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Given a graph G, a strong edge-coloring is a coloring
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Given a graph G, a strong edge-coloring is a coloring
of E(G) such that every color class forms an induced
matching in G.

The strong chromatic index of G, denoted by x_(G),
is the minimum number of colors needed for a strong
edge-coloring of G.
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Proposition

For every graph G with maximum degree A,

A <X'(G) < X(G)
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Proposition

For every graph G with maximum degree A,

A < X/(G) <2A%

@ The lower bound is best possible due to Kj a.

@ The order of magnitude of the upper bound is also
best possible as
A+ 1) 1,
~ —A“.
2

X.(Ka+1) = ( >
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Conjecture (Erd6s-NeSetfril ‘85)

For any graph G with maximum degree A,
2A2, for even A

/ <{4
X,(G) < {%AZ_%AJF%, for odd A
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Blow-Up of Cs

272, for even A

/(Blow-up of Cs) = { &
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@ If G is (2K3)-free, then X;(G) = |E(G)|.
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Blow-Up of Cs

52
A for even A
’(Blow-up of C5) =428 .’
Xs( P of Cs) {%Az—%AjL%, for odd A

@ If G is (2K3)-free, then X;(G) = |E(G)|.

Theorem (Chung-Gyarfas-Trotter-Tuza ‘90)

The number of edges in a (2K3;)-free graph with max

22, for even A

degree A is at most { 4
9 {%AZ — %A + %, for odd A.

Additionally, the blow-up of Cs is the unique extremal
graph.
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Proof Sketch

Theorem (Huang-S-Yu ‘17++)

If G is a multigraph with A(G) < 4, then x(G) < 21.
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Proof Sketch

Theorem (Huang-S-Yu ‘17++)

If G is a multigraph with A(G) < 4, then x(G) < 21.

@ Among all counterexamples, choose G so that
|[V(G)| + |E(G)| is minimized.
@ So A(G) <4 and x(G) > 21.
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@ G is 4-regular, simple, etc.
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Proof Sketch

Properties of a Minimal Counterexample G

@ G is 4-regular, simple, etc.
@ G has girth at least 6.
@ G has no edge-cut of size at most 3.

How to Color the Edges of G

@ Partition the vertices of G into three sets (L, M, and
R), where M is a cut-set
@ Show that M contains some special vertices.

@ Case analysis and color.
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Open Problems
Conjecture (Erd6s-NeSetfril ‘85)

If A(G) <4, then x/(G) < 20.

V.

Conjecture (Faudree-Gyarfas-Schelp-Tuza ‘90)
Suppose G is a bipartite graph with maximum degree A.

Q X.(G) < A2
Q If A <3 and G has girth at least six, then X.(G) <7
Q If A <3 and G has ‘large’ girth, then x(G) <5

| A\

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree A, then

4A—4 < x(G)<4A+4.
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