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Abstract

What are the cognitive processes in play when someone uses a
visualization tool to interactively explore a new dataset? Here,
we focus on one particular type of visualization—the scatter
plot—which, despite (or perhaps because of) its simplicity, is
still one of the most frequently used plot types in many data-
intensive disciplines. We conducted a pilot study to investigate
how expert astronomers interact with an unfamiliar dataset us-
ing a visualization tool called Filtergraph, which supports rapid
and easy visualization of large datasets. We present both quali-
tative and quantitative results, including observations about the
temporal dynamics of visual data exploration as well as inter-
esting behavioral patterns that we saw in our participants, such
as users taking “circular walks” through the data at various lev-
els of abstraction.
Keywords: Data exploration; graph understanding; informa-
tion visualization; scatter plots; visualization software.

Introduction
When astronomer Henry Norris Russell first introduced the
now-called Hertzsprung-Russell (H-R) diagram, he wrote,
“The appearance of [the figure] suggests the hypothesis that,
if we could put on it some thousands of stars, instead of the
300 now available, ...we would find the points representing
them clustered principally close to two lines, one descending
sharply along the diagonal...the other ...running almost hor-
izontally. ...These two classes of stars were first noticed by
Hertzsprung, who has applied to them the excellent names of
giant and dwarf stars” (Russell, 1914, p. 287).

In addition to Russell’s obvious desire for more data, his
wonderfully vivid description conveys the fundamentally vi-

sual nature of this discovery. Indeed, the H-R diagram has
been called “perhaps the most spectacularly successful exam-
ple of a simple scatterplot” in all of science (Spence & Gar-
rison, 1993, p. 1). Today, like many disciplines, astronomy
enjoys volumes of data that Russell could only have imag-
ined. However, an astronomer’s expertise to make sense out
of data—to recognize which patterns represent actual scien-
tific discovery—remains as vital today as it was in 1914.

Most human sense-making with data involves a visually-
mediated interaction between the data and the percep-
tual/cognitive processes of the user—data visualization. Data
visualization can be as short and simple as glancing at a print-
out of a plot on paper, or as lengthy and complex as spending
months analyzing and modeling a large dataset. There is an
increasing need for interactive data visualization tools that not
only leverage the latest in pattern recognition and data min-
ing algorithms, but also place the cognitive needs of the user

front and center—to assist and augment human capabilities in
the discovery process (Honavar, Hill, & Yelick, 2016).

One vital role for data visualization is the open-ended,
open-minded exploration of data that leads to unexpected in-
sight, often manifested at first as a “striking” or “interesting”
multivariate plot, such as with the H-R diagram. To take a
more recent example, an astronomy research team at Van-
derbilt University developed a visualization tool called Fil-
tergraph (see Figure 1) designed to allow people to rapidly
and easily explore large datasets of up to a few million points
(Burger et al., 2013). Using the Filtergraph software to visu-
alize stellar variability data gathered by the Kepler spacecraft
resulted in an unexpected and “visually interesting” scatter-
plot, which in turn led to the discovery of stellar granulation
“flicker” and its utility for stellar and exoplanets research,
a significant finding that was published in Nature (Bastien,
Stassun, Basri, & Pepper, 2013).

Figure 1: A screenshot of the Filtergraph data visualization
interface (Burger et al., 2013), and also the initial view shown
to participants in our pilot study.

Here, we report our preliminary results on a pilot study
to investigate how expert astronomers interact with an un-
familiar dataset using scatterplots generated by Filtergraph.
We use a novel analysis approach that is different from, but
complementary to, existing methods that focus on measuring
actions or tasks conducted by the data analyst. Instead, our
approach measures interactions in terms of dataset attributes:
which variables from a large dataset does an analyst look at,
when, and why? We present both qualitative and quantita-
tive results from this study, including observations about the
temporal dynamics of visual data exploration as well as in-
teresting behavioral patterns that we saw in our participants,
such as users taking “circular walks” through the data at var-
ious levels of abstraction.
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Related Work
There is a rich foundation of work in HCI (Human Computer
Interaction), visual analytics, and infovis that aims to under-
stand the processes by which people interact with and under-
stand data. Sanderson and Fisher (1994) present a widely-
used, general framework for thinking about user interactions
with an interactive tool in terms of sequences of actions that
represent different user functions, such as connecting ideas or
introducing comments.

Specifically in relation to data visualization, Yi and col-
leagues (2007) identify seven modes of interaction with visu-
alization tools, such as select, explore, and filter, that they be-
lieve are important for understanding the visual sense-making
process. Brehmer and Munzner (2013) present a task typol-
ogy that bridges low-level interactions with high level tasks
and goals during visualization activities. Pirolli and Card
(2005) present a detailed cognitive task analysis of visual
sensemaking in the domain of intelligence analysis. ElTayeby
and Dou (2016) present methods for studying exploratory
data visualization that leverage the automated analysis of
rich, quantitative interaction log data to identify and under-
stand underlying patterns of interaction.

Saraiva and colleagues (2005) conducted a very interesting
pilot study specifically focused on open-ended, exploratory
data analysis in the domain of bioinformatics. They focus on
how a visualization tool can complement a dataset in order to
facilitate insights that may lead to a discovery. One impor-
tant issue they addressed was how to define and measure in-

sight. They defined insight based on the context of their work
as well as based on characteristics such as time, hypotheses,
correctness, and category. Their results show the influence
of the visualization tool itself over the processes of human
interpretation and insight.

Mayr and colleagues (2016) looked at how mental mod-
els parallel a user’s use of external visualization tools. They
identify key characteristics pertaining to mental models, such
as content, structure, coherence, perspectivity, generalizabil-
ity, and utility, and they review existing empirical methods
for conducting user studies to get at these characteristics.

Finally, there is important work being done to understand
data visualization and sensemaking in terms of core cog-
nitive capabilities that people bring to bear on such tasks.
Healey and Enns (2012) provide a research survey on cogni-
tive theories of attention and perceptual processing as appli-
cable to data visualization. They provide examples of factors
that drive visual attention (such as visual feature hierarchies,
memory, and prediction) and also factors that impair atten-
tion, such as what happens during change blindness, with ob-
servations about how improperly designed visualizations can
significantly impact a user’s mental models of the data.

Tversky (2003) reflects about humans, actions, and space,
emphasizing the importance of differences in how people rep-
resent space across different spatial reference frames (e.g., in
a navigation task versus a graphical understanding task). She
includes discussion of the spatial references frames people

use while processing external visualizations of information.

Methods
We conducted a pilot study to investigate how expert as-
tronomers interact with an unfamiliar dataset using the Fil-
tergraph visualization tool shown in Figure 1. We chose the
domain of astronomy as being representative of today’s data-
intensive disciplines. In designing our study, we wanted to
choose a data exploration task that was open-ended enough
to provide a realistic challenge to our participants, but also
that had at least some constraints so that we could analyze
meaningful differences across participants. We decided to in-
vite astronomers to our lab to participate in one-hour sessions,
during which they would be instructed to “explore” an astron-
omy dataset that they had not previously seen. All necessary
IRB approvals were obtained prior to the study.

Dataset. We chose a dataset that we believed would not re-
quire complex mathematical operations to make sense of, and
also that would not be from too specialized a subfield within
astronomy. The dataset we chose is described in Berlind
et al. (2006) and contains data describing 90,893 galaxies,
which are individually discriminated through 10 attributes
(including the galaxy ID), or group separated through 9 at-
tributes (including the group ID), as shown in Table 1.

Table 1: The 19 attributes in the galaxy dataset used for our
pilot study (Berlind et al., 2006), along with letter codes used
throughout this paper. The last two shaded items represent
arithmetic combination of attributes that we observed partici-
pants construct on the fly during the study sessions.

Study protocol. We recruited 7 graduate students in as-
tronomy from the Vanderbilt community, ranging in age from
23 to 28 years old, with 2 identifying their gender as female,
4 as male, and 1 as two-spirited. We ran participants in five
sessions: two sessions (S1 and S4) each involved two par-
ticipants conducting data exploration collaboratively, and the
other three sessions (S2, S3, and S5) each involved a single
participant. Note that as part of our pilot study design, we
decided to include both individual and collaborative sessions
to better inform our approaches for future studies.

Participants received gift cards as compensation for their
time. Each session proceeded as follows. First, the partici-
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pant(s) filled out a short demographic questionnaire. Then,
we asked participants to sit down at a computer workstation
and use Filtergraph to visualize and explore the galaxy data
set. We provided a printout listing all dataset attributes and
their semantic descriptions. A member of our study team
sat with participants during the session, asking open-ended
questions to better understand how the interaction was un-
folding. At the end of the session, participants were asked to
write down their own impressions about the study, and ideas
about what software, tools, catalogs, or other data-related af-
fordances would make their life as an astronomer easier.

Table 2: Session details from our pilot study. M gives the
number of major observations in each session, and N gives
the number of minor observations.

Filtergraph settings. To constrain the visualizations used
by participants, we asked participants not to change the Fil-
tergraph setting that selects scatterplots as the visualization
type. Within the scatterplot setting, Filtergraph offers many
interactive options for changing how the dataset is visualized.
The attributes assigned to X and Y axes can be changed, and
a Z axis attribute can optionally be added. Attributes can also
be assigned to the color dimension or used to select or fil-
ter out portions of the data. Anywhere individual attributes
are used, arbitrary mathematical transformations or combina-
tions of attributes can also be assigned. Additionally, there
are options for changing the background plot color as well as
the size and shape of data points. When the Z axis is in use,
there are options to rotate the plot or change its scale.

All the sessions started from the same home screen, shown
in Figure 1, with the X-axis set to attribute A, the Y-axis set
to attribute B, and the color set to attribute C (see Table 1).

One concern we had was that participants might get bored
or fatigued during the session and generate plots only to fill
the time, and not through genuine interest and curiosity in
exploring the dataset. Thus, the member of our team who
sat with participants tried to be friendly and engaging, to help
create a positive session environment. (Note that this member
of our team comes from a computer science background, not
astronomy, and so we do not believe this “social” aspect of the
study sessions introduced significant biases in which parts of
the dataset the participants would choose to focus on.)

In addition, after 45 minutes, the participants were in-
formed that they could finish their current activity and end
the session, if they wanted to, or they could continue to work
for as long as they chose. As it turns out, all of our partici-
pants chose to stay past the 45 minute mark, with a minimum
session duration of about 48 minutes and a maximum dura-

tion of about 73 minutes; see Table 2.
Analysis approach. We gathered data using a combina-

tion of note-taking by study personnel, paper forms, and in-
teraction data collected on the computer workstation through
screen recordings of each session. To analyze results, we de-
fined the concepts of major observations and minor observa-

tions of the dataset, as illustrated in Figures 2 and 3.
Definition: A major observation is a grouping of contigu-

ously viewed scatterplots within which the attributes assigned
to X and Y axes remain constant. When a user changes the
attribute assigned to either the X or Y axis (or both), a new
major observation begins.

Definition: A minor observation is a grouping of contigu-
ously viewed scatterplots that occurs during a major obser-
vation, within which one or more individual, highly related
scatterplots are viewed. For example, looking at a 3D scatter-
plot but rotating the plot to see many different views would
constitute a single minor observation of the data.

We used screen recordings to identify major and minor ob-
servations within each session. We did not count plots that
were generated in the course of defining a single set of plot-
ting parameters (i.e., because Filtergraph redraws plots nearly
instantly, while the user might still be typing). Also, some-
times participants assigned the exact same parameters to the
current plot, not actually changing the plot at all. We did not
count these immediately repeated plots either. Finally, for
continuously changing plots, which we saw especially when
participants were smoothly rotating or moving 3D plots, we
only counted the first and last views as separate plots within
the same minor observation.

Exclusions. During session S2, an attribute was plotted
by mistake; the participant had intended to plot a different
attribute instead and only discovered their mistake after 12
minutes. We do not include these “mistake” plots in our cur-
rent analysis, though certainly these kinds of mistakes will
be considered in future work. In addition, session S5 was
qualitatively very different from Sessions S1 through S4. In
session S5, the participant appeared to pay very little atten-
tion to the semantics of the attributes that were being plotted
(even when prompted to consider attribute meanings by our
study team member). This participant declared to be select-
ing attributes randomly, and engaging in a primarily percep-
tual exploration of the dataset. While we find this pattern of
interaction in session S5 extremely interesting, we felt that
a different approach would be needed to analyze these data,
and so we have left the analysis of session S5 for future work.

Results and Discussion
Here, we discuss preliminary results from our pilot study.
While there is certainly work to be done in analyzing the
specific, astronomy-related meanings of participants’ data vi-
sualization choices, including a detailed criterial analysis on
their mental models (Mayr et al., 2016), that type of anal-
ysis falls outside the scope of the current paper and will be
part of future work. For now, we focus on describing the
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Figure 2: For session S1, plots showing the first minor observation for each of the 12 major observations.

Figure 3: For session S2, in chronological order, from left to right: plots showing the 28 minor observations within the fourth
major observation. Note the “circular walk”: the yellow, red, and blue boundaries indicate 3 different plots that were each
observed twice. The six plots with a black background are unclear due to the small number of plotted points.

Figure 4: Number of major observations generated during each session for different combinations of attributes.

general behavioral patterns of data visualization that we ob-
served, including the temporal dynamics of participant inter-
actions with the Filtergraph tool. Table 2 gives details of the
five sessions that we ran for this study.

Distribution of major observations by attribute. Con-
sider the 17 data attributes contained in the galaxy dataset
(see Table 1). Note that two of the original 19 attributes are ID
numbers, for galaxies and groups of galaxies, and so do not
capture “meaningful” in the same sense as the other 17. The
number of possible major observations that could be made
from this data, i.e., possible assignments of attributes to X
and Y axes, is (17 choose 2) = 272 possibilities. If we allow
mathematical transformations or combinations of attributes,
then the number of possible major observations is infinite.

Across all sessions, participants viewed a total of only 38
distinct major observations, as shown in Figure 4. This figure
also shows which attributes participants assigned to either the

X or Y axes. Interestingly, only 4 major observations were
shared by two or more sessions; this shows the high variabil-
ity in data exploration paths taken by different individuals.

Attribute I was the only one never assigned to either the
X or Y axes. It turns out that this attribute is Boolean; it
indicates whether the galaxy is the brightest in its group, and
so it makes sense to not be chosen for one of the primary axes.
Attributes P (a measure of galaxy morphology) and Q (was
there a problem while measuring the galaxy) are the other two
categorical variables in the dataset; interestingly, these were
assigned to axes at various times during one of the sessions.

The BC combination was the only major observation
shared across all four sessions. B gives the longitude of the
galaxy group center, and C gives the latitude. So, plotting the
BC combination produces what is essentially a spatial “map”
of the galaxies represented in the dataset.

Temporal dynamics of data exploration. We are partic-
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Figure 5: Distribution of major and minor observations over time, for sessions S1 (top) through S4 (bottom). Each point
indicates a group of highly related individual plots (or, for example, a single continuous rotation of the same 3D plot). Major
observations repeated within or across sessions are marked by colored labels.

ularly interested in understanding the temporal dynamics of
open-ended data exploration. How frequently do our partici-
pants switch from one major or minor observation to the next?

Figure 5 illustrates the temporal distributions of major and
minor observations for all four sessions. By looking at the
blue dots in this figure, we can see the most active periods,
the ones in which many plots were quickly generated. We
can also see periods in which a single minor observation was
studied at some length. (Note also that the large gap early
in session S2 is due to data we omitted, as described earlier.)
The first point of interest is that participants generally chose
to “flip through” the dataset at a fairly brisk pace. Part of this
could, of course, be due to the participants knowing they had
only one hour to complete the study, but we expect the same
to hold in more naturalistic settings as well.

The average duration of minor observations was about 61
seconds, though this distribution has a long tail that falls off
fairly consistently and extends to the longest minor obser-
vations at around 554 seconds. For major observations, the
average duration was about 229 seconds, with a maximum
of about 1046 seconds. The durations of major observations
seem to show a bimodal tendency, with many major obser-
vations falling under the 150 second mark, but another large
grouping lying in the 150-400 second range.

Interestingly, participants often returned to the same ma-
jor observation within the same session. This pattern occurs

not at all in session S2, occasionally in session S1, and quite
a lot in sessions S3 and S4. In sessions S2 and S4, we saw
similar “circular walk” patterns within some of the major ob-
servations; the participant often returned to the same minor
observation that they had started with, before moving on to
the next minor or major observation. Figure 3 depicts an ex-
ample of a “circular walk” within session S2.

Within each major observation, it seems as though partici-
pants are directing a type of “movement” from the first to the
last plot (depicted via minor observations); a story is being
told through the movement of data points across the plots.
This notion of movement/story strongly brings to mind the
idea of flipbooks. For instance, Figure 3 shows a story re-
garding the relationship between the attributes F and E.

Other qualitative observations. To conclude our presen-
tation of preliminary results, we present a few high-level ob-
servations about patterns of data exploration in our study.

Starting point: Participants seemed to choose a starting
point to anchor themselves in relation to the dataset. Ses-
sions S1 and S2 began by plotting attributes that involve the
spatial position of galaxies, perhaps to let participants estab-
lish a mental map of the spatial layout of the galaxy dataset.
Sessions S3 and S4 began by looking at attributes like the
number of galaxies in each group and the velocity with which
each group is moving away from us, perhaps establishing an
egocentric reference frame of “us versus the galaxies.”
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Mouse gestures: Participants frequently used the mouse as
a communicative or attention-focusing tool, i.e., to gesture at
the visualizations. While some of these were directed at our
study team member who was observing the session, many of
these mouse gestures also occurred when participants were
interacting with Filtergraph and thinking about what to do
next. Sessions S1 and S2 exhibited many more mouse ges-
tures than did sessions S3 and S4.

Paper aids: Participants in sessions S1 and S2 relied heav-
ily on the paper printout of attribute details throughout the
sessions. Participants in S3 and S4, on the other hand, used
the printout at the start, but, during the interaction itself, re-
lied more on the list of attributes provided by Filtergraph.

Collaboration/leadership: In both of the sessions with two
participants, we observed that one of the participants seemed
to lead the exploratory line of thought. But note that leading

does not necessarily means commanding the mouse and di-
rectly interacting with the workstation. In one session, the
“thought” leader was also the one interacting with Filter-
graph, but in the other session, the “thought” leader was not
the primary tool interaction person.

Collaboration/corrections: We observed that, in the ses-
sions with two participants, one helped the other to quickly
correct mistakenly plotted attributes. In contrast, during ses-
sion S2 (which involved a single participant), an attribute was
plotted by mistake and not discovered for 12 minutes.

Conclusion and Future Directions
Our findings highlight a few interesting properties of how
domain experts explore an unfamiliar dataset, particularly
in terms of temporal and dimensional patterns. The next
challenge is to understand how, as people follow exploratory
paths through a dataset, they build meaningful cognitive rep-
resentations of what they see, and how they are able to iden-
tify encounters with unexpected, significant data patterns.

We anticipate that temporal patterns are especially impor-
tant from a cognitive perspective because they describe not
just moment-to-moment attentional switches but also serve
as a way of marking successive stages at which a person’s
mental model of a dataset is likely changing. Five minutes
spent looking at a single plot, versus five minutes spent “flip-
ping” through multiple plots, are both likely to be equally
important modes of exploration. The key is figuring out the
cognitive purpose served by each.

We are also intrigued by the frequency of “circular walks”
in the exploratory paths taken by our participants. Viewing
the same plot twice serves no obvious purpose from a purely
statistical or data mining perspective. However, in humans,
we predict that these “circular walks” actually serve key roles
related to memory, attention, salience, etc.
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