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Matroids

The concept of a matroid generalizes the combinatorial aspects of
linear dependence in matrices.

The columns of a matrix are the elements of a representable
matroid.
If the entries of the matrix come from the field GF(2), then the
matroid is called a binary matroid.
Example: Consider the following matrix over GF(2):

1 2 3 4 5 6[ ]1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

Some sets of columns are dependent, and some are independent.
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Matroids

This matroid also can be represented by a graph.

1 2 3 4 5 6[ ]1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
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The edges are the elements of the matroid.

A set of edges is dependent if it contains a cycle.

Such matroids are called graphic matroids.

All graphic matroids are binary.
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Minors and Duality

The operations of contraction and deletion are generalizations of
the operations on graphs with the same name.

A matroid N
obtained from a matroid M by a sequence of deletions and
contractions is called a minor of M .
For every matroid M there is a dual matroid M∗. The concept of
duality extends the concept of orthogonality in vector spaces and
the concept of a planar dual of a planar graph.

I Duals of graphic matroids are called cographic matroids.
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Robertson and Seymour

I Graph Minors Project

I Building blocks of a proper minor-closed class of graphs are
“close” to being embeddable in some surface.
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Geelen, Gerards, and Whittle (2015)

I Highly-connected members of a proper minor-closed class of
binary matroids are “close” to being graphic or cographic.

I Templates help to specify what “close” means.

I Part of their profound structure theory of matroids
representable over a finite field
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Respecting a Template

A binary frame template is a tuple
Φ = ({1}, C,X, Y0, Y1, A1,∆,Λ) with some additional conditions.

A matrix A′ is said to respect Φ if it is of the following form:

Z Y0 Y1 C
X columns from Λ 0 A1

incidence
matrix of
a graph

unit and
zero
columns

rows
from ∆
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(i) C, X, Y0 and Y1 are disjoint finite sets.
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Conforming to a Template

A matrix A conforms to a template Φ if it is formed from a matrix
A′ that respects Φ by adding a column of Y1 to each column of Z.

A matroid M conforms to Φ if there is a matrix A that conforms
to Φ such that M is isomorphic to the vector matroid of
M(A)/C\Y1.

M(Φ) is the set of matroids conforming to Φ.
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Theorem (Geelen, Gerards, and Whittle 2015)

Let M be a proper minor-closed class of binary matroids. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt

such that

I M contains each of the classes M(Φ1), . . . ,M(Φs),

I M contains the duals of the matroids in each of the classes
M(Ψ1), . . . ,M(Ψt), and

I if M is a simple vertically k-connected member of M with at
least l elements, then either M is a member of at least one of
the classes M(Φ1), . . . ,M(Φs), or M∗ is a member of at
least one of the classes M(Ψ1), . . . ,M(Ψt).



Theorem (Geelen, Gerards, and Whittle 2015)

Let M be a proper minor-closed class of binary matroids. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt

such that

I M contains each of the classes M(Φ1), . . . ,M(Φs),

I M contains the duals of the matroids in each of the classes
M(Ψ1), . . . ,M(Ψt), and

I if M is a simple vertically k-connected member of M with at
least l elements, then either M is a member of at least one of
the classes M(Φ1), . . . ,M(Φs), or M∗ is a member of at
least one of the classes M(Ψ1), . . . ,M(Ψt).



Theorem (Geelen, Gerards, and Whittle 2015)

Let M be a proper minor-closed class of binary matroids. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt

such that

I M contains each of the classes M(Φ1), . . . ,M(Φs),

I M contains the duals of the matroids in each of the classes
M(Ψ1), . . . ,M(Ψt), and

I if M is a simple vertically k-connected member of M with at
least l elements, then either M is a member of at least one of
the classes M(Φ1), . . . ,M(Φs), or M∗ is a member of at
least one of the classes M(Ψ1), . . . ,M(Ψt).



Theorem (Geelen, Gerards, and Whittle 2015)

Let M be a proper minor-closed class of binary matroids. Then
there exist k, l ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt

such that

I M contains each of the classes M(Φ1), . . . ,M(Φs),

I M contains the duals of the matroids in each of the classes
M(Ψ1), . . . ,M(Ψt), and

I if M is a simple vertically k-connected member of M with at
least l elements, then either M is a member of at least one of
the classes M(Φ1), . . . ,M(Φs), or M∗ is a member of at
least one of the classes M(Ψ1), . . . ,M(Ψt).



Minors and Weak Conforming

I A template minor of a template Φ is a template Φ′ obtained
from Φ by repeatedly performing one of several operations.

I Every matroid in M(Φ′) is a minor of a matroid in M(Φ).

I If Φ′ is a template minor of Φ, then every matroid conforming
to Φ′ weakly conforms to Φ.

I We write Φ′ � Φ if every matroid weakly conforming to Φ′

also weakly conforms to Φ.
I The relation � is a preorder on the set of frame templates.
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Main Result

Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the
following is true:

(i) Φ is trivial

(ii) ΦX � Φ

(iii) ΦC � Φ

(iv) ΦY0 � Φ

(v) ΦY1 � Φ

(vi) ΦCX � Φ

(vii) There exist k, l ∈ Z+ such that no simple, vertically
k-connected matroid with at least l elements either conforms
or coconforms to Φ.



Main Result

Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the
following is true:

(i) Φ is trivial

(ii) ΦX � Φ

(iii) ΦC � Φ

(iv) ΦY0 � Φ

(v) ΦY1 � Φ

(vi) ΦCX � Φ

(vii) There exist k, l ∈ Z+ such that no simple, vertically
k-connected matroid with at least l elements either conforms
or coconforms to Φ.



Main Result

Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the
following is true:

(i) Φ is trivial

(ii) ΦX � Φ

(iii) ΦC � Φ

(iv) ΦY0 � Φ

(v) ΦY1 � Φ

(vi) ΦCX � Φ

(vii) There exist k, l ∈ Z+ such that no simple, vertically
k-connected matroid with at least l elements either conforms
or coconforms to Φ.



Main Result

Theorem (G. and Van Zwam, 2017)

Let Φ be a binary frame template. Then at least one of the
following is true:

(i) Φ is trivial

(ii) ΦX � Φ

(iii) ΦC � Φ

(iv) ΦY0 � Φ

(v) ΦY1 � Φ

(vi) ΦCX � Φ

(vii) There exist k, l ∈ Z+ such that no simple, vertically
k-connected matroid with at least l elements either conforms
or coconforms to Φ.



Using Templates

To use templates to study a minor-closed class M:

1. Find a matroid N not in M.

2. Find all templates such that N is not a minor of any matroid
conforming to that template.

3. If all matroids conforming to these templates are in M, then
the analysis is complete.

4. Otherwise, repeat Step (1).
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1-Flowing Matroids

The 1-flowing property is a generalization of the max-flow min-cut
property of graphs.

I So graphic matroids are 1-flowing.

Seymour (1981) showed:

I Cographic matroids are 1-flowing.

I The class of 1-flowing matroids is minor-closed.

I All 1-flowing matroids are binary.

I AG(3, 2) is not 1-flowing.

Conjecture (Seymour’s 1-flowing Conjecture, 1981)

The set of excluded minors for the class of 1-flowing matroids
consists of U2,4, AG(3, 2), T11, and T ∗11.
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1-Flowing Matroids (cont.)

It can be shown that to each of ΦY0 , ΦY1 , ΦC , ΦX , and ΦCX

conforms a matroid with an AG(3, 2)-minor.

Thus, we have the following:

Theorem (G. and Van Zwam, 2017)

There exist k, l ∈ Z+ such that every simple, vertically
k-connected, 1-flowing matroid with at least l elements is either
graphic or cographic.
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All Minors Are Not Created Equal

If we consider highly connected matroids of sufficient size in a
minor-closed class, we often can reduce the number of excluded
minors.

Example: A 3-connected graph with at least 11 edges is planar if
and only if it contains no K3,3-minor.

EX (M1,M2, . . . ): the class of binary matroids with no minor in
the set {M1,M2, . . . }.
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Theorem (G. and Van Zwam, submitted)
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Thank you!


