Templates for Minor-Closed Classes of Binary Matroids

Kevin Grace* and Stefan van Zwam

Department of Mathematics Louisiana State University Baton Rouge, Louisiana

29th Cumberland Conference; Nashville, TN May 21, 2017

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

The columns of a matrix are the elements of a *representable* matroid.

The columns of a matrix are the elements of a *representable* matroid.

If the entries of the matrix come from the field $\mathrm{GF}(2),$ then the matroid is called a binary matroid.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

The columns of a matrix are the elements of a *representable* matroid.

If the entries of the matrix come from the field $\mathrm{GF}(2),$ then the matroid is called a binary matroid.

Example: Consider the following matrix over GF(2):

1	2	3	4	5	6
Γ1	0	0	1	1	ך0
0	1	0	1	0	1
LO	0	1	0	1	1

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The columns of a matrix are the elements of a *representable* matroid.

If the entries of the matrix come from the field $\mathrm{GF}(2),$ then the matroid is called a binary matroid.

Example: Consider the following matrix over GF(2):

1	2	3	4	5	6
٢1	0	0	1	1	ך0
0	1	0	1	0	1
Lo	0	1	0	1	1

Some sets of columns are dependent, and some are independent.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This matroid also can be represented by a graph.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

This matroid also can be represented by a graph.

< □ > < @ > < 注 > < 注 > ... 注

This matroid also can be represented by a graph.

< □ > < @ > < 注 > < 注 > ... 注

The edges are the elements of the matroid.

This matroid also can be represented by a graph.

< □ > < @ > < 注 > < 注 > ... 注

The edges are the elements of the matroid.

A set of edges is *dependent* if it contains a cycle.

This matroid also can be represented by a graph.

< □ > < @ > < 注 > < 注 > ... 注

The edges are the elements of the matroid.

A set of edges is *dependent* if it contains a cycle.

Such matroids are called graphic matroids.

This matroid also can be represented by a graph.

The edges are the elements of the matroid.

A set of edges is *dependent* if it contains a cycle.

Such matroids are called graphic matroids.

All graphic matroids are binary.

The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name.

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a *minor* of M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆

The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a *minor* of M. For every matroid M there is a *dual matroid* M^* . The concept of duality extends the concept of orthogonality in vector spaces and the concept of a planar dual of a planar graph.

The operations of *contraction* and *deletion* are generalizations of the operations on graphs with the same name. A matroid N obtained from a matroid M by a sequence of deletions and contractions is called a *minor* of M. For every matroid M there is a *dual matroid* M^* . The concept of duality extends the concept of orthogonality in vector spaces and the concept of a planar dual of a planar graph.

► Duals of graphic matroids are called *cographic* matroids.

◆□▶ ◆□▶ ◆理▶ ◆理▶ 三語…

Robertson and Seymour

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへで

► Graph Minors Project

- Graph Minors Project
- Building blocks of a proper minor-closed class of graphs are "close" to being embeddable in some surface.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Geelen, Gerards, and Whittle (2015)

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

 Highly-connected members of a proper minor-closed class of binary matroids are "close" to being graphic or cographic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

 Highly-connected members of a proper minor-closed class of binary matroids are "close" to being graphic or cographic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Templates help to specify what "close" means.

 Highly-connected members of a proper minor-closed class of binary matroids are "close" to being graphic or cographic.

- Templates help to specify what "close" means.
- Part of their profound structure theory of matroids representable over a finite field

A binary frame template is a tuple $\Phi=(\{1\},C,X,Y_0,Y_1,A_1,\Delta,\Lambda) \text{ with some additional conditions.}$

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

 $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

		Z	$Y_0 Y_1 C$
X	columns from Λ	0	A_1
	incidence matrix of a graph	unit and zero columns	rows from Δ

~

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

 $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

		Z	$Y_0 Y_1 C$
X	columns from Λ	0	A_1
	incidence matrix of a graph	unit and zero columns	rows from Δ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

(i) C, X, Y_0 and Y_1 are disjoint finite sets.

 $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

		Z	$Y_0 Y_1 C$
X	columns from Λ	0	A_1
	incidence matrix of a graph	unit and zero columns	rows from Δ

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

(ii) $A_1 \in (\operatorname{GF}(2))^{X \times (C \cup Y_0 \cup Y_1)}$.

 $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

		Z	$Y_0 Y_1 C$
X	columns from Λ	0	A_1
	incidence matrix of a graph	unit and zero columns	rows from Δ

(iii) Λ is a subgroup of the additive group of $(GF(2))^X$.

 $\Phi = (\{1\}, C, X, Y_0, Y_1, A_1, \Delta, \Lambda)$ with some additional conditions. A matrix A' is said to *respect* Φ if it is of the following form:

		Z	$Y_0 Y_1 C$
X	columns from Λ	0	A_1
	incidence matrix of a graph	unit and zero columns	rows from Δ

(iv) Δ is a subgroup of the additive group of $(GF(2))^{C\cup Y_0\cup Y_1}$.

A matrix A conforms to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A matrix A conforms to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.

A matroid M conforms to Φ if there is a matrix A that conforms to Φ such that M is isomorphic to the vector matroid of $M(A)/C \setminus Y_1$.

A matrix A conforms to a template Φ if it is formed from a matrix A' that respects Φ by adding a column of Y_1 to each column of Z.

A matroid M conforms to Φ if there is a matrix A that conforms to Φ such that M is isomorphic to the vector matroid of $M(A)/C \setminus Y_1$.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

 $\mathcal{M}(\Phi)$ is the set of matroids conforming to Φ .

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

<ロト <部ト <注入 <注下 = 2

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

<ロト <部ト <注入 <注下 = 2

• \mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$,

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

- \mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$,
- \mathcal{M} contains the duals of the matroids in each of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$, and

<ロト <部ト <注入 <注下 = 2

Let \mathcal{M} be a proper minor-closed class of binary matroids. Then there exist $k, l \in \mathbb{Z}_+$ and frame templates $\Phi_1, \ldots, \Phi_s, \Psi_1, \ldots, \Psi_t$ such that

- \mathcal{M} contains each of the classes $\mathcal{M}(\Phi_1), \ldots, \mathcal{M}(\Phi_s)$,
- \mathcal{M} contains the duals of the matroids in each of the classes $\mathcal{M}(\Psi_1), \ldots, \mathcal{M}(\Psi_t)$, and
- If M is a simple vertically k-connected member of M with at least l elements, then either M is a member of at least one of the classes M(Φ₁),..., M(Φ_s), or M^{*} is a member of at least one of the classes M(Ψ₁),..., M(Ψ_t).

A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.
- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

- A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.
- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

• We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ .

- A template minor of a template Φ is a template Φ' obtained from Φ by repeatedly performing one of several operations.
 - Every matroid in $\mathcal{M}(\Phi')$ is a minor of a matroid in $\mathcal{M}(\Phi)$.
- If Φ' is a template minor of Φ, then every matroid conforming to Φ' weakly conforms to Φ.
- We write $\Phi' \preceq \Phi$ if every matroid weakly conforming to Φ' also weakly conforms to Φ .
 - The relation \leq is a preorder on the set of frame templates.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

Let Φ be a binary frame template. Then at least one of the following is true:

Let Φ be a binary frame template. Then at least one of the following is true:

(i) Φ is trivial

Let Φ be a binary frame template. Then at least one of the following is true:

(i) Φ is trivial (ii) $\Phi_X \preceq \Phi$ (iii) $\Phi_C \preceq \Phi$ (iv) $\Phi_{Y_0} \preceq \Phi$ (v) $\Phi_{Y_1} \preceq \Phi$ (vi) $\Phi_{CX} \preceq \Phi$

Let Φ be a binary frame template. Then at least one of the following is true:

- (i) Φ is trivial
- (ii) $\Phi_X \preceq \Phi$
- (iii) $\Phi_C \preceq \Phi$
- (iv) $\Phi_{Y_0} \preceq \Phi$
- (v) $\Phi_{Y_1} \preceq \Phi$
- (vi) $\Phi_{CX} \preceq \Phi$
- (vii) There exist $k, l \in \mathbb{Z}_+$ such that no simple, vertically k-connected matroid with at least l elements either conforms or coconforms to Φ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1. Find a matroid N not in \mathcal{M} .

- 1. Find a matroid N not in \mathcal{M} .
- 2. Find all templates such that N is not a minor of any matroid conforming to that template.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- 1. Find a matroid N not in \mathcal{M} .
- 2. Find all templates such that N is not a minor of any matroid conforming to that template.
- 3. If all matroids conforming to these templates are in \mathcal{M} , then the analysis is complete.

- 1. Find a matroid N not in \mathcal{M} .
- 2. Find all templates such that N is not a minor of any matroid conforming to that template.
- 3. If all matroids conforming to these templates are in \mathcal{M} , then the analysis is complete.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

4. Otherwise, repeat Step (1).

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

► So graphic matroids are 1-flowing.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

► So graphic matroids are 1-flowing.

Seymour (1981) showed:

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

- ► So graphic matroids are 1-flowing.
- Seymour (1981) showed:
 - Cographic matroids are 1-flowing.

- ► So graphic matroids are 1-flowing.
- Seymour (1981) showed:
 - Cographic matroids are 1-flowing.
 - ► The class of 1-flowing matroids is minor-closed.

- ► So graphic matroids are 1-flowing.
- Seymour (1981) showed:
 - Cographic matroids are 1-flowing.
 - ► The class of 1-flowing matroids is minor-closed.
 - All 1-flowing matroids are binary.

- ► So graphic matroids are 1-flowing.
- Seymour (1981) showed:
 - Cographic matroids are 1-flowing.
 - ► The class of 1-flowing matroids is minor-closed.
 - All 1-flowing matroids are binary.
 - AG(3,2) is not 1-flowing.

- So graphic matroids are 1-flowing.
- Seymour (1981) showed:
 - Cographic matroids are 1-flowing.
 - ► The class of 1-flowing matroids is minor-closed.
 - All 1-flowing matroids are binary.
 - AG(3,2) is not 1-flowing.

Conjecture (Seymour's 1-flowing Conjecture, 1981)

The set of excluded minors for the class of 1-flowing matroids consists of $U_{2,4}$, AG(3,2), T_{11} , and T_{11}^* .

It can be shown that to each of Φ_{Y_0} , Φ_{Y_1} , Φ_C , Φ_X , and Φ_{CX} conforms a matroid with an AG(3,2)-minor.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

It can be shown that to each of Φ_{Y_0} , Φ_{Y_1} , Φ_C , Φ_X , and Φ_{CX} conforms a matroid with an AG(3,2)-minor. Thus, we have the following:

Theorem (G. and Van Zwam, 2017)

There exist $k, l \in \mathbb{Z}_+$ such that every simple, vertically k-connected, 1-flowing matroid with at least l elements is either graphic or cographic.

< □ > < @ > < 注 > < 注 > ... 注

All Minors Are Not Created Equal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If we consider *highly connected* matroids of *sufficient size* in a minor-closed class, we often can reduce the number of excluded minors.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

If we consider *highly connected* matroids of *sufficient size* in a minor-closed class, we often can reduce the number of excluded minors.

Example: A 3-connected graph with at least 11 edges is planar if and only if it contains no $K_{3,3}$ -minor.

If we consider *highly connected* matroids of *sufficient size* in a minor-closed class, we often can reduce the number of excluded minors.

Example: A 3-connected graph with at least 11 edges is planar if and only if it contains no $K_{3,3}$ -minor.

 $\mathcal{EX}(M_1, M_2, ...)$: the class of binary matroids with no minor in the set $\{M_1, M_2, ...\}$.

◆□▶ ◆舂▶ ◆注▶ ◆注▶ 三注

Even-Cycle and Even-Cut Matroids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{EX}(PG(3,2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.

<ロト <部ト <注入 <注下 = 2

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{EX}(PG(3,2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{EX}(PG(3,2) \setminus L, M^*(K_6))$ if and only if it has an even-cycle representation with a blocking pair.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{EX}(PG(3,2) \setminus e, M^*(K_6), L_{11})$ if and only if it is an even-cycle matroid.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a vertically k-connected matroid with at least l elements is in $\mathcal{EX}(PG(3,2) \setminus L, M^*(K_6))$ if and only if it has an even-cycle representation with a blocking pair.

Theorem (G. and Van Zwam, submitted)

There exist $k, l \in \mathbb{Z}_+$ such that a cyclically k-connected matroid with at least l elements is in $\mathcal{EX}(M(K_6), H_{12}^*)$ if and only if it is an even-cut matroid.

Thank you!

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで