
Balanced vertices in rooted trees

Miklós Bóna

Department of Mathematics
University of Florida

Gainesville FL 32611-8105

bona@ufl.edu

May 20, 2017



Rooted Trees

Various parameters of a many kinds of rooted trees are fairly well
understood if they originate at the root.

For instance, the average number of vertices at distance d from
the root can be computed, the average root degree can be
computed, and so on.

However, much less is known when we start counting from the
bottom up, that is, from the leaves.



Rooted Trees

Various parameters of a many kinds of rooted trees are fairly well
understood if they originate at the root.

For instance, the average number of vertices at distance d from
the root can be computed, the average root degree can be
computed, and so on.

However, much less is known when we start counting from the
bottom up, that is, from the leaves.



Rooted Trees

Various parameters of a many kinds of rooted trees are fairly well
understood if they originate at the root.

For instance, the average number of vertices at distance d from
the root can be computed, the average root degree can be
computed, and so on.

However, much less is known when we start counting from the
bottom up, that is, from the leaves.



k-protected vertices

Why should we care?

Vertices of a network that are close to a leaf may be vulnerable to
attacks.

Alternatively, people corresponding to vertices far from leaves may
represent people who were not active lately.
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Decreasing binary trees

While we studied several tree varieties, most of our results are
about decreasing binary trees, also called binary search trees. In
the first part of the talk, we will discuss results about these trees.

These are plane trees in which every vertex has at most two
children, and each child is a left or right child of its parent, even if
it is an only child. The vertices are bijectively labeled by the
numbers 1, 2, · · · , n, and the label of each vertex is smaller than
that of its parent.

These treees are in natural bijection with permutations of length n,
so their number is n!.
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A decreasing binary tree
In the tree T (π) of the permutation π, the root will have label n,
the entries on the left of n will go in the left subtree, and the
entries on the right of n will go in the right subtree. These
subtrees will be defined recursively by the same rule.
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Figure: The tree T (π) for π = 328794615.



Rank

Let the rank of a vertex v in a tree be the distance (number of
edges) of the shortest path from v to any leaf that is a descendant
of v .

So leaves have rank 0, neighbors of leaves have rank 1, and so on.
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The ratio of vertices of rank k

In earlier work, we proved that if Fn,k is the number of all vertices
of rank k in all trees of size n, then

lim
n→∞

Fn,k
n · n!

= ck ,

for a positive rational number ck , and we computed the numbers
ck for k ≤ 5.

It follows from those numbers ck that for large n, about 99.75
percent of vertices are of rank five or less.
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Balanced vertices

A vertex v is called balanced if all descending paths from v to a
leaf have the same length.

In Figure 8, all vertices are balanced,
except for 6, 8, and 9.
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Small ranks

All leaves are balanced.

A vertex of T (π) is a leaf iff the corresponding entry of π is
smaller than both of its neighbors, and that happens one third of
the time. So C0 = 1/3.

A vertex of rank 1 is balanced iff all of its children are leaves.

It follows from elementary considerations (like those for leaves)
concerning the neighbors and the second neighbors of an entry of
π that one fifth of all vertices are like this, so C1 = 1/5.
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General Rank

For larger values of k , this type of argument will not work, since
the parent of a vertex of rank k does not have to have rank k + 1.
It can have any rank between 1 and k + 1.

So an analytic approach is needed.
Let Ak(x) be the exponential generating function for the number
of balanced vertices of rank k in all n! trees of size n.

Let Bk(x) be the exponential generating function for the number
of trees of size n in which the root is balanced, and is of rank k .
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Differential equations

Then by the Exponential formula, we have

Lemma
For k ≥ 1, the linear differential equation

A′k(x) =
2

1− x
· Ak(x) + B ′k(x)

holds, with initial condition Ak(0) = 0.

Crucially, and this is different from the problem of counting all
vertices of a given rank, Bk(x) is a polynomial, since a tree whose
root is balanced and of rank k can have at most 2k+1 − 1 vertices.
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The form of Ak

Solving the linear differential equation for Ak(x), we get that

Ak(x) =

∫
(1− x)2B ′k(x) dx

(1− x)2
.

So Ak(x) is a rational function with denominator (1− x)2, and so
the Ck exist, and are computable from Ak(x).
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First few values

I C0 = 1/3

I C1 = 1/5

I C2 = 52/567

I C3 = 7175243/222660900.

This shows that for large n, about 65.7 percent of all vertices of
decreasing binary trees are balanced and of rank at most three.

More computation shows that for n sufficiently large, about 66.62
percent of all vertices are balanced and of rank at most four, and
about 66.84 percent are balanced and of rank at most five.



First few values

I C0 = 1/3

I C1 = 1/5

I C2 = 52/567

I C3 = 7175243/222660900.

This shows that for large n, about 65.7 percent of all vertices of
decreasing binary trees are balanced and of rank at most three.

More computation shows that for n sufficiently large, about 66.62
percent of all vertices are balanced and of rank at most four, and
about 66.84 percent are balanced and of rank at most five.



First few values

I C0 = 1/3

I C1 = 1/5

I C2 = 52/567

I C3 = 7175243/222660900.

This shows that for large n, about 65.7 percent of all vertices of
decreasing binary trees are balanced and of rank at most three.

More computation shows that for n sufficiently large, about 66.62
percent of all vertices are balanced and of rank at most four, and
about 66.84 percent are balanced and of rank at most five.



Monotonicity

Let Pn be the probability that vertex chosen uniformly from the set
of all vertices of all decreasing binary trees on [n] is balanced. Our
goal is to prove the following.

Theorem
The sequence P1,P2, · · · is weakly decreasing.
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Fixed rank

Let pn,k be the probability that the root of a randomly selected tree
on n vertices is balanced, and is of rank k . Set p0,i = 1 for all i .

Lemma
For all n ≥ 1 and all fixed k ≤ n, the inequality pn+1,k ≤ pn,k
holds.
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Induction on n. True for all k if n ≥ 3, since then pn,k = 1. Now
let us assume that the statement is true for n and prove it for n+ 1.

Let π be a permutation of length n + 1. The probability that the
largest entry of π is in position i + 1 for any i ∈ [0, n] is 1/(n + 1).
The root of T (π) is balanced of rank k if and only if all its
children are balanced of rank k − 1,

so

pn+1,k =

∑n
i=0 pi ,k−1pn−i ,k−1

n + 1
. (1)

pause Replacing n + 1 by n, we get the analogous formula

pn,k =

∑n−1
i=0 pi ,k−1pn−1−i ,k−1

n
. (2)



Induction on n. True for all k if n ≥ 3, since then pn,k = 1. Now
let us assume that the statement is true for n and prove it for n+ 1.

Let π be a permutation of length n + 1. The probability that the
largest entry of π is in position i + 1 for any i ∈ [0, n] is 1/(n + 1).
The root of T (π) is balanced of rank k if and only if all its
children are balanced of rank k − 1,

so

pn+1,k =

∑n
i=0 pi ,k−1pn−i ,k−1

n + 1
. (1)

pause Replacing n + 1 by n, we get the analogous formula

pn,k =

∑n−1
i=0 pi ,k−1pn−1−i ,k−1

n
. (2)



Induction on n. True for all k if n ≥ 3, since then pn,k = 1. Now
let us assume that the statement is true for n and prove it for n+ 1.

Let π be a permutation of length n + 1. The probability that the
largest entry of π is in position i + 1 for any i ∈ [0, n] is 1/(n + 1).
The root of T (π) is balanced of rank k if and only if all its
children are balanced of rank k − 1,

so

pn+1,k =

∑n
i=0 pi ,k−1pn−i ,k−1

n + 1
. (1)

pause Replacing n + 1 by n, we get the analogous formula

pn,k =

∑n−1
i=0 pi ,k−1pn−1−i ,k−1

n
. (2)



Induction on n. True for all k if n ≥ 3, since then pn,k = 1. Now
let us assume that the statement is true for n and prove it for n+ 1.

Let π be a permutation of length n + 1. The probability that the
largest entry of π is in position i + 1 for any i ∈ [0, n] is 1/(n + 1).
The root of T (π) is balanced of rank k if and only if all its
children are balanced of rank k − 1,

so

pn+1,k =

∑n
i=0 pi ,k−1pn−i ,k−1

n + 1
. (1)

pause Replacing n + 1 by n, we get the analogous formula

pn,k =

∑n−1
i=0 pi ,k−1pn−1−i ,k−1

n
. (2)



Trick

Compare

p0,2p6,2 +p1,2p5,2 +p2,2p4,2 +p3,2p3,2 +p4,2p2,2 +p5,2p1,2 +p6,2p0,2

and

p0,2p5,2 + p1,2p4,2 + p2,2p3,2 + p3,2p2,2 + p4,2p1,2 + p5,2p0,2.

Say the jth summand of the top sum is minimal. Then compare
the ith summand on the top with the ith summand at the bottom
if i < j , and the ith summand at the top with the (i − 1)st
summand at the bottom if i > j .
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This shows that the top sum is at most 7/6 (or, in the general
case, (n + 1)/n) times the bottom sum, proving the lemma.



Corollary

Let pn be the probability that the root of a decreasing binary tree
on [n] is balanced. Then pn ≥ pn+1.

Proof: It follows from our definitions that

pn =
n−1∑
k=1

pn,k

and

pn+1 =
n∑

k=1

pn+1,k .
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As the lemma shows that pn+1,k ≤ pn,k for k ≤ n, the only issue
that we must consider is that the sum yielding pn+1 has one more
summand than that yielding pn.

However, this is not a problem, since for all n ≥ 2, we have
pn,n−1 = 2n−1/n!, while pn+1,n−1 = 2n−1/(n + 1)! and
pn+1,n = 2n/(n + 1)!, so

pn,n−1 =
2n−1

n!
≥ 3 · 2n−1

n + 1
= pn+1,n−1 + pn+1,n.

This inequality, and applying the lemma for all k ≤ n − 2, proves
our claim.
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Finishing the proof of monotonicity

Induction on n. In order to prove that Pn ≥ Pn+1, note that a
random vertex of a tree of size n has 1/n probability to be the
root, and it has, for each i ∈ [n − 1], exactly 1/n probability to be
a vertex in a subtree of size i which is the left subtree or right
subtree of the root. Therefore, the inequality Pn ≥ Pn+1 is
equivalent to the inequality

Pn =
pn +

∑n−1
i=1 Pi

n
≥

pn+1 +
∑n

i=1 Pi

n + 1
= Pn+1. (3)
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The inequality in (3) is true, since the first equality in (3) shows
that Pn is obtained as the average of the n values in the set
S = {pn,P1,P2, · · · ,Pn−1}.

That average does not change if we extend S by adding Pn (the
average of the values in S) to it. Then, if we replace pn by pn+1,
the average of the new set S ′ = {pn+1,P1,P2, · · · ,Pn} is at most
as large as the average of S , (since pn+1 ≤ pn by Corollary 4),
while the average of S ′ is Pn+1 by the second equality in (3).
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Limiting probability

As the sequence of the Pn is monotone decreasing, its limit exists.

The limit is in the interval [0.6684, 0.66965].

This is obtained by computing Ck for k ≤ 5, then saying that there
are very few vertices (balanced or not) of rank more than five.
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What can be said about other trees?

There are numerous other varieties of labeled rooted trees for
which we could ask the same question.

These include plane trees in which every vertex can have at most k
children, or any number of children, and non-plane trees with
similar conditions.

When counting all vertices of a given rank, one fact that makes life
harder is that the analogous versions of Ak(x) will not be
elementary functions if k ≥ 2.
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An example: non-plane 1-2 trees
In such trees, each vertex has a label smaller than its parent, each
vertex has at most two children, but left or right does not matter.
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Figure: The five rooted non-plane 1-2 trees on vertex set [4].
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Euler numbers

It is well known that the number of such trees on [n] is the Euler
number En, which counts, among other things, alternating
permutations of length n.

It is also well known that∑
n≥0

En
xn

n!
= tan x + sec x .
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All vertices
When counting all vertices of a given rank, we can set up a
sequence of differential equations like before. Then, using some
complex analysis, we can compute that

c0 = 1− 2

π
≈ 0.36338,

and

c1 = 2− π2

24
− 4

π
≈ 0.31553.

We cannot get any further, since we cannot solve the relevant
linear differential equations. This is because functions like x tan x
do not have an elementary antiderivative.
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Results for balanced vertices

Theorem
Let Hk(x) be the exponential generating function for the number
of balanced vertices of rank k in all non-plane 1-2 trees of size n.
Then

Hk(x) =

∫
b′k(x)(1− sin x) dx

1− sin x
,

where bk(x) is the exponential generating function of such trees in
which the root is balanced and is of rank k .

Note that b′k(x) is is a polynomial. Therefore, integral in the
numerator is an elementary function since the integral of xn sin x is
an elementary function for all positive integers n.
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Numerical results

For k = 0, we get nothing new, since vertices of rank 0 are leaves,
and they are all balanced.

For k = 1, we have

H1(x) =
6x cos(x)− 6 cos(x) + 3x2 cos(x)− 6x sin(x)− 6 sin(x) + P(x)

6(1− sin(x))
,

where P(x) = x3 + 6 + 3x2. This yields that for large n, about

π

4
+
π2

24
− 1 ≈ 0.1966

of all vertices are balanced and of rank 1.
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