g .

df,()!

f,o f,a f,
1l = 03dn+1 + cod + Cldna.

n+p

C C C f,Oé K f,Oé I f,a
return (dn+1’ dn+17 dn+1) and (dn+17 dn+1’ dn+1) :

3.3 Overall algorithm

The overall algorithm for the semi-discrete multiscale equations is described in Algorithm
Given the initial displacement and velocity conditions at coarse- and fine-scales, the initial
accelerations at both scales are obtained iteratively until convergence is achieved. For an arbi-
trary time step, the stable time increment is obtained based on the time integration method,

and appropriate updates to the coarse- and fine-scale fields are performed.

3.4 Element matrices and vectors

The evaluation of element-level matrices and vectors given in Eqgs. (21)), (22)) requires numerical
integration of the appropriate entities that involve coarse-scale basis functions only, fine-scale

basis functions only, and some involving both coarse and fine-scale basis functions. For brevity,

fc7aE

the non-standard integration procedure for the internal force vector (f ;") in the coarse-

scale problem is discussed below, and other non-standard element-level entities are evaluated
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Algorithm 4 Algorithm for multiscale problem

1: Input: Given an initial displacement and velocity condition for the coarse-scale problem (dg,dg),

along with loading and boundary conditions. The initial fine-scale displacement and velocity are
(d5* = 0,dj* = 0).

: Initial acceleration: The initial acceleration for coarse-scale (dg) and fine-scale (&g’a) problems are

obtained from iteratively solving Eq. (19a) and Eq. (19b]), until convergence is achieved. Set n = 0.

. Update for (n+ 1)™ time step:

a: Known fields at n' time step: coarse-scale (d%, de, d%) and fine-scale (df{a, ake dio‘)
b: Get a stable time increment (At) for the multiscale problem as discussed in Sec. which depends
on the time integration method being employed.

c: The coarse-scale (df1 L dS g, d +1) and fine-scale (dfﬁ_l, df{i‘_l, diil) using Algorithm (1| for EE-
CDM, Algorithm | for EE-SSM, and Algorithm [3] for EI-SSM.

4: Set n <— n + 1, and repeat Step 3 until desired.

similarly. The internal force vector in the coarse-scale problem is shown below:

c, o _ c \T _
= [ @) Py - Y

R €€IaE

/ (B5,)" P]aV, (27)
Q0.

where I, is index set of fine-scale elements resolving the coarse-scale element, ag. The
evaluation of each of the element-level entities at the fine scale in the summation given in
Eq. requires the interpolated values of the coarse-scale basis functions and their derivatives
at the integration points of the fine-scale parent domain. This is not readily available as the
coarse-scale functions are defined on the coarse-scale parent domain. To obtain the interpolated
values, a two-scale mapping procedure is employed as discussed in Ref. [29]. This procedure
involves first finding the coordinate of the integration point in the physical domain, using the
fine-scale element isoparametric mapping, and then applying the coarse-scale element inverse
isoparametric mapping to find the coordinates of the same integration point in the coarse-scale
parent domain. The coordinate of the integration point of the fine-scale parent domain (Ef’ae)

in the coarse-scale parent domain (£“E) is given by:

g = M (Mg (g0) (28)

where My and M. denote the fine-scale and coarse-scale isoparameteric mappings.
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3.5 Critical time increment for multiscale and direct numerical
simulations

For direct numerical simulations of a nonlinear system of governing equations for structural
dynamics, linearized stability analysis is performed to determine the critical time increment
associated with a time integration method. Firstly, the generalized amplification matrix form
is obtained by employing the updates in the time integration scheme to the semi-discrete
equations. Then, the generalized amplification eigenvalue problem is decoupled into modal
equations by expanding its eigenvectors in terms of the system eigenvectors K® = w%M@
[8]. The critical time increment is obtained by restricting the moduli of the complex roots of
the characteristic equation for the highest frequency mode in the uncoupled equations to be
less than or equal to 1. Noh and Bathe [43] employed the Routh-Hurwitz stability criteria on
the characteristic polynomial of the amplification matrix in decoupled modal equations for the

explicit sub-step method to obtain a critical time increment as shown below:

2
Aty = CFL max o) (29)
where [ is the index for eigenvalues (wp)r, and the maximum value of Courant-Friedrichs-Lewy
(CFL) allowed is 1/p, where p is the sub-step ratio. It is important to note that the explicit
sub-step method [43] has a higher stability limit than the explicit central difference method,
for which the maximum value of CFL allowed is 1.0.

In summary, for direct numerical simulations, the critical time increment is obtained in
terms of the maximum eigenvalue of the system K® = ngq). The maximum eigenvalue
is estimated based on the element level eigenvalue problem, as the maximum absolute eigen-
value of the unconstrained system is upper-bounded by the maximum absolute element level
eigenvalue [7]. Moreover, by the Rayleigh nesting theorem, the maximum eigenvalue of the
assembled system with essential boundary conditions enforced is bounded by the maximum
eigenvalue of the unconstrained element level eigenvalue problem [8]. The estimate of the max-
imum eigenvalue for the element level eigenvalue problem in DNS for the examples considered
here is discussed in Appendix

For the multiscale problem, similar ideas are employed to determine the critical time in-
crements for both coarse- and fine-scale equations. As the operator-split procedure is used to
solve coarse and fine-scale problems iteratively, the stable time increment for both problems
can be deduced based on the linearized stability analysis of individual problems.

The linearized weak forms of the coarse- and fine-scale PDEs are required for the stability
analysis. The discrete form of the linearized weak form for the fine-scale problem is shown in

Eq. . Following a similar procedure, the discretized form of the linearized weak form for
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the coarse-scale PDE is obtained as follows:

TNes

Medde + K°dd® = ~Med® — Y- MePed™ — 5, (a°,d") + £5,,

(30)

a=1

where K€ is the coarse-scale stiffness matrix, and (czdc, Jdc) denote the discrete perturbations

in coarse-scale fields. K€ can be obtained using the element-level contributions as shown below:

K¢ — Z (LZE)TKC L¢ where K;E = Z (BZE)T [D]BEE av. (31)

ap - ap?
o,E e€lyy, * Sae

Following the procedure discussed for DNS, one can obtain the critical time increments for

linearized coarse-scale and fine-scale systems given by:

coarse-scale system- K°®° = (wS)? M ®°,

fo & f £0 )\ % N sk (32)
fine-scale system- K'e®'> = (wd*) M'e@p'e,
The critical time increments for the coarse-scale and fine-scale problems are as follows:
AtS .. = CFLmax 2
crit — T (w(();)[’
, (33)
At(f:‘;it = CFLmax [ max —— | .
@ I (wo"‘ )I

The maximum eigenvalues for the coarse-scale and fine-scale problems are estimated based
on the corresponding element-level problems, similar to DNS. The estimate of the maximum
eigenvalue for the element-level eigenvalue problem in coarse and fine-scale differential equa-
tions in VME simulations for the examples considered here is discussed in Appendix [C] It is
expected that the stable time increment of the coarse-scale problem will be larger than that
of the fine-scale problem, as w(f)a >> w(. Hence, the stable time increment for the multiscale

problems based on the integration schemes can be deduced as follows:

e For EE-CDM or EE-SSM algorithm, Ate = At'e. . The CFL is chosen based on the

crit”

integration scheme employed.

e For the EI-SSM algorithm, it is given by Ateq = AtS

crit?

as the implicit update for the

fine-scale problem is unconditionally stable.

4 Numerical Verification

This section presents numerical examples of wave propagation in a one-dimensional domain

modeled using the compressible Neo-Hookean material model (see Appendix . While the

19



409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

numerical schemes developed in this manuscript apply to multidimensional problems, one-
dimensional cases directly address the issues associated with multiscale time integration sta-
bility. We therefore restricted the numerical analysis to one-dimensional cases. First, the
performance of time integration methods, including the explicit central difference method,
explicit-explicit sub-step method, and explicit-implicit sub-step method, is evaluated for wave
propagation in VME simulations for a homogeneous microstructure. Next, the effect of con-
trast in the elastic modulus of a heterogeneous microstructure on wave propagation is exam-
ined. Then, the effect of different initial displacement fields on wave propagation is examined in
multiscale simulations, demonstrating that the VME approach accurately reproduces key wave
propagation characteristics such as dispersion and attenuation, consistent with DNS results.
Finally, the computational performance of explicit-explicit and explicit-implicit time integra-
tion schemes is assessed under varying contrasts in the elastic modulus of a heterogeneous
microstructure.

The original equation of motion in the 1-D case is expressed in the following form:

OP(X,t) 0?u(X,t)

T:PO( )T’ (34)

where P denotes the first Piola-Kirchhoff stress, and v is the displacement. The non-dimensional

form of Eq. is obtained by introducing the following entities:

- - P
=2t po i=2, (35)

X - L.
L’ EA’ L

|

where L is the length of the domain, v = y/E4/pg is the wave speed of material A, EA is
the Young’s modulus of material A, and pOA is the mass density of material A in the reference
configuration. Substituting Eq. into Eq. , we obtain the non-dimensional form of the

equation of motion: o - .
ox o

(36)

The corresponding multiscale system is derived as described in Section [2] In what follows, the
non-dimensional form of the governing equation is solved for all numerical examples demon-
strated below. The (N) symbol is omitted from the non-dimensional entities for simplicity of
the presentation.

The initial conditions considered for all the examples demonstrated below are as follows

(X €[-1/2,1/2)):
u(X,0)=a (1 — tanh’ (f)) ’ (37)

W(X,0) =0,

20



431 and, the boundary conditions are u(—1/2,¢) = 0 and u(1/2,t) = 0, unless stated otherwise.

432 For all multiscale simulations (referred to as VME below) reported in this work, unless
433 otherwise mentioned, the 1-D domain is discretized using nes = 100 unit cells, nec, = 1 coarse
434 element per unit cell, and ne = 8 fine-scale quadratic elements for each unit cell. The results
435 of the multiscale simulations are compared with the direct numerical simulations (DNS), which
436 are obtained using the finite element method, where the material microstructure is resolved
437 throughout the problem domain. To be consistent, the domain is discretized into 800 quadratic
438 elements for DNS. Further refinement of the domain does not result in significant accuracy
439 improvements in the cases discussed below. The sub-step ratio for the EE-SSM or EI-SSM of
440 time integration in VME simulations and explicit sub-step integration in DNS is taken to be
441 p = 0.54, as suggested in Ref. [43]. The tolerance value for convergence between coarse and
a2 fine-scale problems in VME simulations is 1E-3 for all time-integration methods. The tolerance
443 value for the Newton-Raphson iterations in the fine-scale problem for implicit updates at both
44 sub-step and full step is 1E-10.
415 4.1 Homogeneous domain
446 In this section, we assess the performance of different time integration schemes for wave prop-
447 agation for both VME and DNS simulations. The initial displacement profile is obtained using
438 Eq. with a = 0.04 and ¢ = 0.05.
0.04 0.04
—_t=0 —t=0
0.035 L —t = (.02402 0.035 L —t = 0.02425
t = 0.04904 t = 0.04935
=t = 0.09906 =t = 0.09902
0.03F ——¢ = 0.149 0.03F ——¢ =0.1491
t =0.199 t=0.1991
0.025 | =1t =0.249 0.025 | =1t = 0.2491
—_—t=0.299 —_—t =0.2992

-0.5 -0.25 0 0.25 0.5

Figure 1: Evolution of displacement with time predicted using the explicit central difference methods for
the homogeneous material case with (a) DNS and (b) VME methods.

449 We first consider the homogeneous microstructure within all coarse-scale elements, by which

450 po/ pgl =1 and E/E4 = 1. Figure |l shows the evolution of the total displacement profile for
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455

456
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458

459

460

461

462

463

464

465

466

472

473

a homogeneous microstructure using the explicit central difference method for both DNS and
VME (using the EE-CDM approach) simulations. The results of the VME simulations are
reported in the total form where the fine- and coarse-scale parts of the solution are evaluated
separately and summed. Both the DNS and VME simulation results show that the initial
displacement profile induces two waves traveling in opposite directions, consistent with the
D’Alembert solution for linear wave propagation. The evolution of (element-averaged) stretch
along the X direction given by F' = 14 du/dX, is shown in Fig. 2l Material points with F' > 1
indicate stretching, while those with ' < 1 indicate compression.

Due to the geometric and material nonlinearities in the Neo-Hookean model, the local wave
speed becomes amplitude-dependent, leading to wave steepening. Specifically, the wave speed
is lower in the tensile region than in the compressive region as the tangent modulus in compres-
sion is larger than in tension, for the same magnitude of displacement gradient (see Eq.
in Appendix , resulting in asymmetric propagation. As shown in Fig. |1, this asymmetry
manifests as a narrower crest on the tensile (left) side and a broader crest on the compressive
(right) side, along with a reduction in amplitude on the tensile side. The compressive part of
the traveling wave on the left side travels faster than the tensile part, leading to a reduction
of the peak of the displacement wave as a function of time. Spurious oscillations appear in
the displacement and strain wave profiles due to numerical dispersion errors introduced by
the central difference method, particularly affecting high-frequency components of the solu-
tion. The numerical dispersion effects are apparent after ¢ = 0.249 for both DNS and VME

simulations.

—_—t=0
—t = 0.02402

t = 0.04904
—— 1 =0.09906
—t=0.149
At =0.199
t =0.249
t =0.299

1.6}

1.4F

1.2}

K1
0.8}
0.6}
0.4}
0.5 0.9 0 095 05
X

Figure 2: Averaged stretch over the element for the homogeneous material case in DNS.

Figure |3 shows a comparison of the displacement waves predicted by the VME and DNS

approaches using dissipative integration schemes. The DNS simulation employs the explicit
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sub-step integration method proposed in Ref. [43], whereas for VME simulations, the EE-SSM
and EI-SSM are utilized. CFL = 1 is used for both DNS and EE-SSM-based VME simulations,
while CFL = 0.5 is taken for EI-SSM-based VME simulations. As evident in Fig. [3| spurious
oscillations do not develop when the dissipative methods are employed. This is because the
contribution of high-frequency modes to the overall solution is reduced in these methods by
decreasing the spectral radius of the amplification matrix for shorter wavelengths [5, [43]. In
Fig.|3} the relative error based on the L>° norm of the total displacement field between the VME
and DNS simulations is 0.0051 for EE-SSM at ¢t = 0.2993, and 0.0259 for EI-SSM at ¢t = 0.2998.
Hence, for the same discretization, the EE-SSM and EI-SSM-based VME simulations remove
the high-frequency oscillations that are present for the CDM-based VME simulations. We note
that, unlike computational homogenization-based methods, the fine-scale solution in VME is
not necessarily induced by heterogeneity in the microstructure. In the case of a homogeneous
domain, the fine-scale solution captures the discretization errors induced by the coarse-scale
grid and effectively improves the accuracy of the solution. Figure includes the results
obtained using the coarse grid approximation alone, which deviates from the multiscale and
the DNS solutions, especially at later times, where the relative error of the total displacement
compared to DNS is 0.1504 at t = 0.2993. This is due to the accumulation of large numerical

dispersion errors with coarse-grid approximation alone in the VME simulation.

0.04 - 0.04
—t=0 —t=0
0.035 | ——1t = 0.02435 0.035 | ——t =0.0253
t = 0.04906 t = 0.04972
—t = 0.09934 —t = 0.09961
0031 )~ 0149 0031 )~ 0149
—t=0.199 —— ¢ =10.1992
0.025F ¢ = 0.2492 0.025F ¢ = 0.2498

t =0.2993 t =0.2998

s 002} s 002}

0.015 0.015

0.01F 0.01F

0.005 0.005

Figure 3: Evolution of displacement profile with time for homogeneous microstructures using (a) EE-SSM,
(b) EI-SSM in VME simulations. In both figures, the colored solid lines correspond to VME results, while
the dotted lines in (a) correspond to the EE-SSM-based VME with coarse-grid approximation alone, and
in (b) correspond to DNS, at the same non-dimensional times as the colored solid lines.
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4.2 Heterogeneous domain

In this section, we study the effect of contrast in the elastic modulus in a heterogeneous
microstructure on wave propagation. Let the domain consist of a repeated two-phase mi-

crostructure such that:
B4 if X €Qyu;
E= (38)
CE4, if X €Qp;
where C' is the modulus contrast ratio, Q4 = [kl — L/2,(k + 8)l — L/2) and Qp = [(k +
B)l— L/2,(k+ 1)l — L/2), with [ the size of the microstructure, 3 the fraction of material
A, and k € {0,1,...,(L/l) — 1}. The impedance mismatch is taken to be generated by

the modulus contrast alone, and the mass density in the reference configuration is taken as

constant, i.e. pg = pS‘.

0.04 0.04
—t=0 —t=0
0.035 | ——t=0.0242 0.035 F t = 0.04901
t = 0.0492 ——t=0.09903
——t = 0.0991 0.03} —t =0.1491
003F 4~ 01401 —t=0.199 '\‘
——t=0.1991 0.025 L ——¢ = 0.249 HA
0.025F 4 — 0.2491 t=0.299
0.02F
s 0.02f =
0.015 |
0.015 |
0.01}F
0.01}
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Figure 4: Evolution of displacement profile with time using EE-SSM for VME and explicit sub-step method
for DNS simulations of heterogeneous microstructures (a) C' = 2, (b) C' = 0.2. In both figures, the colored
solid lines correspond to VME results, and the black dashed lines correspond to the DNS results.
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Figures [da-b show the propagation of the displacement wave induced by the initial displace-
ment profile obtained using Eq. [37| with @ = 0.04 and ¢ = 0.05 for C' = 2 (i.e., phase contrast
of 2) and C' = 0.2 (phase contrast of 5), respectively. The microstructure parameters are set to
[ =0.01, B = 0.5, and each unit cell is associated with one coarse-scale element i.e., necp = 1.
The DNS simulations were performed using the explicit sub-step integration method, whereas
the VME simulations employ EE-SSM for time integration. A CFL number of 1 is used for
C = 2, while CFL = 0.2 is used for C' = 0.2. The CFL was reduced for the C = 0.2 case,
as it was observed that using larger values of CFL led to numerical instability. This can hap-

pen in nonlinear problems, as the stable time increment is obtained from linearized stability
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analysis, and the actual response may deviate from the linear approximation. As observed
in Fig. 4] the displacement waves travel faster or slower depending on the increase/decrease
in the elastic modulus compared to the homogeneous microstructure. Due to contrast in the
elastic modulus, especially for C' = 0.2, wave reflections are more prominent, leading to os-
cillations in the wave profile with evolution in time. However, no significant wave dispersion
arises from the microstructural heterogeneity, as the initial wavelength is substantially larger
than the microstructural length scale. As a result, the propagating wave interaction with the
microstructure is limited. The VME simulation captures the resulting oscillations with reason-
able accuracy compared to the DNS results, with the relative error in the total displacement
compared to DNS being 0.02496 for C' = 2, and 0.1218 for C' = 0.2, both at ¢ = 0.299.

Figure 5| shows the evolution of the displacement field for a heterogeneous microstructure
with C' = 0.01 (phase contrast of 100) using EE-SSM for VME simulations and explicit sub-
step method for DNS. The initial displacement profile is chosen with a = 0.005 in Eq. ,
and this is because if larger amplitudes are taken, then it results in unphysical compressive
strains with stretch, /' < 0.01. The CFL = 0.1 is taken for both VME and DNS results. The
relative error in the displacement field obtained from VME compared to DNS is 0.27138 at
t = 0.299, and this is resulting from a relatively larger tolerance chosen for convergence in

iterations between coarse- and fine-scale problems.

x1073

—t=0 /
t =0.049
——t =0.09901
[ ——t=0.149
—t=10.199
—t=0.249
sl t = 0.299

Figure 5: Evolution of displacement profile with time using EE-SSM for VME simulations for a heteroge-
neous microstructure with C' = 0.01 and CFL = 0.1. The dashed black lines show DNS results at the same
non-dimensional times using the explicit sub-step method.

528 To investigate wave dispersion effects, the size of the microstructure is increased, thereby
520 promoting the interaction between the propagating wave and the material heterogeneity. We
530 consider [ = 0.04, i.e., nes = 25 microstructures in the domain, and use a fine-scale grid
531 nes = 32 per unit cell, and three coarse-scale grids are considered: (a) necp = 1, (b) Necp = 2,
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and (c) necp = 4. The error in the wave propagation is evaluated as a function of the number
of elements in a patch of coarse-scale elements that discretize a unit cell. Figure [Gh shows
the evolution of the displacement profiles for smaller (I = 0.01, nep = 1) and larger (I =
0.04, Necp = 4) microstructures. The VME simulations employ the EE-SSM time integration
scheme with a CFL number of 0.5. When the microstructure is larger, the displacement wave
has a stronger interaction with the microstructure, resulting in wave dispersion. When the
microstructural size increases, the propagating displacement wave interacts more strongly with
the microstructure, and dispersive effects become significant. For example, the left-traveling
peak is smaller for [ = 0.04 compared to [ = 0.01 — a consequence of dispersion. Similarly, on
the right side, the broadening of the wave profile further confirms the presence of dispersive
behavior. Figure [6b shows the relative error for [ = 0.04 compared to DNS for an increasing
number of elements in a patch of coarse elements, i.e., necp. The DNS were obtained with
net = 800 elements with a CFL = 0.5. As expected, the relative errors decrease with an
increase in necp and also increase with time. This will become even more critical as the

microstructural size increases, particularly in higher-dimensional problems.
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Figure 6: Wave dispersion using EE-SSM for VME simulations of heterogeneous microstructure with C' = 2,
Nes = 25, and ner = 32. (&) Neep = 4 for I = 0.04, and neep = 1 for [ = 0.01, (b) comparison of relative
error with respect to DNS as a function of necp, for I = 0.04.
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4.3 Effect of initial displacement conditions

In this section, we examine how the initial displacement profile influences wave propagation.
In particular, we focus on the role of wavelength, controlled by the parameter ¢ in Eq. ,

for a heterogeneous microstructure. The effect of amplitude on the solution has already been
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demonstrated through its deviation from the D’Alembert solution as discussed in Section
For the heterogeneous case, the microstructure is defined with a phase contrast of 2 (by setting
C =0.5), size | = 0.01, and the coarse-scale mesh with necp = 1. The initial displacement field
is specified with a = 0.01, ¢ = 0.01 in Eq. . To distinguish the roles of nonlinearity and
heterogeneity, we also compare the results with those of the homogeneous problem.

Figure [7] shows the results obtained from the VME simulations for both heterogeneous
and homogeneous problems. The relative error in the displacement field compared to DNS at
t = 0.199 is 0.0976 for the heterogeneous case, and 0.2226 for the homogeneous case. Since
the initial wavelength is small, it is observed that the propagating wave interacts with the het-
erogeneous microstructure, resulting in oscillations as evident in Fig. [7h. In the homogeneous
case, the oscillations are relatively small and are primarily caused by the variation in the local

wave speed, unlike the heterogeneous problem.
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Figure 7: Effect of initial displacement profile on wave propagation using a = 0.01, ¢ = 0.01 for (a)
heterogeneous case (C' = 0.5), and (b) homogeneous case (C' = 1.0), in VME simulations.

4.4 Computational cost comparison for integration schemes

We compare the computation time for different time integration schemes in VME for different
contrast values in the elastic modulus for a heterogeneous microstructure. Table [1| reports the
run time in seconds and the relative error with respect to DNS for various contrast values
in elastic modulus and corresponding initial displacement condition (by setting a and ¢ in
Eq. ) up to non-dimensional time ¢ = 0.2 using EE-SSM and EI-SSM integration schemes.
The size of the microstructure in all cases is [ = 0.01, and each unit cell is mapped to a single

coarse-scale element i.e., necp = 1. The CFL values are chosen to obtain stable evolution for
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571 the multiscale problem, and the relative errors are reported for different CFL, specifically for

572 EI-SSM-based time integration to demonstrate the relative gain in the accuracy at the expense
573 of compute time.

574 The reported computational times are obtained from a single-processor implementation
575 and are higher than those of DNS, since the multiscale coupled problems are solved iteratively
576 at each time increment. The formulation, however, naturally lends itself to parallelization,
577 as the uncoupled fine-scale problems for individual unit cells can be computed independently,
578 thereby enabling a reduction in overall runtime. Without model order reduction, the VME
579 approach involves essentially the same number of degrees of freedom as DNS. Nevertheless, its
580 structure provides a foundation for more efficient methods in which the fine-scale problem can
581 be replaced by a data-driven surrogate model.

Table 1: Comparison of computational cost and relative error with respect to DNS of different time
integration methods for varying contrasts in elastic modulus and different CFL values.

Initial Integration Compute time | Relative
Contrast displacement method | ¢f CFL (secs) error
EE-SSM 1.0 264.03 0.00187
C=10 | a=0.04, c=0.05 EI-SSM 8 1.0 148.35 0.0242
EI-SSM 0.5 487.07 0.0168
EE-SSM 1.0 289.49 0.0104
EI-SSM 8 1.0 174.02 0.0806
=051 a=004c=005 1 g ggy 0.5 550.82 0.0588
EI-SSM 0.25 1726.32 0.0557
EE-SSM 8 0.2 1549.77 0.07801
C=02 | a=0.04, c=0.05 EI-SSM 16 | 0.5 544.48 0.3467
EI-SSM 16 | 0.1 5171.20 0.2014
EE-SSM 8 0.1 1059.19 0.0415
C=0011a=0005¢=005 proon |16 | 0.05 6515.87 0.2166
582 As shown in Table (I} for the homogeneous case, the EI-SSM scheme is less expensive than
583 EE-SSM while maintaining a relative error within 2.5% for EI-SSM. The lower cost of EI-SSM
584 arises because the stable time increment is controlled by the coarse-scale problem, allowing
585 for larger time steps that offset the additional expense of solving nonlinear systems at the fine
586 scale. For the heterogeneous case with moderate stiffness contrast (C' = 0.5), EI-SSM still
587 permits large stable time increments; however, achieving a relative error within 6% compared
588 to DNS requires smaller time steps. For higher contrasts, C' = 0.2 and C' = 0.01, EI-SSM
580 yields relatively large errors, and EE-SSM outperforms it in both accuracy and computational
590 cost. In fact, even with fewer fine-scale elements, EE-SSM achieves higher accuracy.
591 Overall, while the implicit scheme benefits from larger stability limits, it suffers from re-
592 duced accuracy. This is because the difference between the stable time increment for explicit
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evolution of the fine-scale problem and the time increment required for accurate evolution is
small, given the second-order accuracy of the current scheme [43, [6 5]. This limitation could
be alleviated by adopting higher-order integration schemes, which would allow larger implicit
time steps while retaining the required accuracy for the multiscale problem. Another way
to improve the accuracy of the EI-SSM scheme is to impose a tighter convergence tolerance
between the fine- and coarse-scale problems within the operator-split procedure. However, this

would also increase the overall computational cost.

5 Conclusion

The proposed multiscale computational framework enables the simulation of wave propagation
under scale-inseparable conditions, including short-wavelength regimes, while accounting for
both material and geometric nonlinearities. By employing an additive decomposition of the
solution fields into coarse- and fine-scale components, a coupled two-scale system of equations
is derived. The framework allows the discretization of each unit cell with a patch of coarse-
scale elements, which is essential to accurately capture wave propagation, especially in short-
wavelength regimes. The coarse-scale semi-discrete equations are integrated explicitly, while
the fine-scale equations are integrated either explicitly or implicitly, using both dissipative and
non-dissipative time integration schemes.

The numerical examples demonstrate that the VME method accurately captures wave
dispersion, attenuation, and wave steepening arising from microstructural heterogeneity, mi-
crostructural size, and nonlinearities in the constitutive model, with results in close agreement
with DNS. It is shown how the relative error reduces using multiple coarse-scale elements that
discretize a unit cell, when the microstructure size is large, leading to wave dispersion due to
heterogeneity. It is also observed that the EE-SSM scheme is computationally less expensive
than EI-SSM for heterogeneous one-dimensional problems. Although EI-SSM permits larger
stability limits, its accuracy is limited by the second-order nature of the integration schemes.
In higher-dimensional heterogeneous problems, however, the explicit-implicit approach may
provide computational advantages, depending on the relative constraints imposed by stability
and accuracy requirements for the fine-scale problem.

Future work will focus on implementing the current framework in higher dimensions for
modeling the dynamic response of architected materials. An additional key direction is the
development of reduced-order VME models using data-driven surrogate approaches, where the
fine-scale problem is replaced with a trained surrogate model, thereby achieving computational
efficiency beyond DNS.
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A Neo-Hookean material

The one-dimensional energy density function for the Neo-Hookean material model is obtained

from the multi-dimensional form shown below:

V(F) = 2B - F) — ngi] — () + %m?u), (A1)

where J denotes the Jacobian of deformation gradient tensor J = det(F'), p and A are Lame’s
parameters, and ng;, denotes the number of spatial dimensions. The first Piola-Kirchhoff

stress for the multi-dimensional case is given below:

_ Op(F)

P2 [A In(J) — M}F*T + uF. (A.2)

In the one-dimensional case, the deformation gradient tensor can be written as:
ou
F = 1+67X e;1®e; tey®ey +e3®es. (A.3)

Furthermore, assuming Poisson’s ratio to be v = 0, yields the Lamé parameters in the model
to be A =0 and p = E/2. Denoting F' := 1+ g—;‘(, the energy density function and the only
non-zero component of the first Piola-Kirchhoff stress tensor, denoted as P, in the 1-D case

are obtained as given below:

F ou \ 2 ou
o _E ou ou\
P_a:2<1+ax_<1+6x) )

B Estimate of critical time step in 1-D: DNS

(A.4)

The element-level eigenvalue problem for the DNS is obtained by taking the variation of the
weak form of the governing equations given in Eq. . In the 1-D case, the first variation

along the direction (du,dii) of the weak form with the Neo-Hookean material (ignoring the
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forcing terms), is obtained as given below:

9% (du) dou E ( 1 > ddu
5 dX + | === (1+ dX =0, B.1
/Q o0 00X 2 (02/0X)2) X (B-1)

where the current displacement field is u, and the current deformed configuration is x = X +u.

The element-level mass matrix and linearized stiffness matrix are given by:

Ke / ( 895/19X) )(BE)TBedX’

(B.2)
M, / po(N)TN, dX,

where N, and B, are the shape function matrix and shape function gradient matrix for an ele-
ment .. The maximum eigenvalue of the element-level problem is bounded by the maximum
eigenvalue of the integrands of stiffness and mass matrices at each quadrature point [7, [§].
For a quadratic element with a diagonal mass matrix by row-sum lumping, the maximum

element-level eigenvalue is estimated to be [§]:

_2V6 E 1
(Wo)e = =~ max (\/2,00 <1+ (895/8X)2>> ’ (B.3)

where max(-) denotes the maximum over all the quadrature points in an element ((g.), and

he denotes the length of an element. The critical time step is then obtained by taking the

maximum eigenvalue over all elements as given below:

2 1
Ateit = CFLmax —— = CFLmin | — min . (B.4)

e (wo)° ¢ \che \/E

7 (1 b

As noted in [8], these estimates are good for problems with C! constitutive laws and smooth
response, and for rough problems like impact, reductions in time steps are advised by appro-

priately choosing smaller values of CFL.

C Estimate of critical time step in 1-D: multiscale
problem

The critical element-level eigenvalue problems for the coarse and fine-scale problems in VME
are obtained by taking the first variation of the weak form of the corresponding equations.

Following the procedure discussed in Appendix one can obtain maximum element-level

31



664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

eigenvalues for fine and coarse-scale elements for a 1-D problem as given below:

foy = 2\/6 max £ 71
(w07)e = i Cq.e (\/2P0 (1 " (83:/8X)2)) ’

(wg) 2v6 ma = (1 + ! >
o = X Y PPN )
VOB R o \ | 200 (92/9X)?

where (w(f)‘*)e and (w§)a,r are the fine and coarse-scale maximum eigenvalues for the corre-

sponding fine-scale element (e) and coarse-scale element («, ). hix and hg, i are the element

lengths for fine and coarse-scale elements, respectively. It must be noted that, for the coarse-

scale estimate above, the maximum is defined over all the quadrature points in all fine-scale

elements (e) within a coarse-scale element (a, E). Finally, the critical time steps for fine and

coarse-scale problems are given by:

2 hie 1
Atf;‘it = CFLmax —— = CFLmin | —=min ,
e Ve e (14 ot )
2po (8x/8X)?
(C.2)
2 hyg 1
Aty = CFLmax ——— = CFLmin ®E hin
o, B (WO)Q7E a, B \/6 CQ,a.E B (1 I 1 >
2p0 (0x/8X)?
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