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Abstract. We present a preliminary computational model of visual analogy that 
uses fractal image representations that rely only on the grayscale pixel values of 

input images, and are mathematical abstractions quite rigorously grounded in 

the theory of fractal image compression.  We have applied this model of visual 

analogy to problems from the Raven’s Progressive Matrices intelligence test, 

and we describe in detail the fractal solution strategy as well as some 

preliminary results.  Finally, we discuss the implications of using these fractal 
representations for memory recall and analogical reasoning.  

1   Cognition, Computation, and Creativity 

We may study creative behavior at many levels of aggregation and abstraction 

ranging from environmental and genetic to neural and cognitive to social and cultural. 

Our work on computational creativity focuses on the cognitive level. Although at 

present there is little agreement in the cognitive sciences about the proper 

characterization of creativity, nevertheless there is broad and deep consensus that 

analogy is a core cognitive process of creative behavior, e.g. [1]–[8].  Indeed, some 

cognitive scientists have argued that analogy is a core process not only of creativity, 

but all cognition, including perception [6][9].  Thus, understanding the computational 

processes of analogy seems critical to understanding and developing computational 

models of creativity.  

We may classify computational theories of analogy into two broad categories. In 

one category are theories that propose general-purpose mechanisms for mapping and 

transfer of relations from one problem to another, e.g. production systems [10], 

structure mapping [11][12], schema induction [13], and constraint satisfaction [14].  

These mechanism theories typically make few commitments about the contents of 

knowledge; indeed, their mechanisms are general-purpose because they are agnostic 

towards knowledge contents.  In the other category are computational theories that 

describe contents of knowledge that drive analogies in creative tasks such as story 

understanding [15], diagram understanding [16][17], scientific problem solving 

[18][19], innovative design [20][21][22], and calligraphy [23]. These content theories 

of analogy, too, describe computational processes, but their processes are driven by 

the contents of knowledge (and corresponding vocabularies for capturing the 

knowledge contents). The extant content and mechanism computational theories of 

analogy nevertheless are united in their use of propositional representations: From 



 

 

the perspective of the content theories of analogy, the mechanism theories offer 

potential substrates for computational implementation.  

We present a preliminary computational theory of visual analogy that is 

fundamentally different from both content and mechanism theories because it uses 

fractal representations instead of propositional ones. Visual analogy is a topic of 

longstanding interest in computational creativity because of its central role in many 

creative tasks such as intelligence tests [24]. In particular, in this paper, we focus on 

geometric analogy problems that are a type of visual analogy problems: geometric 

analogy problems focus solely on shapes, sizes and locations of the shapes, and 

spatial relations among the shapes. Fractal image representations rely only on the 

grayscale pixel values of input images, and are mathematical abstractions quite 

rigorously grounded in the theory of fractal image compression [25].  

Below, first we describe how fractal representations can be used for computing 

features and similarity among distinct images, and how these operations can be 

combined to form a technique for creating visual analogies using purely pictorial 

inputs.  Second, we present initial experimental results from using this method on 

geometric analogy problems that occur on the standardized intelligence test called the 

Raven’s Progressive Matrices test [26]. Third, we discuss how this fractal model of 

visual analogy may be considered to be a mechanism for creativity. 

2   Fractal Image Representation 

Consider the general form of an analogy problem as: 

 

A : B :: C : ? 

 

In the case of a visual analogy, we can present each of these analogy elements to be a 
single image. Some unknown transformation T can be said to transform image A into 

image B, and likewise, some unknown transformation T' transforms image C into the 

unknown answer image.   

The central analogy in the problem may then be imagined as requiring that T is 

analogous to T'.  In other words, the answer will be whichever image D yields the 

most analogous transformation.  Using fractal representations, we shall define the 

most analogous transform T' as that which shares the largest number of fractal 

features with the original transform T. 

2.1   Mathematical Basis 

The mathematical derivation of fractal image representation expressly depends upon 

the notion of real world images, i.e. images that are two dimensional and continuous 

[25].  A key observation is that all naturally occurring images we perceive appear to 

have similar, repeating patterns. Another observation is that no matter how closely 

you examine the real world, you find instances of similar structures and repeating 

patterns. These observations suggest that it is possible to describe the real world in 



 

 

terms other than those of shapes or traditional graphical elements—in particular, 

terms which capture the observed similarity and repetition alone.   

Computationally, to determine the fractal representation of an image requires the 

use of the fractal encoding algorithm.  The collage theorem [25] at the heart of the 

fractal encoding algorithm can be stated concisely: 
 

For any particular real world image D, there exists a finite set of affine 

transformations T which, if applied repeatedly and indefinitely to any other real 

world image S, will result in the convergence of S into D. 

 

We now shall present the fractal encoding algorithm in detail. 

2.2   The Fractal Encoding Algorithm 

Given an image D, the fractal encoding algorithm seeks to discover the set of 

transformations T.  The algorithm is considered “fractal” for two reasons: first, the 

affine transformations chosen are generally contractive, which leads to convergence, 

and second, the convergence of S into D can be shown to be the mathematical 

equivalent of considering D to be an attractor [25]. 

Here are the general steps for encoding an image D in terms of another image S: 

 

1) Decompose D into a set of N smaller images {d1, d2, d3, ..., dn}. These individual 

images are sets of points. 

2) For each image di:  

a) Examine the entire source image S for an equivalent image si such that an 

affine transformation of si will result in di. This affine transformation will be 

a 3x3 matrix, as the points within si and di under consideration can be 

represented as the 3-D vector <x, y, c> where c is the (grayscale) color of 

the 2-D point <x,y>. Collect all such transforms into a set of candidates C. 

b) Select from the set of candidates that transform which most minimally 

achieves its work, according to some predetermined and consistent metric. 

c) Let Ti be the representation of the chosen affine transformation of si into di. 

3) The set T = {T1, T2, T3, ..., Tn} is the fractal encoding of the image D. 

 

The decomposition of D into smaller images can be achieved through a variety of 

methods.  In our present implementation, we merely choose to subdivide D in a 

regular, gridded fashion, typically choosing a grid size of either 8x8 or 32x32 pixels.  

Alternate decompositions could include irregular subdivisions, partitioning according 

to some inherent colorimetric basis, or levels of detail. 

2.3   Searching and Encoding 

The search of the source image S for a matching fragment is exhaustive, in that each 

possible correspondence si is considered regardless of its prior use in other discovered 

transforms.  Also, for each potential correspondence, each transformation under a 



 

 

restricted set of affine, similitude transformations is considered.  Our implementation 

presently examines each potential under identity (I), horizontal (HF) and vertical (VF) 

reflections, and 90° (R90), 180° (R180), and 270° (R270) rotational transformations.  

The metric we employ to evaluate candidate transformations prefers those 

transformations which induce the least translation, rotation or reflection, and color 

manipulation.  We use this to ensure that areas which are aligned in a Cartesian sense 

are chosen.  We shall revisit this important metric in a later section. 

Once a transformation has been chosen, we construct a compact representation of 

it, called a fractal code.  A fractal code Ti is a 3-tuple, < <sx, sy>, <dx, dy>, k, c >, 

where <sx, sy> is the location of the leftmost and topmost pixel in si; <dx, dy> is the 

location of the leftmost and topmost pixel in di; k ∈ { I, HF, VF, R90, R180, R270 } 

indicates which affine transformation is to be used; and c ∈ [ -255, 255 ] indicates the 

overall color shift to be added uniformly to all elements in the block. 

Note that the choice of source image S is arbitrary.  Indeed, the image D can be 

fractally encoded in terms of itself, by substituting D for S in the algorithm.  Although 

one might expect that this substitution would result in a trivial encoding (wherein all 

of the chosen fractal codes correspond to an identity transform), in practice this is not 

the case, for we want a fractal encoding of D to converge upon D regardless of chosen 

initial image.  For this reason, the size of source fragments considered is taken to be 

twice the dimensional size of the destination fragment, resulting in a contractive 

affine transform.  Similarly, color shifts are made to contract. 

The fractal encoding algorithm, while computationally expensive in its exhaustive 

search, transforms a real world image into a much smaller set of fractal codes, which 

form, in essence, an instruction set for reconstituting the image.  This resulting fractal 

representation of an image D vis-à-vis another given image forms the basis of our 

investigation into solutions for visual analogy problems. 

2.4   Determining Fractal Features 

As we have shown, the fractal representation of an image is a set of specific affine, 

similitude transformations, a set of fractal codes, which compactly describe the 

geometric alteration and colorization of fragments of the source image that will 

collage to form the destination image.  While it is tempting to treat contiguous subsets 

of these fractal codes as features, we note that their derivation does not follow strictly 

Cartesian notions (e.g. adjacent material in the destination might arise from strongly 

non-adjacent source material).  Accordingly, we consider each of these fractal codes 

independently, and construct candidate fractal features from individual codes.  

In our present implementation, each fractal code < <sx, sy>, <dx, dy>, k, c > yields 

a small set of features, generally formed by constructing subsets of the tuple: 

 

 < <sx, sy>, <dx, dy>, k, c >: a specific feature; 

 < < dx - sx, dy - sy >, k, c >:   a position agnostic feature; 

 < <sx, sy>, <dx, dy>, c >:    an affine transform agnostic feature; 

 < <sx, sy>, <dx, dy>, k >:  a color agnostic feature; 

 < k, c >:    an affine specific feature; 

 < c >:    a color shift specific feature. 



 

 

As shown, the features derived may be categorized into either specific or agnostic 

aspects.  Our implementation of the fractal encoding algorithm employs a metric 

which minimizes the transformative work (either geometrically or colorimetrically) 

expressly due to our desire to exploit specific feature matches.   

    With this basis of fractal representation and feature discovery, we now may address 

the problem of visual analogy. 

2.5   A Fractal Process of Visual Analogy 

To find analogous transforms, our algorithm first visits memory to retrieve a set of 

candidate solution images D to form candidate solution pairs in the form <C, D>.  

For each candidate pair of images, we generate the fractal encoding of the candidate 

image D in terms of the former image C.  As we illustrated earlier, from this encoding 

we are able to generate a large number of fractal features per transform.  We store 

each transform into a memory system, indexed by and recallable via each associated 

fractal feature. 

To determine which of the candidate images has resulted in the most analogous 

transform to the original problem transform T, we first fractally encode that 

relationship between the two images A and B.  Next, using each fractal feature 

associated with that encoding, we retrieve from the memory system those transforms 

previously stored as correlates of that feature (if any).  Considering the frequency of 

the transforms recalled, for all correlated features in the target transform, we then 

calculate a measure of similarity.   

This metric reflects similarity as a comparison of the number of fractal features 

shared between candidate pairs taken in contrast to the joint number of fractal features 

found in each pair member [27].  In our present implementation, the measure of 

similarity S between the candidate transform T' and the target transform T is 

calculated using the following formula, also known as the ratio model:  

 

S(T, T') = f(T ∩ T') / [ f(T ∩ T') + α f(T - T') + β f(T' - T) ] 

 

where f(X) is the number of features in the set X.  For our initial work, we have 

chosen values of α = β = 1.0, which, according to [27], results in this simplification: 

 

S(T, T') = f(T ∩ T') /  f(T ∪ T') 

 

The final solution is taken as the candidate image from memory that results in the 

highest measured similarity according to this measure. 

3   The Raven’s Progressive Matrices Test 

In this section, we describe the Raven’s Progressive Matrices test and present some 

preliminary results for a solution algorithm that uses the fractal algorithm for visual 

analogy described in the previous section. 



 

 

The Raven’s Progressive Matrices (RPM) test is a standardized intelligence test 

that consists of visually presented, geometric-analogy-like problems in which a 

matrix of geometric figures is presented with one entry missing, and the correct 

missing entry must be selected from a set of answer choices.  Figure 1 shows an 

example of a problem that is similar to one of the problems in the Standard 

Progressive Matrices (SPM).   

 

 
 

Fig. 1. Example problem similar to one in the Standard Progressive Matrices (SPM) test.  

Although the test is supposed to measure only eductive ability, or the ability to 

extract and understand information from a complex situation [26], the RPM’s high 

level of correlation with other multi-domain intelligence tests have given it a position 

of centrality in the space of psychometric measures [28], and it is therefore often used 

as a test of general intelligence.   

Despite its widespread use, neither the computational nor the cognitive 

characteristics of the process of solving the RPM are well understood.  Hunt gives a 

theoretical account of the information processing demands of certain problems from 

the Advanced Progressive Matrices (APM), in which he proposes two qualitatively 

different solution algorithms—“Gestalt,” which uses visual representations and 

perceptually based operations, and “Analytic,” which uses feature-based 

representations and logical operations [29].  

Existing AI systems for problem solving on the RPM, in contrast to Hunt’s early 

work, use propositional representations [30][31].  Carpenter, Just, and Shell describe 

a computational model that simulates solving RPM problems using propositional 

representations [30].  Their model is based on the traditional production system 

architecture, with a long-term memory containing a set of productions and a working 

memory containing the current state of problem solving (e.g. current goals).  

Productions are based on the relations among the entities in a RPM problem, for 

example, the location of the dark component in a row, which might be the top half in 

the top row of a problem, bottom-half in the bottom row, and so on.  Lovett, Forbus, 

and Usher describe a model that extracts qualitative spatial representations from 



 

 

visually segmented representations of RPM problem inputs and then uses the 

technique of structure mapping to find solutions [31].  While, as we mentioned 

earlier, production systems and structure mapping offer alternative mechanisms for 

implementing content theories of analogies, from the perspective of our work on 

fractal representations, the two are similar in that both use propositional 

representations.  

3.1   Preliminary Results from the Fractal Method of Visual Analogy 

A RPM problem can be viewed as a sequence of images (ordered in rows and 

columns), where some unknown transformation T can be said to transform one image 

into a corresponding adjacent image.  In a typical 2x2 RPM problem, there are four 

such transformations, as shown in Figure 2.  (RPM problems can also have three-by-

three matrices, which we do not address in this paper.)   

 

 

Fig. 2. Illustration of four image transformations implicit in a 2x2 RPM problem matrix.  

RPM problems are formulated to suggest that these transformations are pairwise 

analogous (i.e. the two row transformations are analogous to one another).  A 2x2 

RPM problem generally has six candidate solutions presented.  Following the 

algorithm for visual analogy described above, we seek to solve an RPM problem by 

determining which of the candidate solutions yields the most analogous 

transformations.  In particular, we perform the recall and similarity calculation 

described in Section 2.3 independently over all row and column relationships present 

in the RPM problem.  The final solution is taken as the candidate that results in the 

highest measured similarity for any such relationships. 

As an example, we shall use the “arrow” problem shown in Figure 3.  Also, while 

the complete fractal method examines each of the problem’s analogies, we shall 
restrict this detailed discussion to just one of these transformations (T1, as labeled in 

Figure 2). 

The initial transformation T1 is the fractal encoding of the transformation from the 

upper left arrow into the upper right arrow.  When encoded using a block size of 32 x 

32 pixels, this encoding generates 39 distinct fractal features. 

Each candidate answer is encoded likewise, from the upper left arrow into the 

candidate, each resulting in between 27 and 45 distinct features.   For the arrow 

problem, using a 32 x 32 block size, the similarity measures for each answer Ci are: 



 

 

 S(T,C1) = 21 / (21+18+24) ≅ 0.333333 

 S(T,C2) = 15 / (15+24+30) ≅ 0.217391 

 S(T,C3) = 16 / (16+23+11) ≅ 0.32 

 S(T,C4) = 14 / (14+25+29) ≅ 0.205882 

 

The answer with the highest calculated similarity is deemed correct.  Therefore, the 

fractal method chooses as its answer #1. 

 

 

Fig. 3. The “arrow” problem, in the format of a 2x2 problem matrix with four answer choices.  

4   Implications of Fractal Representations for Analogical 

Reasoning and Memory Recall 

Benoit Mandelbrot coined the term “fractal” from the Latin adjective fractus and its 

corresponding verb (frangere, which means “to break” into irregular fragments), in 

response to his observation that shapes previously referred to as “grainy, hydralike, in 

between, pimply, pocky, ramified, seaweedy, strange, tangled, tortuous, wiggly, 

wispy, wrinkled, and the like” could be described by a set of compact, rigorous rules 

for their production [32].  The approach we outline in this paper seeks to define a 

class of visual representations in a similar, fractal manner, where images are taken as 

encountered and transformed into a fractal representation either with regard to other 

images or to themselves. 

The very nature of this fractal representation places an immediate emphasis on 

similarity discovery.  These discoveries are used to advantage in solving problems 

that place equivalent emphasis on visual analogy, such as the Raven’s Progressive 

Matrices test.  While the use of fractal representation is important, the emphasis upon 

visual recall in our solution afforded by features derived from those representations 

bears further discussion. 

The importance of individual discovered features presents itself strongly in our 

calculation of the similarity metric from [27].  The weights α and β may be skewed 

toward or away from equality in order to favor feature inclusion or exclusion.  We 

note that while a 2x2 RPM problem offers little opportunity for determining feature 



 

 

importance, the class of RPM problems which are 3x3 in nature require it, for the 

additional row and column provide an in-domain manner in which to report visual 

evidence for the kinds of features to expect within the eventual successful candidate.  

Using this additional evidence would allow for the weights of feature inclusion (α) 

and exclusion (β) to become covariant with features.  We are actively exploring this 

as we prosecute solutions for 3x3 RPM problems. 

We take the position that placing candidate transformations into memory, indexed 

via those discovered fractal features, affords a new method of discovering image 

similarity.  Indeed, this method of solving the RPM, by being reminded of similar 

transformations, bears close kinship to various methods and theories of case-based 

reasoning [33], although we exploit recalled transformations toward a significantly 

different end.  That images, encoded either in terms of themselves or other images, 

may be indexed and retrieved without regard to shape, geometry, or symbol, suggests 

that the fractal representation bears further exploration not only as regards solutions to 

problems akin to the RPM, but also to those of general visual recall and analogy 

based creativity. 
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