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Abstract

We present a fractal technique for addressing geometric
analogy problems from the Raven's Standard Progressive
Matrices test of general intelligence. In this method, an
image is represented fractally, capturing its inherent self-
similarity. We apply these fractal representations to
problems from the Raven's test, and show how these
representations afford a new method for solving complex
geometric analogy problems. We present results using the
fractal algorithm on all 60 problems from the Standard
Progressive Matrices version of the Raven's test.

Introduction

Psychometrics entails the theory and technique of the
quantitative measurement of psychological variables such
as intelligence and aptitude. Research on "computational
psychometrics" dates at least as far back as Evan’s (1968)
ANALOGY program, which addressed geometric analogy
problems on the Miller Geometric Analogies test of
intelligence. Bringsjord & Schimanski (2003) have
proposed psychometric AI, i.e., Al that can pass
psychometric tests of intelligence, as a possible mechanism
for measuring and comparing Al.

Extant computational theories of geometric analogy
problems that appear on typical psychometric tests are
united in their use of propositional representations. In this
paper, we present a computational technique that uses
fractal representations (Mandelbrot 1982) to address
geometric analogy problems from the Raven’s test. In
particular, the technique uses fractal image representations
that rely only on the grayscale pixel values of input images
and are grounded in the theory of fractal image
compression (Barnsley & Hurd 1992).

State of the Art

The Raven’s Progressive Matrices tests (Raven, Raven, &
Court 1998) are a collection of standardized intelligence
tests that consist of visually presented, geometric analogy
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problems in which a matrix of geometric figures is
presented with one entry missing, and the correct missing
entry must be selected from a set of answer choices. Figure
1 shows an example of a problem that is similar to one of
the problems in the Standard Progressive Matrices (SPM).
The SPM consists of 60 problems divided into five sets of
12 problems each (sets A, B, C, D & E), roughly
increasing in difficulty both within and across sets.

Computational Accounts of the Raven’s Test

There have been several attempts to provide a
computational account of solving the Raven’s test, and
with one exception, all previous proposed accounts have
been propositional in nature, i.e. visual inputs from the test
are converted into propositional descriptions before any
problem solving is carried out. Carpenter, Just, & Shell
(1990) used a production system that took as inputs hand-
coded propositional descriptions of Raven's problems from
the Advanced Progressive Matrices (APM) and selected an
appropriate rule to solve each problem. The rules were
generated by the authors from inspection of the APM
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Figure 1. Example problem similar to one in the Standard
Progressive Matrices (SPM) test.



beforehand and validated in experimental studies of
subjects taking the test with verbal reporting of solution
strategies. Their program correctly solved 32 of 34
problems on the APM, scoring as well as high-performing
college students did on the test.

Bringsjord and Schimanski (2003) used a theorem-
prover system to solve selected Raven's problems stated in
first-order logic, although the system appears never to have
been tested on any of the complete Raven’s tests. Lovett,
Forbus, & Usher (2007) developed a system that combined
automated sketch understanding with the structure-
mapping technique for analogy to solve problems from the
Standard Progressive Matrices (SPM) test. This system
took as inputs problem entries sketched in Powerpoint as
segmented shape objects and translated these shapes into
propositional descriptions of each entry. Then, a two-stage
structure-mapping process was used to select the answer
which most closely fulfilled inferred analogical relations in
the matrix entries. This system was tested on sets B and C
from the SPM and solved 12 and 10 of the 12 problems in
each set, respectively. (It is not clear how this performance
might compare to that of humans without results from the
other three sets.)

In all of these computational methods, the problem
solving strategy is propositional, regardless of whether the
system takes propositional inputs to begin with or takes
visual inputs and automatically converts them to
propositions. However, insofar as we can tell, there is little
in the Raven's tests that requires a purely propositional
account for all problems. In fact, Hunt (1974) gave a
theoretical account of the information processing demands
of certain problems from the Advanced Progressive
Matrices (APM), in which he proposed that two
qualitatively different solution algorithms—“Gestalt,”
which uses visual representations and perceptually based
operations, and ‘“Analytic,” which uses feature-based
representations and logical operations—could yield
identical results on at least portions of the test. However,
these two algorithms were never implemented.

Computational Methods for Visual Analogies

Outside computational psychometrics, Gross & Do (2000)
describe a heuristic program that retrieves design drawings
from a library similar to a sketch drawn by hand. Yaner &
Goel (2006) describe a computer system that uses partial
constraint satisfaction to retrieve design drawings from a
library similar to an input drawing generated by a vector-
graphics tool. Croft & Thagard (2002) describe a computer
program that generates analogical mappings between
visuospatial representations of target and source problems.
Davies, Goel, & Yaner’s (2009) Proteus system not only
generates mappings between visuospatial representations
of target and source problems, but also transfers problem-
solving procedures from the source to the target problem.
Hofstadter & McGraw’s (1995) Letter Spirit program takes
a stylized seed letter as input (e.g., f but with the crossbar
suppressed) and outputs an entire font, from a to z, in the
same style as the seed. Again, the extant computational
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models of visual analogy are united in their use of
propositional representations.

Prior Work on Visual Analogies

We are unaware of any previous work on using fractal
representations to address either geometric analogy
problems of any kind or other intelligence test problems.
However, there has been some work in computer graphics
on image analogies for texture synthesis in image
rendering. Consider the problem in which, given an image
A and its filtered rendering A’, the goal is to render a
different image B in the same style as A'. For this class of
problems, Hertzmann et al. (2001) describe a technique
that abstracts the textural filter between A and A’ and then
applies it to B to generate the desired image B’. The
technique uses a Gaussian pyramid technique to construct a
multi-scale image and then determines features for
individual pixels in this image by examining luminance
distributions in pixel neighborhoods.

Both the class of problems of we address and the fractal
technique we have designed differ significantly from those
of Hertzmann, et al. We explicitly represent each image
fractally and use this representation to determine its
transfer. As a result, the underlying pixels, while
significant in determining a match, become irrelevant for
transfer, because the collage theorem (see below)
guarantees convergence into the target irrespective of the
source. Further, our method determines similarity between
two images via systematic recall and construction of
feature sets. Finally, the features our method extracts from
the fractal encodings are indicative of both geometric and
colorimetric properties.

Our Current Work

The main goal of our work was to evaluate whether the
Raven’s Standard Progressive Matrices test could be
solved using purely visual representations, i.c. without
converted the image inputs into propositional descriptions
during any part of the reasoning process. We use fractal
representations, which encode transformations between
images, as our primary non-propositional representation of
problem information.

Our system operates on problem inputs that have been
scanned directly from a hard copy of the Raven’s test and
contain the usual rough alignments and pixel-level
artifacts. Problem entries are converted to fractal
representations as described in the next section, and
relationships among these fractal representations are used
to choose the best answer. At no point during the solution
process are inputs converted to any kind of propositional
form in terms of shapes, colors, lines, edges, or any other
visually segmented entity; only the raw RGB pixel values
are used. Now, we describe in detail the fractal solution
algorithm and results showing the performance of this
system on all 60 problems from the SPM test.

Earlier (McGreggor, Kunda, & Goel 2010) we had
proposed the use of fractal analogies to address problems



on the Raven's test. In this paper, for the first time, we
describe the technique we have developed and present
actual results for problems on the Raven's test.

Fractal Representations

Consider the general form of an analogy problem as:
A:B::C:?

For visual analogy, we can presume each of these analogy

elements to be a single image. Some unknown

transformation 7' can be said to transform image A into

image B, and likewise, some unknown transformation 7"

transforms image C into the unknown answer image.

The central analogy in the problem may then be
imagined as requiring that 7" is analogous to 7". In other
words, the answer will be whichever image X yields the
most  analogous  transformation.  Using  fractal
representations, we shall define the most analogous
transform 7" as that which shares the largest number of
fractal features with the original transform 7.

Mathematical Basis

The mathematical derivation of fractal image
representation expressly depends upon the notion of real
world images, i.e. images that are two dimensional and
continuous (Barnsley & Hurd, 1992). A key observation is
that all naturally occurring images we perceive appear to
have similar, repeating patterns. Another observation is
that no matter how closely you examine the real world, you
find instances of similar structures and repeating patterns.
These observations suggest that it is possible to describe
the real world in terms other than those of shapes or
traditional graphical elements—in particular, terms which
capture the observed similarity and repetition alone.
Computationally, determining fractal representation of
an image requires the use of the fractal encoding algorithm.
The collage theorem (Barnsley & Hurd, 1992) at the heart
of the fractal encoding algorithm can be stated concisely,
in terms of a source image S and a destination image D:
For any particular real world image D, there exists a
finite set of affine transformations T which, if applied
repeatedly and indefinitely to any other real world
image S, will result in the convergence of'S into D.
We now present the fractal encoding algorithm in detail.

The Fractal Encoding Algorithm

Given a destination image D, the fractal encoding
algorithm seeks to discover the set of transformations 7.
The algorithm is considered “fractal” for two reasons: first,
the affine transformations chosen are generally contractive,
which leads to convergence, and second, the convergence
of S into D can be shown to be the mathematical
equivalent of considering D to be an attractor (Barnsley &
Hurd, 1992).

The steps for encoding an image D in terms of another
image S are shown in Algorithm 1. The decomposition of
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D into smaller images can be achieved through a variety of
methods. In our present implementation, we merely choose
to subdivide D in a regular, gridded fashion, typically
choosing a grid size of either 8x8 or 32x32 pixels.
Alternate  decompositions could include irregular
subdivisions, partitioning according to some inherent
colorimetric basis, or levels of detail.

Decompose destination image D into a set of
N smaller images {d;, d, ds, ..., d,}. These
individual images are sets of points.

For each image d;:

e Examine the entire source image S for an
equivalent image s; such that an affine
transformation of s; will result in d;. This affine
transformation will be a 3x3 matrix, as the
points within s; and d; under consideration can
be represented as the 3D vector <x, y, c>
where c is the (grayscale) color of the 2D point
<x,y>. Collect all such transforms into a set of
candidates C.

e Select from the set of candidates the transform
which most minimally achieves its work,
according to some predetermined, consistent
metric.

e Let T; be the representation of the chosen affine
transformation of s; into d;.

The set T = {Ty, Ty, T3, ..., To} is the fractal
encoding of the image D.

Algorithm 1. Fractal Encoding

Searching and Encoding

The search of the source image S for a matching fragment
is exhaustive, in that each possible correspondence s; is
considered regardless of its prior use in other discovered
transforms. Also, for each potential correspondence, each
transformation under a restricted set of similitude
transformations is considered. A similitude transformation
is a composition of a dilation, orthonormal transformation,
and translation. Our implementation presently examines
each potential correspondence under identity (I), horizontal
(HF) and vertical (VF) reflections, and 90° (R90), 180°
(R180), and 270° (R270) orthonormal rotational
transformations. We fix our dilation at a value of either 1.0
or 0.5, depending upon whether the source and target
image are identical. The translation is found as a
consequence of the search algorithm.

Once a transformation has been chosen, we construct a
compact representation of it called a fractal code. A fractal
code Tj is a 5-tuple, < <s,, s,>, dy-sy, dy-sy, k, ¢ >, where
<8y, sy> is the location of the leftmost and topmost pixel in
si; <dy, dy> is the location of the left most and top most
pixel in d;; k € {I,HF,VF,R90,R180,R270} indicates which
affine transformation is to be used; and ¢ € [ -255, 255 ]



indicates the overall color shift to be added uniformly to all
elements in the block.

Note that the choice of source image S is arbitrary.
Indeed, the image D can be fractally encoded in terms of
itself, by substituting D for S in the algorithm. Although
one might expect that this substitution would result in a
trivial encoding (in which all fractal codes correspond to
an identity transform), in practice this is not the case, for
we want a fractal encoding of D to converge upon D
regardless of chosen initial image. For this reason, the size
of source fragments considered is taken to be twice the
dimensional size of the destination fragment, resulting in a
contractive affine transform. Similarly, color shifts are
made to contract. The fractal encoding algorithm, while
computationally expensive in its exhaustive search,
transforms a real world image into a much smaller set of
fractal codes, which form, in essence, an instruction set for
reconstituting the image.

Determining Fractal Features

As we have shown, the fractal representation of an image
is a set of specific affine, similitude transformations, i.c. a
set of fractal codes, which compactly describe the
geometric alteration and colorization of fragments of the
source image that will collage to form the destination
image. While it is tempting to treat contiguous subsets of
these fractal codes as features, we note that their derivation
does not follow strictly Cartesian notions (e.g. adjacent
material in the destination might arise from strongly non-
adjacent source material). Accordingly, we consider each
of these fractal codes independently, and construct
candidate fractal features from individual codes.

In our present implementation, each fractal code < <s,
Sy>, dy-sy, dy-sy, k, ¢ > yields a small set of features,
generally formed by constructing subsets of the tuple.
These features are determined in a fashion to encourage
both position-, affine-, and colorimetric-agnosticism, as
well as specificity. In the present implementation of our
algorithm, we generate P(5,2)+P(5,3)+P(5,4) = 85 distinct
features for each fractal code, where P(n, m) refers to the
permutation equation.

A Fractal Process for Geometric Analogy

To find analogous transforms, our algorithm first visits
memory to retrieve a set of candidate solution images X to
form candidate solution pairs in the form <C, X>. For each
candidate pair of images, we generate the fractal encoding
of the candidate image X in terms of the former image C.
As we illustrated earlier, from this encoding we are able to
generate a large number of fractal features per transform.
We store each transform in a memory system, indexed by
and recallable via each associated fractal feature.

To determine which candidate image results in the most
analogous transform to the original problem transform 7,
we first fractally encode that relationship between the two
images A and B. Next, using each fractal feature associated
with that encoding, we retrieve from the memory system
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those transforms previously stored as correlates of that
feature (if any). Considering the frequency of transforms
recalled, for all correlated features in the target transform,
we then calculate a measure of similarity.

This metric reflects similarity as a comparison of the
number of fractal features shared between candidate pairs
taken in contrast to the joint number of fractal features
found in each pair member (Tversky 1977). In our present
implementation, the measure of similarity S between the
candidate transform 7’ and the target transform 7 is
calculated using the ratio model:

S(LT) =ATNT)/[ATOT) +af(T-T") + BAT-T)]

where f(Y) is the number of features in the set Y. As we
progressed in our experiments, we found that significant
discrimination between candidate answers could be found
by setting oo = 1.0 and p = 0.0. Our final formula for
similarity thus becomes:

S(TLT) =ATNT)/ AT

This calculation determines the similarity between unique
pairs of transforms. However, the Raven's test, even in its
simplest form, poses an additional problem in that many
such pairs may be formed.

Reconciling Multiple Analogical Relationships Roughly
40% of the Raven's Standard Progressive Matrices (SPM)
test contains 2x2 matrix problems; the remaining 60%
contains 3x3 matrices. In 2x2 problems, there are two
apparent relationships for which analogical similarity must
be calculated: the horizontal relationship and the vertical
relationship.  Closer examination of such problems,
however, reveals two additional relationships which must
be shown to hold as well: the two diagonal relationships.
Furthermore, not only must the "forward" version of each
of these relationships be considered but also the
"backward" or inverse version. Therefore for a 2x2 Raven's
problem, we must determine eight separate measures of
similarity for each of the possible candidate solutions.

The 3x3 matrix problems from the SPM introduce not
only more pairs for possible relationships but also the
possibility that elements or subelements within the images
exhibit periodicity. The number of potential analogical
relationships blooms significantly beyond that of the
simpler 2x2 form. In the present implementation of our
system, we consider 48 of these relationships concurrently.

Relationship Space For each candidate solution, we
consider the similarity of each potential analogical
relationship as a value upon an axis in a large “relationship
space.” The dimensionality of this space is determined by
the problem at hand: for 2x2 problems, the space is &
dimensional; for 3x3 problems, the space is (at least) 48
dimensional. We currently do not favor any particular
relationship; that is, we do not, as an example, weight more
decisively those values we find upon the horizontal
relationships over those upon the vertical relationships.

Treating Maximal Similarity as Distance To specify the
overall fit of a candidate solution, we construct a vector in



this multidimensional relationship space and determine its
length, using a Euclidean distance formula. The candidate
solution with the longest vector length is chosen as the
solution to the problem.

Example

Figure 2 shows an example problem with four candidate
answers. The fractal algorithm begins by determining the
fractal encoding of each of the exhibited relationships in
the problem, along with their possible analogous answer
pairing. For example, we have a pairing of the upper left
and the upper right images (one block, two blocks), for
which we would examine an analogous pairing of the
lower right image (one circle) with each of the four answer
choices (A, B, C, and D).
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Figure 2. Example problem to illustrate fractal algorithm.

The steps for determining the fractal representation are the
same for each of the pairings. For this example, we
consider how the lower left image (one circle) might be
encoded as a pairing with answer choice B (two circles).

First we decompose the target image into blocks. Each
image is 231x231 pixels, and we shall break the image into
16x16 pixel blocks, padding the image as necessary to
make for a whole number of blocks. This results in 15x15
= 225 blocks that completely tessellate the target image.

¢ 00

Figure 3. Illustration of block matching across images.

Next, for each of the target blocks, we examine the
source image for the best possible matching similitude
transformation. In this example, block #85 most closely
matches a block in the source image which has <<140,
89>, <144, 80>, R90, +1> as its fractal code (meaning
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"move the source area from <140,89> to a target area at
<144,80>, rotating 90°, and adjust the average grayscale
value of each pixel by +1).  The fractal representation of
the transformation from "one circle" to "two circles" is the
set of all 225 of these fractal codes (one fractal code for
each block in the target image).

For each pairing, we create features from permutations
of aspects of each of the 225 fractal codes, and we use each
of these features as a retrieval key, storing the pairing into
a memory system. Note that while we generate 85 distinct
features from each of the codes, a particular key might be
redundant, so the number of overall keys (that is, features)
with which we index a pairing is likely to be less than the
expected maximum of 225x85 = 19125 possible features.
As an example, for the "one circle" / "two circle" pairing,
we find that there are 1563 unique features.

To answer the problem, we first calculate the similarity
metric for each of the candidate pairings, within each of
the eight relationships present in this problem. For
simplicity, we consider here only the top horizontal
transformation ("one block" becomes "two blocks") and
how it corresponds to the transformation of the lower right
image ("one circle") into each of the candidate answers.
We shall label this comparison between these
transformations "Relationl." We have these calculated
similarity metrics for the candidates, for Relationl:

584/(584 + 1.0*799 + 0.0*927) = 0.422
778/(778 + 1.0*605 + 0.0*785) = 0.563
842/(842 + 1.0*541 + 0.0*638) = 0.609
607/(607 +1.0¥776 + 0.0*961) = 0.439

oQw>

As an example, the top horizontal transformation has 1383
features and Answer A's Relationl has 1511 features. 584
of these features the two share in common. Thus, the
intersection feature count is 584, and we divide that by the
feature count of the horizontal transformation (1383), to
arrive at the Relationl similarity value of 0.422.

We continue to calculate similarities for each answer,
for each of the eight relationships, which leads to a 8-tuple
similarity vector in relationship space for each answer:

A:<0.422, 0.601, 0.527, 0.713, 0.427, 0.408, 0.418, 0.462>
B:<0.563, 0.639, 0.762, 0.693, 0.489, 0.446, 0.568, 0.670>
C:<0.609, 0.639, 0.797, 0.687, 0.484, 0.449, 0.608, 0.701>
D:<0.439, 0.609, 0.529, 0.738, 0.436, 0.431, 0.439, 0.464>

We then calculate the Euclidean distance for each vector:

A overall similarity = 1.436
B overall similarity = 1.731
C overall similarity = 1.784
D overall similarity = 1.474

We thus determine that the most similar answer, and the
fractal algorithm’s solution to the problem, is answer C.



Results on the Raven’s Test

To create inputs for the fractal algorithm, each page from
the SPM test booklet was scanned, and the resulting
greyscale images were rotated to roughly correct for page
alignment issues. Then, the images were sliced up to create
separate image files for each entry in the problem matrix
and for each answer choice. These separate images were
the inputs to the fractal algorithm for each problem; no
futher image processing or cleanup was performed, despite
the presence of numerous pixel-level artifacts and minor
alignment issues. The fractal algorithm attempted to solve
each SPM problem independently, i.e. no information was
carried over from problem to problem.

Performance on the SPM

There are three main assessments that can be made
following the administration of the SPM to an individual:
the total score, which is given simply as the number of
correct answers; an estimate of consistency, which is
obtained by comparing the given score distribution to the
expected distribution for that particular total score; and the
percentile range into which the score falls, for a given age
and nationality (Raven, Raven, & Court 1998).
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Figure 4. SPM scores ordered by set for fractal algorithm (dark)
and human norms for given total score (light).
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The total score obtained by the fractal algorithm was 32
correct out of 60 problems. The score breakdown by set,
along with the expected score composition for a total score
of 32 are shown in Figure 4. A score is “consistent” if the
difference between the actual score and the expected score
for any given set is no more than +/- 2 (Raven, Raven, &
Court 1998). Inconsistent scores may result from test
takers not understanding the test instructions, randomly
guessing, or trying to choose incorrect answers to
artificially lower the total score, for example. The score
differences for the fractal algorithm on each set were no
more than +/-1. For a human test-taker, this score
distribution would indicate that the test results do provide a
valid measure of the individual's general intellectual
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capacity. This score pattern illustrates that the results
achieved by the algorithm fall well within typical human
norms on the SPM.

Finally, the total score can be compared to age-group
and national norms to determine percentile rankings. Using
norms from the United States, we see that a total score of
32 corresponds to the 95th percentile for children around 7
years old, the 50th percentile for children around 9.5 years
old, and the 5th percentile for children around16.5 years
old (Raven, Raven, & Court 1998).

Conclusions

We have described a fractal technique for addressing
geometry analogy problems of the kinds that appear on
many psychometric tests of human intelligence. This
technique works directly on the visual inputs, without any
need to extract propositional representations from them.
We have applied the technique to the entire Raven’s
Standard Progressive Matrices test, and found that it
successfully solves 32 of 60 problems. The performance of
our program would place it at the 50th percentile for 9-10
year old children. We believe that the fractal technique
described above can be enhanced significantly and we
anticipate improved results in the near future.

Fractal representations are analogical representations in
that they are structurally isomorphic to the images they
represent. The collage theorem provides a rigorous
characterization of this structural isomorphism: The
tessellation of the destination image of each of the
transforms and the subsequent search and discovery of a
"best-fit" companionable partition of the source image for
each tessellate can be viewed mathematically as a bijection
mapping between the images. This mapping is
accomplished via a similitude transform.

Similarity and analogy often have been viewed as
central to theories of intelligence (e.g., Evans 1968).
Hofstadter (1995), among others, has posited that analogy
forms the core of human cognition. Fractal representations
add the powerful idea of self-similarity. In fact, the nature
of these representations places a strong emphasis on
discovering self-similarity. In the fractal technique, each
discovered self-similar mapping is rendered into feature
fragments without bias or preference. The contractive
nature of the transformations on the fractal representations
guarantees convergence.

While the use of fractal representations is central to our
technique, the emphasis upon visual recall in our solution
afforded by features derived from those representations is
also important. We take the position that placing candidate
transformations into memory, indexed via fractal features,
affords a new method of discovering image similarity. That
images, encoded either in terms of themselves or other
images, may be indexed and retrieved without regard to
shape, geometry, or symbol, suggests that the fractal
representation bears further exploration not only as regards
solutions to problems akin to the RPM, but also to those of
general visual memory and recall.
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