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Abstract

The block design task, a standardized test of nonverbal reason-
ing, is often used to characterize atypical patterns of cognition
in individuals with developmental or neurological conditions.
Many studies suggest that, in addition to looking at quantita-
tive differences in block design speed or accuracy, observing
qualitative differences in individuals’ problem-solving strate-
gies can provide valuable information about a person’s cogni-
tion. However, it can be difficult to tie theories at the level
of problem-solving strategy to predictions at the level of ex-
ternally observable behaviors such as gaze shifts and patterns
of errors. We present a computational architecture that is used
to compare different models of problem-solving on the block
design task and to generate detailed behavioral predictions for
each different strategy. We describe the results of three differ-
ent modeling experiments and discuss how these results pro-
vide greater insight into the analysis of gaze behavior and error
patterns on the block design task.
Keywords: artificial intelligence; cognitive assessment; non-
verbal intelligence; spatial reasoning; visual attention.

Introduction
The block design task is a cognitive assessment that is com-
monly used to measure nonverbal intelligence. In this task, a
person has to reconstruct a given printed design using red and
white blocks, as shown in Fig. 1. Originally devised in 1920
(Kohs, 1920), block design has been included in a multitude
of standard neuropsychological test batteries, including every
single edition of the Wechsler Intelligence Scale for Children
(WISC) and the Wechsler Adult Intelligence Scale (WAIS),
which are among the most commonly used cognitive assess-
ments around the world (Wechsler, 2003).

Figure 1: A person solving an example block design item.
(To protect test security, actual test items are not shown.)

In the typical population, block design performance shows
quantitative improvements with age in children (Wechsler,
2003) and a declining trend in the elderly (Ardila & Rosselli,
1989; Rönnlund & Nilsson, 2006). In addition to its value in
the detection of brain damage (Lezak, 2004), block design is
also sensitive to atypical development. Block design repre-
sents an area of strength for many individuals on the autism
spectrum (Caron, Mottron, Berthiaume, & Dawson, 2006;
Shah & Frith, 1993) and is an area of weakness in many indi-
viduals diagnosed with Williams syndrome (Farran, Jarrold,
& Gathercole, 2001; Hoffman, Landau, & Pagani, 2003).

Kohs devised block design as a language-independent al-
ternative to the Binet intelligence scale, which loaded heavily
on verbal abilities (Kohs, 1920). The original scoring system
takes into account the successful reproduction of the design
as well as the time taken by the participant and the number
of moves. Number of moves was dropped in later standard-
izations as being too cumbersome for daily practice (Hutt,
1932); current scoring schemes use final success and reaction
time as the primary outcome measures. However, many re-
searchers observe that obtaining more detailed measures of
block design performance can add value by pinpointing spe-
cific cognitive processes and problem-solving strategies that
an individual is employing to solve the task.

In particular, many studies have proposed that qualitative
differences in block design performance are as important as
quantitative differences in accuracy or reaction time. Sev-
eral studies have observed that patterns of visual attention,
i.e. eye gaze, between the original design and the design un-
der construction may serve as markers for certain cognitive
processes that are meaningful to the final outcome (Hoffman
et al., 2003; Rozencwajg & Corroyer, 2002; Rozencwajg et
al., 2005; Rozencwajg & Fenouillet, 2012).

Observing the errors that people make can also provide
valuable information. Errors have been studied in terms of the
particular sequence of moves that a participant makes (Joy,
Fein, Kaplan, & Freedman, 2001; Toraldo & Shallice, 2004),
any incorrect placements of blocks (Ben-Yishay, Diller, Man-
dleberg, Gordon, & Gerstman, 1971; Hoffman et al., 2003;
Jones & Torgesen, 1981; Joy et al., 2001; Schatz, Ballan-
tyne, & Trauner, 2000; Troyer, Cullum, Smernoff, & Kozora,
1994), the qualitative type or scale of errors that are made
(Akshoomoff, Delis, & Kiefner, 1989; Joy et al., 2001), and
also what is termed a “broken configuration” error, in which
the participant places a block too far away from their cur-
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rent construction, violating implied configural outlines of the
given design (Akshoomoff et al., 1989; Akshoomoff & Stiles,
1996; Joy et al., 2001; J. Kramer, Blusewicz, Kaplan, & Pre-
ston, 1991; J. H. Kramer, Kaplan, Share, & Huckeba, 1999;
Schatz et al., 2000; Troyer et al., 1994; Zipf-Williams, Shear,
Strongin, Winegarden, & Morrell, 2000).

However, missing from these accounts is a precise descrip-
tion of the information processing mechanisms involved in
solving block design items. As a result, we also know rel-
atively little about how these mechanisms emerge in typical
development or how they are altered in atypical development.

Obtaining a better understanding of the specific cognitive
processes underlying performance on standard neuropsycho-
logical assessments, especially taking into account both quan-
titative and qualitative differences, provides value in under-
standing the basic science of cognition and development as
well as the interpretation of these assessments in practical set-
tings (Hunt, 1983; Kaplan, 1988; Keating & Bobbitt, 1978;
Mislevy & Verhelst, 1990; Sternberg, 1988). Computational
modeling is an excellent method for this kind of detailed sci-
entific inquiry. Implementing a computational model forces
precision in the theory being tested. Royer has argued for in-
creased specificity in theories of block design performance
through conceptual information processing models (Royer,
1984), and having a working, runnable computational model
takes this desired level of specificity one step further.

We propose a new computational architecture for model-
ing the process of solving a block design item as a recurring
interplay between attention, perception, memory, and action.
We implemented this architecture using a custom block de-
sign simulation environment. We present the results from
three computational experiments using this architecture and
discuss how the architecture can be used to better understand
the relationships between different problem-solving strate-
gies and the gaze behaviors and errors that they generate.

There are several existing cognitive architectures used to
model human visuospatial task performance, such as ACT-
R (Gunzelmann & Lyon, 2011) and SOAR (Laird, 2008).
However, these architectures were originally developed us-
ing frameworks of cognition that prioritize symbolic process-
ing. Modules for representing and manipulating nonsymbolic
information, for instance mental imagery, have been incorpo-
rated into these architectures relatively recently. In our own
work, we study mechanisms of intelligent problem solving in
which visual mental images form the primary (and often only)
mode of representation, and we have developed a series of
computational models that adopt this perspective to solve dif-
ferent neuropsychological assessments, such as the Raven’s
Progressive Matrices test (Kunda, McGreggor, & Goel, 2013)
and the Embedded Figures test (Kunda & Ting, 2015).

We have built upon this prior work in the design of the
block design architecture presented in this article. The main
reason that we chose to construct a new architecture instead
of using an existing framework like ACT-R or SOAR is that,
because our research prioritizes the role of perceptual mental

representations in problem solving, we have designed our ar-
chitecture to likewise rely primarily on perceptual representa-
tions, instead of having a symbolic representation system that
is common to a variety of perceptual representation modules.

The Simulation Environment
We have developed a computational architecture that can au-
tonomously solve the block design task in a simulated en-
vironment. The current environment is simplified in many
ways; ongoing refinements to the environment and architec-
ture will gradually introduce more realistic representations.

Figure 2: The simulated environment used by our architec-
ture, representing a top-down view of the tabletop containing
all of the materials for one block design item. The black dot
in the image (bottom center) indicates the simulated gaze lo-
cation of the architecture at the current time step.

The perceptual input available to the model consists of an
overhead image of the table, as shown in Fig. 2. The table
image is divided into the following regions:

1. The target design: The target design remains fixed for the
duration of each test item. The design is represented by
a single image scaled down to half the size of the actual
constructed designs, consistent with standard block design
administration procedures (Kohs, 1920; Wechsler, 2003).

2. The construction area: The construction area is located
at the bottom left corner of the table. This area is empty
at time 0, and has the ability to contain an assortment of
blocks placed at various locations. This part of the envi-
ronment is simplified by having an implied rectilinear grid
that only allows blocks to be placed in slots that comply
with this grid. As a result, block misalignment errors while
performing the task cannot be replicated within the current
generation of models. However, broken configuration er-
rors can be replicated, as the construction area does not
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have any explicit borders, allowing the model to assemble
a design that extends beyond the implied boundaries.

3. The block bank: The block bank is the area located at the
top right corner of the table and is similar to the construc-
tion area in that it contains an assortment of blocks placed
at various locations and in various orientations. This area
contains all of the available blocks at time 0.

4. The hand area: This area of the table represents the block
being manipulated by the model and is located to the right
of to the construction area on the table. At each time step,
this area can either contain a block or be empty.

5. The set of blocks: The table contains N blocks, with at
least as many blocks as are required to construct the target
design. Each block has a 2-D position as well as a 3-D
orientation to indicate the top-most face of the block.
The behavioral variables that can be captured from this en-

vironment include: success/failure, sequence of block moves,
and gaze shifts to each area of the environment. While the
simulated environment is capable of supporting time-based
measurements of model performance, detailing timing infor-
mation is being incorporated into the architecture as part of
ongoing work and is not used in the current study.

The Computational Architecture
We designed the block design computational architecture to
have six basic mechanisms, as shown in Fig. 3:

1. The visual perception module takes as input a visual
scene representation from the simulation and outputs a new
image at each time step, which we call the perceptual im-
age. The content of this image varies depending on where
the model is currently directing its gaze. The perceptual
image has a fixed resolution but can ”zoom” in or out rela-
tive to the table, which allows the model to capture differ-
ent amounts of visual information from the scene, ranging
from the general form of a large section of the table to a
highly detailed image of a small section of the table.

2. The visual attention module specifies a gaze location at
each time step, which can be directed to specific points
within one of four broad locations: the target design, the
available blocks area, the design being constructed, and the
hand location. This module also includes mechanisms for
performing visual search either for any block or for a block
whose top-most face best matches the block face stored in
the short-term memory buffer.

3. The mental imagery module stores the perceptual image
in a short-term memory buffer for later use as a ”mental im-
age.” The mental imagery module can compute a measure
of visual similarity between the current perceptual image
and the current mental image (Kunda et al., 2013).

4. The short term memory buffer stores the output of the
mental imagery module as well as any relevant spatial in-
formation that is required to solve the task. In the current
implementation, the only spatial information that is stored
is a reference point on the current object/area of interest, in
the form of Cartesian coordinates.

5. The motor action module takes actions that change the
state of the environment. The available actions include: 1)
selecting a particular block from the table and putting this
block into the hand location, 2) rotating a block that is in
the hand location, the block bank, or the construction area,
or 3) placing a block currently held in the hand to a specific
position inside the construction area or the block bank.

6. The central executive module is responsible for planning
and decision making, and it coordinates the overall opera-
tion of the model. At each time step, this module can exe-
cute any action from a set of available actions. The avail-
able actions include changing the gaze location, perform-
ing a visual search for a specific image, storing, manipulat-
ing, or flushing the mental image, and selecting, rotating,
or placing a block in the simulated environment.

Figure 3: The overall model architecture, including inputs
and outputs to the simulated block design task environment
described in the previous section. The central executive mod-
ule has bidirectional connections to the other five modules in
the system; for clarity, these connections are not shown.

Experiments and Results
Using the simulation environment described above, we ran
three computational experiments in which we compared the
performance of different block design models built using the
same underlying architecture. Each model was presented
with 9 blocks and a single 3x3 target design, which appears in
the lower right corner of Fig. 2. We present results from the
model averaged over 1000 runs. Randomness effects within
a single run stem from the initial random positioning of the
blocks as well as randomness in the model’s search strategies.

While there are likely many high-level strategies that can
be used to solve block design items, the current models that
we tested all follow what has been termed the ”analytic strat-
egy,” in which ”the displayed design is mentally segmented
into units corresponding to block faces, then the blocks are di-
rectly placed, one by one, to match each unit” (Schorr, Bower,
& Kiernan, 1982). Other high-level strategies, including the
influence of Gestalt effects on perception, are not explicitly
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implemented in the current family of models but are part of
ongoing work to improve and expand the basic architecture.

Because there are random factors in the environment and
in each model’s processing, we measured the output of the
models by constructing gaze transition graphs. These graphs
show the average number of gaze transitions made by each
model within or between four different areas of the simulation
environment: the block bank, the construction area, the target
design, and the model’s ”hand.”

Experiment #1: Visual Working Memory
In solving a block design item, each model first looks at the
design, stores some part of the design in memory, then selects
and uses blocks to reconstruct this stored part of the design.
Then, the model returns to the design to see and store the next
part of the design. This experiment investigates the effects of
the size of a model’s visual working memory on its task per-
formance, in terms of how much information from the design
can be stored at each iteration.

Each model stores some part of the design in its mental
imagery module. In the current implementation, the mental
images are square and have a fixed size, defined by the num-
ber of blocks they can store. We created two different models,
one with a 1x1 mental image size and one with a 3x3 mental
image size. The mental images are stored at the same resolu-
tion at which they are perceived.

Each of the two models applied a guided search strategy
to locate the blocks and used a visual similarity threshold of
0.95. (These two additional parameters are discussed in detail
in the next two experiments.) The gaze transition graphs for
each of these models are shown in Fig. 4.

Figure 4: Gaze transitions made by models with a mental
image size of 1x1 (left) or 3x3 (right). Results show mean

+/- standard deviation over 1000 trials.

Two noticeable effects can be seen in this figure. First,
the model with larger mental image capacity only has to look
at the target design once, while the other model must return
its gaze to the target design many times. Second, the model
with larger mental image capacity shows more gaze transi-
tions between the block bank and construction area, because
it is working off a mental image instead of having to return to
the design after placing each block.

Experiment #2: Search Strategy
Each model has a search strategy that determines which block
from the block bank is chosen to add to the construction area.
Because the blocks are identical, a random choice can always
suffice. In the random search strategy, the model first ran-
domly chooses a block from the block bank and moves it to
the hand area. Then, the model segments the target design
to determine the block face that should be added next to the
construction area. If the top-most face of the block in hand
matches the target block face, the block is immediately added
to the construction area. Otherwise, the block is rotated to
match the target before being added to the construction area.

Alternately, a model can be more strategic about its choice
from the block bank. In the guided search strategy, the model
first segments the target design to determine the block face
that should be added next to the construction area. The model
then proceeds to search the remaining available blocks in the
block bank for the target block face. If an exact match is
found, the matching block is added to the construction area.
If not, the best match is picked up and rotated to match the
target block face and then added to the construction area.

Both models have a mental image size of 1x1 and a visual
similarity threshold of 0.95. The gaze transition graphs for
each of these models are shown in Fig. 5.

Figure 5: Gaze transitions made by models using a guided
search strategy (left) versus a random search strategy (right).
Results show mean +/- standard deviation over 1000 trials.

In this experiment, it is interesting to see that the random
search strategy is, in a sense, more efficient. Gaze transitions
follow a very definite pattern, and the only added gaze behav-
iors are those that monitor the rotation of each block while it
is being held. The model following the guided search strat-
egy spends much more time looking through the blocks in
the block bank, and even then, the model still must monitor a
large number of in-hand block rotations.

Experiment #3: Visual Similarity Threshold
The models use a measure of visual similarity to compare
two images, for example to compare a mental image to a per-
ceived block in the environment. Each model has a similarity
threshold to determine when two images are considered to
be the same. In the current implementation, visual similar-
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ity is calculated simply as the proportion of matching pixels
between two images (where 0.0 indicates no match and 1.0
indicates a perfect match). We varied this visual similarity
threshold to be 0.95 in one model and 0.64 in another.

Both models have a mental image size of 1x1 and use a
guided search strategy. The gaze transition graphs for each of
these models are shown in Fig. 6.

Figure 6: Gaze transitions made by models having a visual
similarity threshold of 0.95 (left) or 0.64 (right). Results show
mean +/- standard deviation over 1000 trials.

Both of these graphs show the same connectivity. How-
ever, the model with the lower similarity threshold value
shows fewer gaze behaviors on both the block bank (while
searching for a matching block) and on the hand (while rotat-
ing blocks as needed). This decrease in visual effort makes
sense given that the model is more lenient with what it con-
siders to be a visual match.

Figure 7: Examples of errors made by models with visual
similarity thresholds of 0.64 (top) and 0.5 (bottom).

Lowering the similarity threshold can also lead to errors.
While the model with the higher threshold makes no errors,
the model with the lower threshold produces many incorrect

reconstructions of the target design, with overall accuracy
falling to 25.4%. The errors produced by decreasing the vi-
sual similarity threshold are specific to the incorrect place-
ment of blocks that share high visual similarity with the cor-
rect block that should have been placed at that position. Two
examples of the kinds of errors that occur at different thresh-
old values are shown in Fig. 7. At a threshold value of 0.64,
the errors take the form of placing a solid face in the place
of a diagonal one. At a lower threshold value of 0.5, a model
could replace a diagonal face block with a diagonal face block
that has a different 2-D orientation. However, more acute er-
rors, such as a solid red face being replaced by a solid white
face or a diagonal face being replaced by its complement do
not occur even with a similarity threshold of 0.5, as the visual
similarity between such extreme pairs is much lower.

Discussion and Future Work
Despite the ubiquity of block design in clinical, scientific, and
educational settings, we still do not know the precise nature
of the mechanisms and strategies that people use to solve the
task. Describing these mechanisms and strategies at a com-
putational level provides an experimental platform on which
to construct and flesh out theories of problem-solving on the
block design task and to make detailed predictions about be-
havior, including both quantitative and qualitative variations.

We have shown how computational models of problem-
solving on the block design task can be used to test the effects
that different variations in strategy and other cognitive char-
acteristics have on behavior, including accuracy, gaze pat-
terns, and the types of errors that are made. While the models
we have presented are admittedly simplified in comparison to
human performance, these models give us a structured way to
understand both the requirements of the task and how specific
mechanisms relate to specific behaviors.

In future work, we will collect data from human partici-
pants to analyze their gaze transition graphs and error pat-
terns, comparing them to those of our computational models,
to gain more insight into the variability of strategy and behav-
ior across our participant sample. These analyses will provide
insight into cognitive development and individual differences
in typically developing children as well as in individuals with
different developmental or neuropsychological conditions.

Continued work in this direction will: 1) enhance our sci-
entific understanding of how nonverbal intelligence devel-
ops and matures, 2) enable the generation of detailed behav-
ioral predictions and research questions for future scientific
inquiry, 3) inform the practical development and interpre-
tation of neuropsychological assessments, and 4) provide a
conceptual bridge to map behavioral observations onto mea-
surements and models of neural activity.
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