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Abstract

We present two visual algorithms, called the affine and
fractal methods, which each solve a considerable portion of
the Raven’s Progressive Matrices (RPM) test. The RPM is
considered to be one of the premier psychometric measures
of general intelligence. Current computational accounts of
the RPM assume that visual test inputs are translated into
propositional representations before further reasoning takes
place. We propose that visual strategies can also solve RPM
problems, in line with behavioral evidence showing that
humans do use visual strategies to some extent on the RPM.
Our two visual methods currently solve RPM problems at
the level of typical 9- to 10-year-olds.

Keywords: Analogy; intelligence tests; mental imagery;
Raven’s Progressive Matrices; visual reasoning.

Introduction

In previous work (Kunda, McGreggor, & Goel, 2010), we
presented two visual algorithms for solving problems from
Raven’s Progressive Matrices (RPM) intelligence tests,
along with experimental results. Here, we summarize this
recent work and discuss its implications for Al

The RPM consists of geometric analogy problems, as
shown in Figure 1; problems contain either 2x2 (like the
example given in Figure 1) or more complex 3x3 matrices.
Although the RPM is supposed to measure only eductive
ability (Raven, Raven, & Court, 2003), its high correlation
with other IQ tests has rendered it a premier psychometric
measure of general intelligence, and it is widely used in
clinical, educational, occupational, and scientific settings.

Computational accounts of problem solving on the RPM
have generally assumed that visual inputs are translated
into propositions before further reasoning takes place.
Carpenter et al. (1990) implemented a production system
that took hand-coded propositional descriptions of RPM
inputs and then chose from predefined rules to solve each
problem. Bringsjord and Schimanski (2003) used a
theorem-prover to solve RPM problems stated in first-
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order logic. Lovett, Forbus, & Usher (2007) combined
automated sketch understanding with structure-mapping to
solve RPM problems, which were represented using hand-
drawn vector graphics. Cirillo and Strom (2010) also used
vector graphics representations of RPM problems along
with a set of pre-defined patterns to predict an answer.
Finally, Rasmussen & Eliasmith (2011) used a spiking
neuron model to induce rules for solving RPM problems
represented as hand-coded propositional vectors.

Despite considerable differences in architecture and
focus, all of these computational approaches have been
similar in two respects. First, as mentioned earlier, they all
rely on some translation process to convert visual test
inputs into propositional representations, which then
become the sole form of representation used by each
system. Second, each system posits only one fundamental
problem-solving strategy; individual differences in RPM
performance are assumed (either implicitly or explicitly) to
stem from quantitative variations in this strategy, rather
than from qualitative differences in the strategy itself.

In contrast, Hunt (1974) proposed two qualitatively
different strategies: Gestalt, using visual representations
and perceptual operations, and Analytic, using propositions
and logical operations. While neither RPM algorithm was
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Figure 1: Example problem similar to one from the Standard
Progressive Matrices (SPM) test. The correct answer is 5.



For each base transform T:
Apply T to Image A.

Find image composition operand X as follows:
Calculate similarity using Eq. (1) with:
(I)a=1,B=1 (2Ja=1,B=0
Choose maximum similarity value.
If max. is (1), then X = 0.
If max. is (2), then X =B — A, and @ is image addition.
If max. is (3), then X = A—B, and @ is image subtraction.
The best-fit similitude transformation can then be specified as:
[Tmaxt(tx, ty)]l(A) © X =B

(3)a=0,p=1

Find best-match translation (tx, ty) between T(A) and B, using Eq. (2).

The set T ={Ty, Ty, T3, ..., Tn} is the fractal encoding of the image D.

Decompose D into a set of N smaller images {di, d,, ds, ..., d,}. These
individual images are sets of points.
For each image d;:

Examine the entire source image S for an equivalent image s; such
that a similitude transformation of s; will result in di. This
transformation will be a 3x3 matrix, as the points within s; and d;
under consideration can be represented as the 3D vector <x, y, ¢>
where c is the (grayscale) color of the 2D point <x,y>.

Collect all such transforms into a set of candidates C.

Select from C the transform which most minimally achieves its work,
according to some predetermined, consistent metric.

Let T; represent the chosen affine transformation of s; into d;.

Figure 2. Algorithm 1 (left): Affine method. Algorithm 2 (vight): Fractal method.

implemented, a theoretical analysis suggested that both
methods would be equally effective for certain problems.

In addition to Hunt’s computational argument, there is
evidence that humans use qualitatively different RPM
strategies. Within-individual strategy differences have been
studied as a function of problem type, primarily through
factor analyses (Lynn et al., 2004), often dividing problems
into those solvable with visual versus verbal operations.

Between-individual strategy differences have emerged
in studies of autism. Whereas the RPM scores of typically
developing (TD) individuals are highly correlated with full
1Q scores, individuals with autism often show much higher
RPM scores (Dawson et al., 2007), possibly because intact
visual abilities in autism can be recruited to solve many
RPM problems (Kunda & Goel, in press). Recent fMRI
data of the RPM showed that individuals with autism had
lower brain activation in areas associated with language
and working memory and higher activation in visual areas
than did TD individuals (Souliéres et al., 2009).

Visual Methods for the Raven’s Test

We have developed two different RPM algorithms that we
call the “affine” method and the “fractal” method. Unlike
previous computational models of the RPM, these methods
use image transformations to solve RPM problems directly,
without first converting visual inputs into propositions. We
define a representation as being purely visual if it captures
image information only at the pixel level, i.e. as a spatial
array of individual color/intensity values. A representation
is propositional if it encodes higher-level visual entities as
propositions, e.g. as labeled lines, shapes, textures, etc.

Figure 2 outlines the core mechanisms for both visual
algorithms. Due to space constraints, we present only brief
descriptions of these algorithms below; more details can be
found in (Kunda, McGreggor, & Goel, 2010).

At the core of these methods are affine transformations,
and in particular similitude transforms, which can be
represented as compositions of dilation, orthonormal
transformation, and translation. We presently use the

identity transform, horizontal and vertical reflections, and
90°, 180°, and 270° rotations, composed with translation.
There is evidence that human visual processing can apply
some of these types of transformations to mental images,
or at least operations that are computationally isomorphic
(Kosslyn, Thompson, & Ganis, 2006).

Similarity also lies at the core of both methods, as
calculated using the ratio model (Tversky, 1977):

f(ANnB)
f(AnB)+ af(A—B) + Bf(B—A)

similarity(A,B) =

In Eq. (1), f represents some function over features in each
of the specified sets, and a and B are weights for the non-
intersecting portions of the sets A and B. If o and B are
both set to one, then this equation becomes:

f(ANnB)

similarity(A,B) = )

Eq. (2) is used in both methods, and it yields maximal
similarity when A is equal to B. In contrast, if o is one and
B is zero, it yields maximal similarity when A is a proper
subset of B. If o is zero and P is one, then maximal
similarity is found when B is a proper subset of A.

The Affine Method

The affine method assumes that 1) elements within a row
or column in an RPM problem matrix are related by
similitude transforms, and 2) analogical relationships exist,
in the form of identical similitude transforms, across
parallel rows or columns of the matrix. Each similitude
transform is represented as a combination of three image
operations: base transform, translation, and composition.

First, the algorithm determines which transform best fits
any complete row or column in the matrix; Algorithm 1 in
Figure 2 shows how, for images A and B, the “best-fit”
transform is found. Then, this transform is applied to
whichever parallel row/column contains the missing entry
to generate a guess image for the answer. Finally, this
guess is compared to each answer choice, using Eq. (2),
and the best match is chosen as the answer.
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Figure 3: Breakdown of affine (left) and fractal (vight) results across sets in the SPM. Also shown is the expected
score breakdown for total scores of 35 and 32, from normative human data (Raven, Raven, & Court, 2003).

The Fractal Method

Like the affine method, the fractal method seeks to find a
re-representation of the images within an RPM problem as
a set of similitude transforms. Unlike the affine method,
the fractal method seeks representations at a significantly
finer partitioning of the images, and uses features derived
from these resulting “fractal” representations to determine
similarity for each possible answer, simultaneously, across
the bulk of relationships present in the problem.

The mathematical derivation for the process of fractal
image representation expressly depends on the notion of
real world images, i.e. images that are two dimensional and
continuous (Barnsley & Hurd, 1992), and draws upon the
1) repetition and 2) similarity at different scales that are
found in such images. Fractal representations seek to
describe images in terms other than those of shapes or
traditional graphical elements—i.e. terms that capture this
observed similarity and repetition alone. Computationally,
determining fractal representations uses the fractal
encoding algorithm, shown in Algorithm 2 in Figure 2.

Once fractal representations have been calculated for
each pair of images in the problem matrix, Eq. (2) is used
to calculate similarity between all pairwise relationships in
the matrix and those calculated with the given answer
choices, using features derived from the fractal encodings.
Whichever answer choice yields the most similar fractal
representations across all pairwise relationships is chosen
as the final answer (McGreggor, Kunda, & Goel, 2010).

Results

We tested both the affine and fractal methods on the
complete Standard Progressive Matrices (SPM) test. The
SPM consists of 60 problems divided into five sets labeled
A-E. To obtain visual inputs for the algorithms, we first
scanned a paper copy of the SPM, aligned each page
squarely, and then divided each problem into separate
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image files for each matrix entry and answer. No further
image processing was performed on these images.

The affine algorithm correctly solved 35 of 60 problems
on the SPM, as shown in Figure 3. For children in the U.S.,
this total score corresponds to the 50th percentile for 10%2-
year-olds (Raven, Raven, & Court, 2003). The fractal
algorithm correctly solved 32 of 60 problems, which
corresponds to the 50th percentile for 9'2-year-olds.

We also looked at the performance of both methods as a
function of problem type on the SPM; we used the results
from a factor analysis to divide problems into those
loading on “gestalt continuation,” ‘“visuospatial,” or
“verbal-analytic” factors (Lynn, Allik, & Irving, 2004).
Figure 4 shows the performance of both methods with
respect to problem type. Both the affine and fractal
methods perform most strongly on gestalt problems,
slightly less so visuospatial problems, and significantly less
so on problems requiring verbal-analytic reasoning, though
problem difficulty represents a potential confound.

Discussion

We presented results from (Kunda, McGreggor, & Goel,
2010) describing two algorithms that use purely visual
representations to solve more than half of the problems on
the Raven’s SPM test. These results are significant not
only because we have shown purely visual methods to be
surprisingly powerful in addressing a standard test of
general intelligence, which is itself an accomplishment
according to the psychometric Al school of thought
(Brinsjord & Schimanski, 2003), but also because they
illustrate the capabilities of visual methods in general.

As previous RPM models have shown, as well as other
visual analogy work in Al (Davies, Yaner, & Goel, 2008),
visuospatial knowledge alone, represented propositionally,
can be sufficient to solve certain analogy problems. In this
work, we have shown that it is not necessary to translate
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Figure 4: Breakdown of affine and fractal algorithm results on the SPM by problem type. Problem breakdowns were
obtained from a factor-analytic study of human performance (Lynn, Allik, & Irving, 2004).

images into propositions at all for certain reasoning to take
place. The analogical (i.e. having a structure corresponding
to what is represented) properties of real-world images,
including their amenability to affine transforms, repetition,
and self-similarity, appear sufficient to support higher-
level reasoning, and the ratio model of similarity is one
instantiation of a comparison mechanism that does not rely
on the extraction of propositional features.

In general, the results of this work support the view of
perception as a first-class object for reasoning in Al
systems. Many open questions remain for the study of
visual strategies on the RPM, such as what role other
visual operations like convolution or deformation might
play, and how visual and propositional strategies might be
seamlessly bridged in a single cognitive agent.
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