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Introduction

D = {|z | < 1}, T = ∂D. H∞ is the Hardy space on D.

Motivation

Let r ∈ (0, 1). Is it possible to find a power series
∞∑
k=0

akz
k such that

1 f (z) =
∞∑
k=0

akz
k ∈ H∞.

2 |f (z)| ≤ 1, for z ∈ D.

3

∞∑
k=0

|ak |rk > 1 ?
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Introduction

Theorem (H. Bohr, M. Riesz, Schur, F. Wiener, 1914)

If

f (z) =
∞∑
k=0

akz
k ∈ H∞,

and ||f ||∞ ≤ 1, then
∞∑
k=0

|ak |rk ≤ 1,

for 0 ≤ r < 1
3 . Moreover, the radius 1

3 is the best possible.

Definition(Bohr radius)

R = sup{r ∈ (0, 1)|
∞∑
k=0

|ak |rk ≤ ||
∞∑
k=0

akz
k ||∞, ∀

∞∑
k=0

akz
k ∈ H∞}.
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Introduction

Definition(Bohr radius)

R = sup{r ∈ (0, 1)|
∞∑
k=0

|ak |rk ≤ ||
∞∑
k=0

akz
k ||∞, ∀

∞∑
k=0

akz
k ∈ H∞}.

Definition(Bohr radius for polynomials)

Let Pn be the set of polynomials of degree at most n.

Rn = sup{r ∈ (0, 1)|
n∑

k=0

|ak |rk ≤ ||
n∑

k=0

akz
k ||∞,∀

n∑
k=0

akz
k ∈ Pn}.

Question

Obviously, R0 = 1, Rn → 1
3 , as n→∞.

What is the asymptotic of Rn?
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Introduction

Definition(Bohr radius for polynomials)

Rn = sup{r ∈ (0, 1)|
n∑

k=0

|ak |rk ≤ ||
n∑

k=0

akz
k ||∞,∀

n∑
k=0

akz
k ∈ Pn}.

Theorem (Guadarrama, 2005)

There are constants C1,C2 such that

C1

3n/2
< Rn −

1

3
< C2

log n

n
.

In 2008, R. Founier obtained a formula for Rn.
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Bounded Preserving Functions

Definition

Given

f (z) =
∞∑
k=0

akz
k , g(z) =

∞∑
k=0

bkz
k .

The Hadamard product is:

(f ∗ g)(z) =
∞∑
k=0

akbkz
k .

Define the bounded preserving functions:

B = {F ∈ Hol(D)|F (0) = 1, ||F ∗ f ||∞ ≤ ||f ||∞, ∀f ∈ H∞}.
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Bounded Preserving Functions

Definition

B = {F ∈ Hol(D)|F (0) = 1, ||F ∗ f ||∞ ≤ ||f ||∞, ∀f ∈ H∞}.

Notice that:
n∑

k=0

|ak |rk ≤ ||
n∑

k=0

akz
k ||∞, ∀{ak}

⇐⇒

1 +
n∑

k=0

e iφk rkzk ∈ B, ∀{φk} ⊂ R.

Theorem (Sheil-Small, 1973)

f ∈ B if and only if

Re f ≥ 1

2
.
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Bounded Preserving Functions

Theorem (Sheil-Small, 1973)

f ∈ B if and only if

Re f ≥ 1

2
.

Then apply the classical theorem of Caratheodory and Szegő.

Theorem ( Caratheodory and Szegő )

Let f (z) = 1 +
∞∑
k=1

ckz
k ∈ Hol(D).

Then Re f ≥ 1
2 if and only if

1 c1 · · · cn

c̄1 1
. . .

...
...

. . .
. . . c1

c̄n · · · c̄1 1

 ≥ 0, ∀n ≥ 0.
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A Formula for Rn

Theorem (Fournier, 2008)

For each n ≥ 1, let Tn(r) be the following (n + 1)× (n + 1) symmetric
Toeplitz matrix

1 r −r2 r3 · · · (−1)n−1rn

r 1 r −r2 · · · (−1)n−2rn−1

−r2 r 1 r

r3 −r2 r 1
. . .

...
...

. . .
. . .

. . .

(−1)n−1rn · · · r 1


.

Then Rn is equal to the smallest root in (0, 1) of the equation

detTn(r) = 0.
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Main Theorem

Based on numerical evidence, Fournier conjectured that

Rn =
1

3
+

π2

3n2
+

3π4

4n4
+ ...

Theorem (C.)

Let Rn be the smallest root in (0, 1) of the equation detTn(r) = 0, where

Tn(r) =


1 r −r2 r3 ··· (−1)n−1rn

r 1 r −r2 ··· (−1)n−2rn−1

−r2 r 1 r

r3 −r2 r 1
. . .

...
...

. . .
. . .

. . .
(−1)n−1rn ··· r 1


Then

Rn =
1

3
+

π2

3n2
+ o(

1

n2
), as n→∞.
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Main Theorem

Proof: Fix r ∈ (0, 1), we consider the eigenvalues of the matrix Tn(r).

Eigenvalues of Toeplitz Matrix

Let f (x) =
∞∑
−∞

cke
ikx be a real-valued continuous function on T.

Denote the eigenvalues of the associated Toeplitz matrix

Tn[f ] =


c0 c1 ··· cn

c−1 c0
. . .

...
...

. . .
. . . c1

c−n ··· c−1 c0


as λ

(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n+1.

If m ≤ f ≤ M, then m ≤ λ(n)1 ≤ λ
(n)
n+1 ≤ M.

Hence, for every v ,

λ
(n)
v = f (x

(n)
v ), for some x

(n)
v ∈ T.
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Main Theorem

Theorem (Szegő, 1915)

Let f (x) =
∞∑
−∞

cke
ikx be a real-valued function on T and m ≤ f ≤ M.

Let {λ(n)v }n+1
v=1 be the eigenvalues of the associated Toeplitz matrix

Tn[f ] =


c0 c1 ··· cn

c−1 c0
. . .

...
...

. . .
. . . c1

c−n ··· c−1 c0


Then for every continuous function F on [m,M],

lim
n→∞

F (λ
(n)
1 ) + F (λ

(n)
2 ) + · · ·+ F (λ

(n)
n+1)

n + 1
=

1

2π

∫ 2π

0
F (f (x))dx .

Hence the sequences {λ(n)v }n+1
v=1 and {f ( 2vπ

n+2)}n+1
v=1 are “equally distributed”.
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Main Theorem

Tn(r) =


1 r −r2 r3 ··· (−1)n−1rn

r 1 r −r2 ··· (−1)n−2rn−1

−r2 r 1 r

r3 −r2 r 1
. . .

...
...

. . .
. . .

. . .
(−1)n−1rn ··· r 1


The function associated with the Toeplitz matrix Tn(r) is

f (x) = 1 +
∑
|n|>0

(−1)n−1rne inx =
3r2 + 4r cos x + 1

r2 + 2r cos x + 1
.

Let
∆n(λ) = det(Tn(r)− λI ).
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Main Theorem

We have a linear recurrence relation:

∆n(λ) = [(3− λ)r2 + 1− λ]∆n−1(λ)− (2− λ)2∆n−2(λ), ∀n ≥ 1,

with ∆−1(λ) = 1 and ∆0(λ) = 1− λ.

Use the substitution

λ = f (x) =
3r2 + 4r cos x + 1

r2 + 2r cos x + 1
, x ∈ [0, π],

we get

∆n(λ) =
[(λ− 2)r ]n+1

1− r2

(
sin(n + 2)x

sin x
+ 2r

sin(n + 1)x

sin x
+ r2

sin nx

sin x

)
.
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Main Theorem

Let

pn(x) =
sin(n + 2)x

sin x
+ 2r

sin(n + 1)x

sin x
+ r2

sin nx

sin x
.

pn is a polynomial of degree n + 1 in cos x , so it has n + 1 zeros on [0, π]:

0 ≤ x
(n)
1 ≤ x

(n)
2 ≤ · · · ≤ x

(n)
n+1 ≤ π.

Since

f (x) =
3r2 + 4r cos x + 1

r2 + 2r cos x + 1

is decreasing on [0, π], λ
(n)
min = f (x

(n)
n+1) is the smallest eigenvalue of Tn(r).
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Main Theorem

Theorem (Szegő, 1915)

Let f (x) =
∞∑
−∞

cke
ikx be a real-valued function on T and m ≤ f ≤ M.

Let {λ(n)v }n+1
v=1 be the eigenvalues of the associated Toeplitz matrix

Tn[f ] =


c0 c1 ··· cn

c−1 c0
. . .

...
...

. . .
. . . c1

c−n ··· c−1 c0


Then for every continuous function F on [m,M],

lim
n→∞

F (λ
(n)
1 ) + F (λ

(n)
2 ) + · · ·+ F (λ

(n)
n+1)

n + 1
=

1

2π

∫ 2π

0
F (f (x))dx .

Hence the sequences {λ(n)v }n+1
v=1 and {f ( 2vπ

n+2)}n+1
v=1 are “equally distributed”.
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Main Theorem

pn(x) =
sin(n + 2)x

sin x
+ 2r

sin(n + 1)x

sin x
+ r2

sin nx

sin x
.

Let
t(n)ν =

νπ

n + 2
, ν = 1, 2, · · · , n + 1.

Direct computation shows that

pn(t(n)ν ) = (−1)ν+12r(1 + r cos ν),

and
lim

x→π−
pn(x) = 2(−1)n+1(1− r)2.

So the zeros {x (n)v }n+1
v=1 satisfies

0 < t
(n)
1 < x

(n)
1 < t

(n)
2 < x

(n)
2 < · · · < t

(n)
n+1 < x

(n)
n+1 < π.
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Main Theorem

t(n)ν =
νπ

n + 2
, ν = 1, 2, · · · , n + 1.

0 < t
(n)
1 < x

(n)
1 < t

(n)
2 < x

(n)
2 < · · · < t

(n)
n+1 < x

(n)
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Main Theorem

lim
n→∞

(−1)n+1 pn(π−
z

n+2
)

n+2 = (1− r)2 sin zz

=⇒ x
(n)
n+1 = π − π

n + o( 1n ), as n→∞.

f (x) =
3r2 + 4r cos x + 1

r2 + 2r cos x + 1
.

r = Rn is the root in (0, 1) of the equation

λ
(n)
min = f (x

(n)
n+1) = 0 =⇒ 3R2

n + 4Rn cos x
(n)
n+1 + 1 = 0

=⇒ Rn =
1

3
(−2 cos x

(n)
n+1 −

√
4 cos2 x

(n)
n+1 − 3)

=⇒ Rn =
1

3
+

π2

3n2
+ o(

1

n2
).
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The End
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