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Abstract

This paper presents a new Retinotopic Reasoning (R2) cog-
nitive architecture that is inspired by studies of visual men-
tal imagery in people. R2 is a hybrid symbolic-connectionist
architecture, with certain components of the system repre-
sented in propositional, symbolic form, but with a primary
working memory store that contains visual “mental” images
that can be created and manipulated by the system. R2 is not
intended to serve as a full-fledged, stand-alone cognitive ar-
chitecture, but rather is a specialized system focusing on how
visual mental imagery can be represented, learned, and used
in support of intelligent behavior. Examples illustrate how R2
can be used to model human visuospatial cognition on several
different standardized cognitive tests, including the Raven’s
Progressive Matrices test, the Block Design test, the Embed-
ded Figures test, and the Paper Folding test.

Introduction
Consider the following question: How many windows are
there in your home? Many people can answer this question
after only a few moments thought. (Try it!)

Often, people use visual mental imagery to produce an
answer to this question. They visualize the interior of their
home, mentally traveling from room to room and counting
windows as they go. Some people visualize their home from
the outside. Other, non-imagery-based strategies are possi-
ble as well; for example, someone who has just ordered re-
placement windows may just know the answer straightaway,
from memory. However (at least based on the author’s ad-
mittedly non-random and informal polling of seminar audi-
ences), many people seem to adopt a strategy that is at least
partially, if not completely, imagery-based.

Visual mental imagery can be defined as the use of vi-
sual mental images to represent knowledge, together with
visual imagery operations, such as mental rotation and trans-
lation, to reason about this knowledge. While the existence
of visual mental imagery in human cognition was vigor-
ously debated for much of the late 20th century (aptly named
“The Imagery Debate”), many convergent findings in neuro-
science now support the idea that visual mental imagery is a
genuine and useful form of mental representation in humans
(Pearson and Kosslyn 2015). Note that mental imagery can
occur in other sensory modalities as well, e.g., tactile im-
agery (Yoo et al. 2003). However, for simplicity, discussions

in this paper focus on mental imagery in the visual modality.
In people, visual mental images are represented in brain

regions responsible for visual perception, where neurons are
organized in a retinotopic fashion, i.e. the arrangement and
connectivity of neurons in these brain regions preserves the
2D spatial layout of light-sensitive cells in the retina. How-
ever, mental images involve neural activations in these re-
gions that are not directly tied to concurrent perceptual in-
puts (Slotnick, Thompson, and Kosslyn 2005). In addition,
the neural activity associated with visual mental imagery has
been found to play a functional role: if this neural activity
is artificially suppressed, then performance on certain tasks
will decrease (Kosslyn et al. 1999).

Beyond just laboratory-based evidence that humans can
use visual mental imagery, extensive scientific and anecdo-
tal evidence additionally suggests that humans do use vi-
sual mental imagery, often in highly complex and creative
tasks. Both Richard Feynman (Gleick 1992) and Albert Ein-
stein (Feist 2008) observed that they thought about physics
concepts primarily using mental images and only secon-
darily using words and equations. Temple Grandin, a pro-
fessor of animal science who is also on the autism spec-
trum, fixes problems in livestock facilities by performing vi-
sual mental simulations of complicated equipment (Grandin
2008). The importance of visual mental imagery has repeat-
edly been emphasized across numerous domains of human
expertise, including surgery (Luursema, Verwey, and Burie
2012), mathematics (Giaquinto 2007), engineering (Fergu-
son 1994), language comprehension (Pressley 1976), pro-
gramming (Petre and Blackwell 1999), scientific discovery
(Nersessian 2010), and more.

While psychology and neuroscience have told us much
about the behavioral and neural markers of visual mental im-
agery, we know much less about its computational proper-
ties. Many basic questions—like how mental rotation might
be represented as an operator, or how imagistic information
is encoded and retrieved in long-term memory—remain im-
portant open issues for scientific inquiry.

This paper presents a new Retinotopic Reasoning (R2)
cognitive architecture that, inspired by studies of visual
mental imagery in people, aims to work towards find-
ing answers to these questions. R2 is a hybrid symbolic-
connectionist architecture, with certain components of the
system represented in propositional, symbolic form, but with

A Standard Model of Mind: 
AAAI Technical Report FS-17-05

401

Kunda, M. (2017). Understanding the role of visual mental imagery in intelligence: The Retinotopic Reasoning (R2) cognitive architecture. Proceedings 
of the AAAI Fall Symposium Series (AAAI-FSS): A Standard Model of the Mind, Washington, DC.  AAAI Technical Report FS-17-05.  p. 401-407.



Figure 1: Example problems from the four standardized visuospatial cognitive tests: (a) Raven’s Progressive Matrices test, (b)
Embedded Figures test, (c) Block Design test, and (d) Paper Folding test.

a primary working memory store that contains visual “men-
tal” images that can be created and manipulated by the
system. R2 is not intended to replace non-imagery-based,
propositional AI architectures, but rather to complement
them, just as human intelligence relies on many different
cognitive modalities.

Developing robust computational accounts of visual men-
tal imagery will not only serve to illuminate certain as-
pects of human intelligence, like those described above, but
also will enable AI systems to better achieve human-like
and/or human-level performance on many tasks. Interactive,
imagery-based AI systems have potential to augment human
capabilities in these areas and to improve education and in-
terventions for people with cognitive conditions like autism.

Existing Imagery-based AI Systems
Unlike visual perception, i.e., interpreting what is currently
being seen, visual mental imagery involves creating and ma-
nipulating a new set of images in the mind. For an AI sys-
tem to employ visual mental imagery, it must create and use
data structures that are imagistic in nature, and use imagery-
based operators to manipulate these data structures.

Most AI systems built to date do not use any visual men-
tal imagery at all. Even AI systems that specialize in visual
tasks—e.g., interpreting a visual diagram—often use images
only as perceptual inputs, and store their internal knowledge
using propositional (i.e., abstract, symbolic) formats. A sim-
ple example of an imagery-based representation showing the
relationship between two shapes is !−", while a proposi-
tional representation of the same information might look like
[LEFT-OF(TRIANGLE, SQUARE)] (Nersessian 2010).

Examples of AI systems that do use visual mental imagery
span many different problem domains, including:
• Diagrammatic/spatial reasoning (Kosslyn and Shwartz

1977; Glasgow and Papadias 1992; Tabachneck-Schijf,
Leonardo, and Simon 1997).

• Geometric analogies (Kunda, McGreggor, and Goel 2013;
McGreggor, Kunda, and Goel 2014).

• Naive physics (Funt 1980; Gardin and Meltzer 1989;
Narayanan and Chandrasekaran 1991).

• Commonsense question answering (Bigelow et al. 2015;
Lin and Parikh 2015).

In addition, there have been efforts to include visual men-
tal imagery as a component within a larger cognitive ar-
chitecture, including for the following architectures: SOAR
(Lathrop, Wintermute, and Laird 2011), NEVILLE (Bertel
et al. 2006), PRISM (Ragni and Knauff 2013), and Casimir
(Schultheis, Bertel, and Barkowsky 2014).

The Retinotopic Reasoning (R2) cognitive architecture
that is presented here is not incompatible with many of these
previous efforts. R2 is designed with an initial focus on mod-
eling low-level visuospatial cognitive operations of the type
measured in people using standardized cognitive tests, with
near-term research goals of improving the understanding of
typical and atypical human cognitive development. How-
ever, ultimately, R2 is intended to be a modular, extensible,
and continually evolving platform for broader research into
visual mental imagery.

Problem Domain: Visuospatial Cognitive Tests
To date, variants of the R2 architecture have been con-
structed to address four different visuospatial cognitive tests:
the Raven’s Progressive Matrices (RPM) test, the Embed-
ded Figures Test (EFT), the Block Design Test (BDT), and
the Paper Folding Test (PFT). Example problems from these
tests are shown in Figure 1.

The Raven’s Progressive Matrices (RPM) test problems
resemble geometric analogies, as shown in Figure 1a. The
RPM is widely used and has been identified as the best
available single-format test of general intelligence for peo-
ple (Snow, Kyllonen, and Marshalek 1984). Previous human
research suggested that people typically use visual mental
imagery to solve only the easiest RPM problems, using ver-
bal strategies on harder problems (Lynn, Allik, and Irwing
2004). However, a version of R2 was used to prove that
visual-imagery-based approaches could solve many difficult
RPM problems (Kunda, McGreggor, and Goel 2013), which
is significant as one potential explanation for why some in-
dividuals on the autism spectrum show increased levels of
activity in visuospatial brain regions while solving the RPM
relative to neurotypical individuals (Soulières et al. 2009).
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Figure 2: Overview diagram of Retinotopic Reasoning (R2) cognitive architecture.

Follow-on work has looked at how image-based representa-
tions of problem information can support problem decom-
position (Kunda 2015), and also at how patterns of errors
on the test may be indicative of certain cognitive strategies
(Kunda et al. 2016).

The Embedded Figures Test (EFT) involves finding a
given target inside a search environment, as shown in Figure
1b. The EFT measures a cognitive construct called field in-
dependence, i.e., the extent to which a person can separate a
goal-related perceptual signal from a complex background,
which has been linked to diverse aspects of human intelli-
gence such as creativity and STEM achievement (Witkin et
al. 1975). In previous work, a version of R2 was used to pro-
vide a new, process-level explanation of individual differ-
ences in field independence as measured by the EFT (Kunda
and Ting 2016).

The Block Design Test (BDT) involves assembling a set
of colored blocks to match a given design, as shown in Fig-
ure 1c. The BDT measures visuospatial ability and forms
a part of many widely-used cognitive test batteries such as
the Wechsler IQ scales. A version of R2 is currently under
development to investigate how patterns of visual attention
on the BDT can predict individual differences in cognitive
strategies (Kunda, El Banani, and Rehg 2016).

The Paper Folding Test (PFT) involves mentally predict-
ing how a series of folds and hole punches applied to a piece
of paper would appear after the paper is unfolded, as shown
in Figure 1d. The PFT is frequently used in research studies
as a measure of visuospatial ability (Silvia 2008). A version
of R2 is currently under development to investigate how vi-
sual mental imagery contributes to PFT performance, and

whether patterns of errors can serve as markers for different
cognitive strategies (Ainooson and Kunda 2017).

While R2 capabilities to date have been designed primar-
ily to address the problem domain of visuospatial cognitive
tests, R2 is intended to be a generalizable, extensible archi-
tecture that, in future work, will be extended to other prob-
lem domains as well.

Overview of R2
Because the Retinotopic Reasoning (R2) cognitive architec-
ture is designed primarily to model visuospatial, and not
verbal or other modalities of, cognition, visual mental im-
agery is R2’s primary format for representing knowl-
edge. What this means is that after R2 receives an input
problem, typically in the form of one or more images, all
problem information remains in imagistic form throughout
the duration of R2’s problem-solving processes.

The majority of AI systems that model similar types of
visuospatial problem solving use propositional (i.e., abstract
and symbolic) representations of problem information, go-
ing all the way back to Evans’ seminal ANALOGY sys-
tem in 1964 that solved geometric analogy problems (Evans
1964) and including more recent examples of systems that
use propositional representations to solve problems from the
Raven’s Progressive Matrices test (Carpenter, Just, and Shell
1990; Lovett, Forbus, and Usher 2010).

R2 contains separate modules that correspond to function-
ally different subsystems in human cognition, such as visual
memory, spatial memory, etc., as shown in Figure 2. A sin-
gle R2 problem-solving episode begins when R2 receives a
cognitive test problem as input, and ends when R2 generates
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an answer (or decides it cannot produce an answer) for that
problem. Each R2 module in Figure 2 is now described in
more detail, using the Raven’s Progressive Matrices (RPM)
problem in Figure 1a as a running example.
Input: Test problem image Q. The input to R2 is a single
test problem in the form of a test problem image Q. Each
Q will be accompanied by problem metadata Qtype, a cat-
egorical variable that identifies the test problem type (see
examples in Figure 1) and is used to select the appropriate
problem-solving routine. Information from Q is accessed by
R2’s perceptual image P . For certain cognitive tests (e.g.,
Block Design), R2 can change Q using action operators.

Running example: For the Raven’s Progressive Matrices
(RPM) example problem in Figure 1a, the input image Q
would be a scanned image showing the entire problem, and
Qtype would be set to RPM-3x3 (RPM problem of size 3
rows by 3 columns).
Perceptual image P . R2 uses an internal data structure
called the perceptual image P to access information from
the test problem image Q received as input. P is analogous
to the retina in human vision, in that R2 has no direct con-
trol over the contents of P . However, like human gaze, P can
be pointed at different locations within a given test problem
image Q. Then, information in P can be accessed by R2’s
problem-solving routines, and can also be sent to the visual
memory buffer for temporary storage.

P is a fixed-size, 2D matrix of pixels and can be directed
to different locations in Q by specifying a fixation point
(xF , yF ) and an image extent E (see Figure 2). In particular,
let (xF , yF ) be a fixation point defined using pixel indices in
input image Q , and let E be an image extent value (defined
in terms of number of pixels). Then, for perceptual image P
of size m×m, each pixel pij in column i and row j of P is
populated with values from Q according to:

pij = f

([
xF −

E

2
+

i

m
E

]
,

[
yF −

E

2
+

j

m
E

])
(1)

Using the fixation point (xF , yF ) and image extent E
to specify what is essentially R2’s gaze direction is anal-
ogous to a person’s top-down visual attention. In people,
visual attention is directed by a combination of top-down,
i.e., task-driven, and bottom-up, i.e., salience-driven, fac-
tors (Buschman and Miller 2007). R2 does not currently use
an explicit model of visual salience (Itti, Koch, and Niebur
1998; Bruce and Tsotsos 2006), though one will be added in
future work. Salience effects are currently modeled as part
of R2’s test-specific problem solving routines.

Running example: During the course of solving the RPM
example problem in Figure 1a, R2 would shift its gaze to
“look at” various regions within the 3x3 problem matrix as
well as the various answer choices. Each gaze shift would
be commanded by the problem solving routine.
Visual memory buffer M . People can remember visual in-
formation in many different ways. R2 models just one of
these: storing visual information in the form of visual men-
tal images. R2 has a visual memory buffer M that can store
a finite number of mental images Mi. Each mental image

Figure 3: Examples of imagery operators in T .

Mi is a data structure of the same format as R2’s percep-
tual image P but which can contain visual information that
is different from what is currently being received through P .
A mental image Mi can be created from information in P or
from information in another mental image Mj , or from com-
binations of the two using the imagery operators in T . Infor-
mation in M can be populated, manipulated, or accessed at
any time by R2’s problem solving routines.

Running example: While solving the RPM example prob-
lem in Figure 1a, R2 might store a mental image M1 of one
matrix entry, then shift its gaze to another entry to store a
second mental image M2, and then compare the two us-
ing an imagery operator to obtain a third mental image M3.
These kinds of imagery operations can be used to solve
many RPM problems (Kunda, McGreggor, and Goel 2013).
Imagery operators T . R2 constructs and transforms mental
images in M using a set of imagery operators T . T contains
several individual operators Ti, where each Ti is a function
that takes one or more images as input and returns a new
image as output. R2 uses its imagery operators to create
new mental images using combinations of existing mental
images in M . Examples of operators in T are illustrated in
Figure 3.

Running example: During the course of solving the RPM
example problem in Figure 1a, R2 might use a visual sub-
traction operator to compare the middle-left matrix entry to
the top-left matrix entry.
Spatial memory buffer S. Just as people have different
working memory buffers for visual and spatial information
(Baddeley 2003), R2’s spatial memory buffer S stores a list
of references to individual location coordinates (Sxi, Syi)
in the test problem image Q.

Running example: While solving the RPM example prob-
lem in Figure 1a, the spatial memory buffer might be used to
store the locations of answer choices previously considered
but discarded by the current problem solving routine.
Problem solving routines. For each visuospatial cognitive
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test in its repertoire, R2 contains one or more test-specific
problem solving routines. These routines access other R2
data structures and operators to solve test problems.

Running example: Problem solving routines for the RPM
follow two different high-level strategies, based on research
in humans (Bethell-Fox, Lohman, and Snow 1984). In one
approach, called constructive matching, people first inspect
the problem matrix, mentally construct an image as their
candidate answer, and then find the matching answer choice.
In the second approach, called response elimination, people
first look at the answer choices and mentally plug each one
into the matrix, and then choose the answer that fits best.

Additional variants include, for example, looking at rows
vs. columns vs. diagonals, taking additional steps to confirm
an answer after the initial guess, or even retaining informa-
tion about which strategy seemed to be most successful from
one problem to the next, (i.e., inter-problem learning).
Action operators C. R2’s action operators C can be used
by R2’s problem solving routines as needed. One important
action in C is R2’s selection of a final answer. Some tests,
like the Block Design Test, involve additional actions such
as manipulating blocks or other physical objects. R2 takes
manual actions using test-specific operators that alter the test
problem image Q.

For example, while solving a Block Design test problem,
R2 has access to action operators Ci that can “move” a block
from one location in the “tabletop” problem image Q to a
new location, or rotate a block in place. Each action operator
Ci generates a new image Q∗ that represents the new state
of the “tabletop” after the action has been performed.

To take another example, while solving an Embedded Fig-
ures test problem, R2 has access to an action operator Ci that
“traces” an outline of its proposed answer onto the original
test problem image Q, generating a new image Q∗ that also
serves as its answer A.
Output: Answer A. The output of R2 is its answer A to the
given problem Q, or a null value if R2 is unable to produce
an answer. The format of A is test-specific.

Discussion and Future Work
Results from computational experiments using R2 variants
on several different visuospatial cognitive tests have been
published elsewhere, for the Raven’s Progressive Matrices
test (Kunda, McGreggor, and Goel 2013), the Embedded
Figures test (Kunda and Ting 2016), the Block Design test
(Kunda, El Banani, and Rehg 2016), and the Paper Folding
test (Ainooson and Kunda 2017).

Other work in progress includes investigating: 1) the use
of R2 to better interpret human behaviors on cognitive tests
(Kunda et al. 2016); 2) how R2 can be adapted to address
the real-world task of human visual data exploration, i.e.,
how humans may use visual mental imagery to support the
construction of conceptual narratives from multiple visual
views of large datasets (Eliott, Stassun, and Kunda 2017);
and 3) computational learning mechanisms to support the
automated acquisition of R2 knowledge, in particular knowl-
edge of visual imagery operators as shown in Figure 3, by
watching real-world object transformations (Mel 1986).

The overall R2 research effort has a central goal of elu-
cidating the computational building blocks of visual mental
imagery and understanding how these building blocks can
be composed (either in humans or by AI systems) to produce
intelligent behavior. R2 is still in early stages, and there are
many important aspects of visual mental imagery that have
not yet been incorporated into the architecture, such as how
mental images are collapsed into and then retrieved from
long-term memory, which is still also an open question in
human mental imagery.

Ultimately, it is the hope of the author that R2 research can
be integrated with other, e.g., propositional, approaches to
intelligence in computational architectures, in order to more
fully capture the myriad cognitive processes that contribute
to human intelligence, and to improve the state of the art
in AI systems that achieve human-level and/or human-like
performance on complex and difficult tasks.

R2 may also help us to better understand neurodiversity in
people. For example, many individuals on the autism spec-
trum, like Temple Grandin (Grandin 2008) and others (Hurl-
burt, Happe, and Frith 1994), have expressed a preference
for or bias towards thinking using visual mental imagery, as
compared to neurotypical individuals, and recent research in
neuropsychology has also identified individuals with aphan-
tasia who experience little-to-no mental imagery (Zeman,
Dewar, and Della Sala 2015). Better understanding qualita-
tive variations of human intelligence, in its many different
neurodiverse manifestations, not only has the potential to
profoundly affect how we measure and conceptualize human
cognitive abilities but also will help inform the design of
improved, evidence-based practices for helping people with
atypical cognitive conditions achieve positive outcomes in
education, employment, and more.
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