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Matching Extension in general as well as in the plane

(and other surfaces) has been extensively studied.



Let G be a graph with at least 2m + 2n + 2 vertices

which contains a perfect matching.

Def: G satisfies property E(m,n) if given any two match-

ings M and N with |M | = m and |N | = n and such that

M∩N = ∅, there is a perfect matching F in G such that

M ⊆ F and F ∩N = ∅.



The property E(m,n) generalizes the older concept

of n-extendability of a graph in that

G is n-extendable iff it is E(n, 0).



n-extendability, in turn, generalizes 1-extendability

(or matching-covered) which historically arose in dealing

with counting perfect matchings in a graph.



Organic Chemistry

(1) topological resonance energy

(2) benzenoid compounds



Some implications and non-implications among the

E(m,n) properties are shown below:



E(9,0)      E(8,1)      E(7,2)      E(6,3)      E(5,4)      E(4,5)      E(3,6)      E(2,7)      E(1,8)      E(0,9)    

E(8,0)      E(7,1)      E(6,2)      E(5,3)      E(4,4)      E(3,5)      E(2,6)      E(1,7)      E(0,8)

E(7,0)      E(6,1)      E(5,2)      E(4,3)      E(3,4)      E(2,5)      E(1,6)      E(0,7)

E(6,0)      E(5,1)      E(4,2)      E(3,3)      E(2,4)      E(1,5)      E(0,6)

E(5,0)      E(4,1)      E(3,2)      E(2,3)      E(1,4)      E(0,5)

E(4,0)      E(3,1)      E(2,2)      E(1,3)      E(0,4)

E(3,0)      E(2,1)      E(1,2)      E(0,3)

E(2,0)      E(1,1)      E(0,2)

E(1,0)      E(0,1)

E(0,0)

=  non−implication



Two basic results to keep in mind are:

Theorem (P-1980): If m ≥ 2, then:

(i) if G is m-extendable, then G is (m− 1)-extendable

and

(ii) if G is m-extendable, then G is (m+ 1)-connected.



Two other basic matching concepts are:

Def.: A graph G is said to be bicritical if G−u− v con-

tains a perfect matching, for every choice of two distinct

vertices u and v.

Def.: A graph G is said to be factor-critical if G − v

contains a perfect matching, for every choice of a vertex

v ∈ V (G).



LetG andH be any two graphs with vertex sets V (G)

and V (H) respectively.

Def.: The Cartesian product G × H of G and H is

the graph with vertex set V (G) × V (H) and edge set

E(G × H) = {(u, v)(x, y)|u = x, vy ∈ E(H), or ux ∈

E(G), v = y}.



We shall focus on the special case when H = K2.

Def.: The graph P (G) = G×K2 is called the prism over

G.



R(G)

G



Unsettled Conjecture: (Rosenfeld & Barnette 1973; Kaiser

et al. 2007)

Every 3-connected planar graph is prism-hamiltonian.



Theorem (Ellingham & Biebighauser (2007)):

(a) Every triangulation of the plane, projective plane,

torus or Klein bottle is prism-hamiltonian.

(b) Every 4-connected triangulation of a surface of suf-

ficiently large face-width is prism-hamiltonian.



For other related prism-hamiltonian results, see Kaiser

et al. (2007).



Basic motivation for our studies will be the following

corollary to a more general result due to Györi and the

presenter and, independently, to Liu and Yu.



Theorem: If G is a k-extendable graph, then G ×K2

is (k + 1)-extendable.



Some Basic Results for Prism Graphs

The prism graph P (G) consists of two copies G and G′

of G joined by a perfect matching.



R(G)

G



We call this perfect matching the set of vertical edges in

P (G).

Each vertical edge joins a vertex in G to its reflection

in G′.



Theorem: If G is any connected graph, then P (G) is

1-extendable.



It might not be 2-extendable!

For example, if G has a bridge, then P (G) is not even

E(1, 1)!

In fact, there are arbitrarily highly connected graphs

G for which P (G) is not E(1, 1)!



Theorem: If G is connected with δ(G) ≥ n, then P (G)

is E(0, k), for all 0 ≤ k ≤ n.



It is known that if a graph is E(m, 0), it is (m + 1)-

connected.

However, if a graph G is E(m, 1), the minimum re-

quired connectivity remains at m+ 1.

That is, there are graphs which are E(m, 1), but only

(m+ 1)-connected.



To see this, consider the graph

G5m+1 = Km+1 + (K2m ∪K2m)

on 5m+ 1 vertices, when m is odd, and the graph

G5m+2 = Km+1 + (K2m ∪K2m+1)

on 5m+ 2 vertices, when m is even.



For example, let m = 2 and consider G12:

G12 is E(2, 1), but only 3-connected.



In general, these graphs are E(m, 1), but only (m+1)-

connected.



Theorem: Let G be connected and k ≥ 1. Then if

P (G) is k-extendable, G is k-connected.

Remark: Why k ≥ 1 here?

Note that if G is disconnected, so is P (G) and hence

extendability for P (G) is not defined!



Theorem (Sabidussi 1957): If k ≥ 1 and G is k-

connected, then P (G) is (k + 1)-connected.



E(m,n) in G versus P (G)

Theorem: If G is E(0, 0), then P (G) is E(0, n) for

0 ≤ n ≤ |V (G)|.



Recall that if G is E(m, 0), then P (G) is E(m+1, 0).

However, it is not necessarily true that if G is a

graph possessing the property E(m, 1), P (G) then has

the property E(m+ 1, 1).

For all m ≥ 1, a counterexample is provided by the

graph K2m+2 +K2.



Theorem: If m ≥ 0 and G is E(m, 1), then P (G) is

E(m+ 1, 0).

Note that it follows from the lattice and the above The-

orem that P (G) is E(m, 1).



But more can be said!

Theorem:*** If m ≥ 0 and G is E(m, 1), then P (G) is

E(m, 2).

Corollary: If m ≥ 1 and G is E(m, 1), then P (G) is

also E(m, 1).



Remark: The conclusion of the preceding theorem is

best possible in the sense that, for each m ≥ 1, there are

graphs G which are E(m, 1), but P (G) is not E(m, 3).



As an example, let G be the balanced complete bipar-

tite graphKm+2,m+2 with partite setsA = {a1, . . . , am+2}

and B = {b1, . . . , bm+2}.

Now letM = {a1a′1, . . . , ama′m} and F = {b1b′1, b2b′2, b3b′3}.

Clearly, then, there is no perfect matching MP in

P (G) containing M , but none of the three edges in F .



For example, let m = 1 and hence G = K3,3:
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Bipartite Graphs and their Prisms

If the graph G is bipartite, can we expect more?



Theorem:*** Suppose k ≥ 1 and G be k-connected

and bipartite. Then P (G) is E(k, 0).



Moreover, we cannot drop the bipartite hypothesis

in the above theorem and achieve the same conclusion

given the (non-bipartite) graphs created in the Con-

struction earlier which are arbitrarily highly connected

and have prism graphs which are not E(1, 1) and hence

not E(2, 0).



Finally, we cannot decrease the connectivity hypoth-

esis in the above Theorem either.

Example: For k ≥ 2, the bipartite graph Kk−1,k is

(k − 1)-connected, but P (Kk−1,k) is NOT k-extendable.



Bicritical and Factor-critical Graphs and their Prisms

Two important families of graphs in matching theory

are the bicritical graphs and the factor-critical graphs.

A 3-connected bicritical graph is often called a brick.



An old result due to the second author is the follow-

ing.

Theorem: If G is any 2-extendable graph then either

it is bipartite or a brick.

(Of course G cannot be both.)



Combining this result with the fact that E(2, 0) im-

plies E(1, 1) in general, we have that a non-bipartite

2-extendable graph is both E(1, 1) and bicritical.

The Petersen graph serves to show that the converse

is not true, since this graph is both E(1, 1) and bicritical,

but not 2-extendable.



Remark: Neither of the properties bicritical andE(1, 1)

necessarily implies the other.



Although a bicritical graph (or brick) need not be

E(1, 1), one could conjecture that they must be E(0, 2).

Kothari and Murty proved that all cubic bricks are

E(0, 2).

The following is an easy generalization of their result.



Theorem: If k ≥ 3 and G is a k-regular k-connected

bicritical graph, then G is E(0, 2).



However, it is FALSE that every brick is E(0, 2)!

Consider the following:



Theorem: If G is bicritical, P (G) is 2-extendable and

bicritical and hence a brick.

Although a bicritical graph need not be E(1, 1),

(think of the triangular prism)

the following is true.

Corollary: If G is bicritical, then P (G) is E(1, 1) and

E(0, n), for all n, 0 ≤ n ≤ |V (G)|.



Remark: It is false that if G is bicritical (or even a

brick), then P (G) is necessarily E(1, 2).

Remark: It then follows that if G is a brick, P (G) is

not necessarily E(2, 1) or E(3, 0).



Let us now consider factor-critical graphs and their

prisms.

Theorem: If G is factor-critical, then P (G) is bicritical.



Remark: If G is factor-critical, it is not necessarily true

that P (G) is E(1, 1), even if we demand high minimum

degree or high connectivity.



On the other hand, we do have the following result.



Theorem: If G is a factor-critical graph, then P (G) is

E(0, n), for all 1 ≤ n ≤ |V (G)| − 1.

Note that the above result is best possible in that

no perfect matching in P (G) can avoid the set of all

|V (G)| vertical edges in P (G), since G is factor-critical

and hence |V (G)| is odd.


