Compact Product of Hankel and Toeplitz Operators on the Hardy space

Cheng Chu

Washington University in Saint Louis

March 7, 2014

Introduction

Definition

Let $L^2=L^2(\partial\mathbb{D})$ and let H^2 be the Hardy space on \mathbb{D} . Given a symbol function $f\in L^\infty$, define the Toeplitz operator T_f and the Hankel operator \mathcal{H}_f as:

$$T_f: H^2 \to H^2, T_f h = P(fh),$$

and

$$\mathcal{H}_f: H^2 \to (H^2)^{\perp}, \mathcal{H}_f h = (I - P)(fh),$$

where $P: L^2 \to H^2$ is the orthogonal projection.

Introduction

$$\mathcal{H}_f: H^2 \to (H^2)^{\perp}, \mathcal{H}_f h = (I - P)(fh).$$

For convenience, we will use an alternative definition for Hankel operators.

Definition

Let $Vf(z) = \bar{z}f(\bar{z})$. Then V is unitary on L^2 . Define:

$$H_f: H^2 \to H^2, H_f h = PV(fh).$$

Then

$$H_f = V \mathcal{H}_f$$
.

Introduction

Question

When is $H_f T_g$ compact?

It is known that:

- T_f is compact iff f = 0.
 - $P_f = 0 \text{ iff } f \in H^{\infty}.$
 - **③** (Hartman's Criterion) H_f is compact iff $f \in H^{\infty} + C$, where C denotes the space of continuous functions $\partial \mathbb{D}$.

Relations between Toeplitz and Hankel operators

Consider the multiplication operator M_f on L^2 for $f \in L^\infty$, defined by $M_fh = fh$. M_f can be expressed as an operator matrix with respect to the decomposition $L^2 = H^2 \oplus (H^2)^\perp$ as the following:

$$M_f = \begin{pmatrix} T_f & H_{\tilde{f}} V \\ V H_f & V T_{\tilde{f}} V \end{pmatrix}$$

For $f,g \in L^{\infty}$, $M_{fg} = M_f M_g$, so multiplying the matrices and comparing the entries, we get:

- $T_{fg} = T_f T_g + H_{\tilde{f}} H_g.$
- $P_{fg} = H_f T_g + T_{\tilde{f}} H_g.$

Here $\tilde{f}(z) = f(\bar{z}), Vf(z) = \bar{z}f(\bar{z}).$

A theorem of Axler, Chang, Sarason and Volberg

Problem

When is $T_{fg} - T_f T_g = H_{\tilde{f}} H_g$ compact?

Theorem (Brown, Halmos, 1963)

 $H_{\tilde{f}}H_g=0$ if and only if $\bar{f}\in H^\infty$ or $g\in H^\infty$.

Theorem (Axler, Chang, Sararson, 1978; Volberg, 1982)

 $H_{\tilde{f}}H_g$ is compact if and only if

$$H^{\infty}[\overline{f}] \cap H^{\infty}[g] \subset H^{\infty} + C$$
. (Algebraic Condition)

Here $H^{\infty}[f]$ denotes the closed subalgebra of L^{∞} generated by H^{∞} and f.

A theorem of Axler, Chang, Sarason and Volberg

For a uniform algebra B, let M(B) denote the maximal ideal space of B, the space of nonzero multiplicative linear functionals of B. We identify $\mathbb D$ in the usual way as a subset of $M(H^\infty)$.

By Carleson's Corona Theorem, $\mathbb D$ is dense in $M(H^\infty)$. Moreover, $M(H^\infty+C)=M(H^\infty)\backslash \mathbb D$.

For any m in $M(H^{\infty})$, there exists a representing measure μ_m such that $m(f) = \int f d\mu_m$, for all $f \in H^{\infty}$.

Definition

A subset S of $M(H^{\infty})$ is called a **support set** if it is the support of a representing measure for a functional in $M(H^{\infty} + C)$.

A theorem of Axler, Chang, Sarason and Volberg

Definition

A subset S of $M(H^{\infty})$ is called a **support set** if it is the support of a representing measure for a functional in $M(H^{\infty} + C)$.

Theorem (Another Version)

 $H_{\bar{f}}H_g$ is compact if and only if for each support set S, either $\bar{f}|_S \in H^{\infty}|_S$ or $g|_S \in H^{\infty}|_S$. (Local Condition)

This condition localized the condition when $H_{\tilde{f}}H_g=0$.

Theorem (Brown, Halmos, 1963)

 $H_{\overline{f}}H_g=0$ if and only if $\overline{f}\in H^\infty$ or $g\in H^\infty$.

An Elementary Condition for the Compactness of $H_{\tilde{f}}H_g$

Theorem (Zheng, 1996)

 $H_{\tilde{f}}H_g$ is compact if and only if

$$\lim_{|z| \to 1^-} ||H_{\overline{f}} k_z||_2 \cdot ||H_g k_z||_2 = 0.$$
 (Elementary Condition)

Here k_z denotes the normalized reproducing kernel at z:

$$k_z(w) = \frac{\sqrt{1-|z|^2}}{1-\bar{z}w}.$$

An Elementary Condition for the Compactness of $H_{\tilde{f}}H_g$

By the Corona Theorem, the elementary condition

$$\lim_{|z| \to 1^{-}} ||H_{\bar{f}} k_z|| \cdot ||H_g k_z|| = 0$$

can be rephrased as:

For all $m \in M(H^{\infty} + C)$,

$$\lim_{z\to m}||H_{\bar{f}}k_z||\cdot||H_gk_z||=0.$$

An Elementary Condition for the Compactness of $H_{\tilde{f}}H_g$

The next theorem links the elementary condition and the local condition.

Theorem (Gorkin, Zheng)

Let $m \in M(H^{\infty} + C)$, and let S be the support set of m. Then the following are equivalent:

- $\bullet f|_S \in H^{\infty}|_S.$
- $\underline{\lim}_{z\to m}||H_fk_z||=0.$
- $\lim_{z\to m}||H_fk_z||=0.$

Compactness of $H_{\tilde{f}}H_g$

Theorem

The following are equivalent:

- $H_{\tilde{f}}H_g$ is compact.
- 2

$$H^{\infty}[\bar{f}] \cap H^{\infty}[g] \subset H^{\infty} + C$$
. (Algebraic Condition)

3 For each support set S,

either
$$\bar{f}|_S \in H^{\infty}|_S$$
 or $g|_S \in H^{\infty}|_S$. (Local Condition)

4

$$\lim_{|z|\to 1^{-}}||H_{\bar{f}}k_z||\cdot||H_gk_z||=0. \quad \text{(Elementary Condition)}$$

Turning to the operator $H_f T_g$. It is not hard to obtain the zero condition.

Lemma

 $H_f T_g = 0$ if and only if one of the following holds:

- $\bullet f \in H^{\infty}.$
- $g \in H^{\infty}$ and $fg \in H^{\infty}$.

Localize these conditions, we want to prove:

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

- $g|_S \in H^{\infty}|_S$ and $(fg)|_S \in H^{\infty}|_S$.

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

Proof: " \Longrightarrow ". Suppose $H_f T_g$ is compact. Apply the lemma:

Lemma (Zheng)

If $K: H^2 \to H^2$ is a compact operator, then

$$\lim_{|z|\to 1^{-}}||K-T_{\phi_{z}}^{*}KT_{\bar{\phi}_{z}}||=0,$$

where

$$\phi_z(w) = \frac{z - w}{1 - \overline{z}w}.$$

We get:

$$\lim_{z\to m}||H_fk_z||\cdot||H_gk_z||=0,$$

for every $m \in M(H^{\infty} + C)$.

Translate to the local conditions, we have: either $f|_S \in H^{\infty}|_S$, or $g|_S \in H^{\infty}|_S$, where S is the support set of m.

For the second case, use the identity:

$$H_{fg} = H_f T_g + T_{\tilde{f}} H_g,$$

then:

$$H_{fg}k_z = H_f T_g k_z + T_{\tilde{f}} H_g k_z.$$

$$H_{fg}k_z = H_f T_g k_z + T_{\tilde{f}} H_g k_z,$$

and

$$\lim_{z\to m}||H_g k_z||=0.$$

Notice that: $H_f T_g$ is compact and $k_z \to 0$ weakly. Thus

$$\lim_{z\to m}||H_fT_gk_z||=0.$$

So

$$\lim_{z\to m}||H_{fg}k_z||=0.$$

This means $(fg)|_S \in H^{\infty}|_S$.

Theorem

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

" \Leftarrow ." Is the converse of

Lemma

If $K: H^2 \to H^2$ is a compact operator, then

$$\lim_{|z| \to 1^{-}} ||K - T_{\phi_{z}}^{*} K T_{\bar{\phi}_{z}}|| = 0.$$

still true?

Theorem (Guo, Zheng, 2001)

If K is a finite sum of finite products of Toeplitz operators, and if

$$\lim_{|z| \to 1^{-}} ||K - T_{\phi_{z}}^{*}KT_{\phi_{z}}|| = 0.$$

Then K = Toeplitz operator + Compact operator.

 $H_f T_g$ is not necessarily a finite sum of finite products of Toeplitz operators, but

$$(H_f T_g)^* (H_f T_g) = T_{\bar{g}} (T_{\bar{f}g} - T_{\bar{f}} T_g) T_g.$$

Consider the symbol map $\sigma: T_{\phi} \to \phi$.

The symbol map is a *-homomorphism on the C^* -algebra generated by Toeplitz operators.

Theorem (Barría, Halmos, 1982)

 σ can be extended to a *-homomorphism on the $C^*\mbox{-algebra}$ generated by both Toeplitz and Hankel operators s.t.

$$\sigma(Hankel) = 0$$
 and $\sigma(Compact) = 0$.

Notice that

$$\sigma((H_f T_g)^*(H_f T_g)) = 0.$$

Then

 $(H_f T_g)^* (H_f T_g) =$ Toeplitz operator + Compact operator if and only if $(H_f T_g)^* (H_f T_g)$ is compact.

Thus we have the following corollary:

Corollary

 $K = H_f T_g$ is compact if and only if

$$\lim_{|z| \to 1^{-}} ||K^*K - T_{\phi_z}^*K^*KT_{\phi_z}|| = 0.$$

Theorem (C.)

Let $f, g \in L^{\infty}$. The $H_f T_g$ is compact if and only if for each support set S, one of the following holds:

Now we can verify that each of the two conditions implies the compactness of $H_f T_g$.

The End