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Abstract

We are currently in the process of designing and implement-
ing a computational cognitive system that combines percep-
tion, memory, attention, and domain-specific semantic knowl-
edge to perform data visualization tasks. While this work is
still in early stages, we report here on one subset of this larger
project that involves building a “visual long term memory” for
the system. To constrain the problem, we assume a domain
of astronomy, and we focus exclusively on scatterplot visual-
izations. In this paper, we present three of our initial steps
along this path. First, we collected and analyzed a catalog of
74 scatterplots from real astronomy sources (papers, books,
etc.), which we consider to be typical data visualizations that
astronomers would frequently encounter during their educa-
tion. Second, we asked a team of human raters to rate all
74 scatterplots along nine dimensions describing shape cate-
gories, taken from a computational approach originally sug-
gested by John and Paul Tukey called scagnostics. Third, we
calculated computer-based scagnostics for a subset of the scat-
terplots. We measured inter-rater agreements among the hu-
man raters and between the calculated and human ratings.
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Introduction

As observational astronomy, among other research fields, has
encountered increasingly large datasets, rigorous analysis by
experts has become increasingly time-consuming and diffi-
cult (Abello, Pardalos, & Resende, 2013). Computational
tools including interactive visualization software (Burger et
al., 2013) and other cognitive supports (Honavar, Hill, &
Yelick, 2016) are in high demand to address the need to vi-
sualize large, multivariate datasets and aid researchers in iso-
lating plots or other data views of interest. Crucial to the
design of such systems is a rigorous understanding of the hu-
man cognitive processes that are at work during different data
visualization tasks, from exploration to interpretation.

One of the big-picture research questions that drives our
work is: What is the role played by memory in data visual-
ization and interpretation? Many studies look at immediate
perceptual properties of visualizations, but the field of infor-
mation visualization as a whole emphasizes that data visual-
ization is an interactive process that unfolds over time. Within
the context of a single data visualization episode, studies have
looked at systems that provide histories or bookmarks to pre-
viously seen plots, to aid the human user in remembering their
prior interactions later in the episode (Callahan et al., 2006).

In addition to this kind of within-episode short term mem-
ory, long-term memory must also play crucial roles in data
visualization. For example, a scientist’s semantic and mathe-
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matical knowledge will heavily influence their interpretation
of a particular visualization.

We hypothesize that long-term visual memory also plays
an important role in data visualization. When scientists learn
their domain, they often learn about important data relation-
ships by looking at figures. To what extent do the visual prop-
erties of these figures stay with scientists later in their career?
Not all figures are likely to be remembered in perfect detail,
but probably every economist can quickly draw the same sup-
ply and demand curves, and probably every astronomer can
produce a rough sketch of the Hertzsprung-Russell diagram.
If an astronomer is later looking at any other plot of spectral
star classifications, might it be that they are not only perform-
ing semantic comparisons but also visual comparisons?

Studying these kinds of questions in people is a tall order.
Another approach is to try to build computational models that
enact similar types of memory, reasoning, and visualization
processes. Such models can then be studied to learn more
about the task of data visualization itself and about what kinds
of representations and reasoning processes might be sufficient
for supporting certain levels or kinds of performance.

We are currently in the process of designing and imple-
menting a computational cognitive system that combines per-
ception, memory, attention, and domain-specific semantic
knowledge to perform data visualization tasks. While this
work is still in early stages, we report here on one subset
of this larger project that involves building a “visual long
term memory” for the system. To constrain the problem,
we assume a domain of astronomy, and we focus exclusively
on scatterplot visualizations which, while a relatively simple
form of visualization, are still very widely used in virtually
all data-related domains.

In essence, we want our cognitive system to have access
to “visual memories” of many of the same scatterplots that
human astronomers might remember from their education.
We are also interested in how humans perceive and remem-
ber these plots, e.g., which plot properties are remembered,
which might be forgotten or even mis-remembered, etc.

In this paper, we present three of our initial steps along this
path. First, we collected and analyzed a catalog of 74 scat-
terplots from real astronomy sources (papers, books, etc.),
which we consider to be typical data visualizations that as-
tronomers would frequently encounter during their education.
Second, we asked a team of human raters to rate all 74 scat-
terplots along nine dimensions describing shape categories,
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Figure 1: Number of variables represented in each scatterplot by publication year of source. Two variables correspond to each
axis, and additional variables are represented by extra axes, color scales, text labels, and point-glyph sizes and shapes.

taken from an computational approach for obtaining scatter-
plot quality metrics originally suggested by John and Paul
Tukey called scagnostics (Wilkinson, Anand, & Grossman,
2005). Third, we calculated computer-based scagnostics for a
subset of the scatterplots. We then measured inter-rater agree-
ments among the human raters and between the calculated
and human ratings.

Related Work

Several studies have categorized and provided guidelines
for implementing various scatterplot visualization techniques
(Etemadpour, Linsen, Paiva, Crick, & Forbes, 2015; Sarikaya
& Gleicher, 2018). These techniques address certain vi-
sualization goals guiding the presentation of large, multi-
variate datasets on traditional 2D or 3D scatterplots. Other
studies have examined differences between human visual
impressions of scatterplots according to scagnostics shape
categories and computed scagnostics (Lehmann, Hundt, &
Theisel, 2015; Sedlmair & Aupetit, 2015). Unlike these,
which typically focus on visualizations of real or synthetic
high-dimensional datasets, we focus on scatterplots that have
been published. Published scatterplots differ from “dataset-
generated” scatterplots because presumably someone, some-
where, has specifically adjusted the visual properties of these
scatterplots using certain visualization techniques with spe-
cific communication goals in mind. Underlying our work is
our desire to understand how people perceive, interpret, and
remember these “intentional” types of scatterplots.

Part 1: Scatterplot Dataset

This collection of scatterplots is not intended to represent a
systematic sampling of the astronomy literature, but rather a
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representative collection of the types of scatterplots that as-
tronomers are likely to find engaging and familiar. Thus, the
work we present here on these scatterplots should be consid-
ered more like a case study than a generalizable sampling.

To that end, scatterplots were sourced using two ad-hoc
methods: First, ’visually interesting’ scatterplots were so-
licited by email from faculty of the Vanderbilt University De-
partment of Physics and Astronomy. Special requests were
made for series of scatterplots which show a visual progres-
sion through a larger dataset.

Second, scatterplots within Binney and Merrifield’s defini-
tive Galactic Astronomy textbook were collected (Binney
& Merrifield, 1998). Galactic Astronomy was chosen as a
canonical textbook with which astronomers are likely to be
familiar. We collected a total of 74 scatterplots from both
collection methods.

Results

Scatterplots in the catalog range from simple bivariate scat-
terplots to complex multivariate scatterplots. Of 31 total
sources, 15 sources yielded one scatterplot each, five sources
yielded two and three scatterplots each, and two sources
yielded four, six, and seven scatterplots.

Point-glyph refers to a unique class of visual mark with
a certain size, color, shape, and fill. Thirty-four scatterplots
use one point-glyph, 17 use two different point-glyphs, six
scatterplots use three and four point-glyphs, four scatterplots
use five and six different point-glyphs, two scatterplots use
seven different point-glyphs, and one scatterplot uses fifteen
different point-glyphs.

Continuous variables are most often represented visually
with perpendicular axes, a gradient color scheme, or variable
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Figure 2: Human ratings for the 24 scatterplots in Set 1.

point-glyph size. Categorical variables are most often repre-
sented with discrete coloring schemes, different point-glyphs,
and text labels.

Figure 1 shows the distribution of number of variables rep-
resented in each scatterplot as a function of publication year.
The total height of each bar represents the total number of
scatterplots collected from publications in that year. The col-
ored sections divide the bar into the number of scatterplots
containing two variables (grey), three variables (yellow), or
four variables (blue). As we collected these scatterplots, we
wondered if scatterplots published in earlier years might have
less visual complexity than later scatterplots due to the in-
creases in ease of plotting, graphics, printing, etc. We con-
structed this figure to qualitatively inspect for this kind of
trend. Sure enough, many of the newer scatterplots have
four variables, while hardly any of the earlier scatterplots
do. (Note again that this result is specific to our scatter-
plot dataset; drawing general conclusions about scatterplots
in general, or even astronomy-specific scatterplots, would re-
quire a larger and more systematic review of published scat-
terplots.)

Part 2: Scagnostics by Human Raters

Nine undergraduate students took part in a scatterplot-rating
study. Raters received a document containing brief instruc-
tions and 24 or 25 scatterplots selected from the catalog. The
instructions included a scagnostics diagram from (Dang &
Wilkinson, 2014b), as well as the following descriptions of
each scagnostics measure:

e Outlying: Degree that a small number of points are sepa-

rated away from a dense majority of points

e Skewed: Degree that the relative density of points is devel-
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oped uniformly across the graph

Clumpy: Degree that points are gathered in condense area

with no excess points around

e Dense: Degree that points are heavily dispersed!

e Striated: Degree that points align into a low frequency
wave with parallel lines

e Convex: Degree that points form the perimeter of a circle

e Skinny: Degree that plot resembled a concise/tight convex

hyperbola

Stringy: Degree that points align to a concise wave that has

a positive slope

Monotonic: Degree that plot only increases or decreases

and is densest along that path

Note that these descriptions are quite loose, and likely do

not match the “true” computational interpretations of each

scagnostics measure. Because the raters were untrained in

visual quality measures, the ratings obtained are based on in-

terpretations of this single set of instructions and raters’ visual

perception rather than previous knowledge of scagnostics or

related quality measures. Unlike professional astronomers,

raters were unlikely to recognize any scatterplots from the

catalog, avoiding bias from previously-formed impressions.
For each scatterplot, raters were instructed to assign a rat-

ing from one to ten for each of the scagnostics measures.
The scatterplot catalog was split into three sets of scatter-

plots, with Set 1 containing 24 scatterplots and Sets 2 and 3

containing 25 scatterplots each. Sets 1 and 2 received rat-

IEight measures are consistently identified throughout scagnos-
tics publications. One other measure is identified either as Straight
(Wilkinson et al., 2005), Sparse (Wilkinson & Wills, 2008; Dang,
Anand, & Wilkinson, 2013; Dang & Wilkinson, 2014a), or Dense
(Dang & Wilkinson, 2014b) The Dense measure was chosen for this
study as the most visually indicative to human raters.



ings from four raters each, and Set 3 received ratings from
three raters. Rater 1, the experimenter who organized this
part of the study, rated all three sets of scatterplots. This
experimenter-rater was included as a practical means of ac-
quiring one individual’s rating of all 74 plots in this prelim-
inary study and would be excluded from a larger, systematic
study.
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Figure 3: Kendall’s rank correlation coefficient across ratings
given by different raters in sets 1, 2, and 3. The coefficient
was calculated over the ordered lists of each scagnostics rat-
ing given to each set of plots.

Results

To look at overall rating patterns, we first examined distribu-
tions of the ratings themselves, without regard to agreement.
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Figure 2 shows histograms with the proportions of particular
ratings (i.e., 1-10) given by different raters. We just show this
histogram for Set 1; results for Sets 2 and 3 are similar.

It is clear that absolute ratings vary greatly for each indi-
vidual. Rater 4 in particular seemed to assign primarily low
ratings, while several distributions for each of the other raters
show a roughly bimodal distribution. These strategies can be
seen in the Clumpy results for each rater. The bottom row
of Figure 2 shows that the ratings compiled from all raters
are uniformly distributed across the 1-10 scoring scale for all
scagnostics measures except for Striated and Stringy, which
show a marked preference for lower scores. This roughly
uniform rating distribution for most measures may reflect
the raters’ expectation of a full range of each measure to be
present within the set of scatterplots shown to them.

Several raters, including Rater 1, used ratings of zero
though they were not instructed to do so. These raters eval-
uated scagnostics measures on an 11-point scale rather than
the expected 10-point scale, but their unmodified results were
still considered in comparisons to other human raters and cal-
culated scores.

We then computed Kendall’s rank correlation coefficient
for ratings within each scagnostic category (Kendall, 1938),
using R (McLeod, 2011).

Here, despite the differences in absolute rating ranges, al-
most all raters showed positive agreement with one another
for each scagnostics measure, as shown in Figure 3. Notably,
raters tended to show the most disagreement in the Skewed
measure and the most agreement in the Monotonic measure.
Overall, no raters consistently agreed or disagreed with one
another across all scagnostics measures.

Part 3: Human vs. Calculated Scagnostics

Because the scatterplots in our catalog were obtained as im-
ages directly from a wide range of sources, the datasets used
to construct them were unavailable. We used the image
processing package Fiji to facilitate the generation of two-
dimensional point location values for a subset of scatterplot
images from the catalog (Schindelin et al., 2012; Rueden et
al., 2017).

Scagnostics values for these point location values were
calculated using a scagnostics package for R (Wilkinson &
Anand, 2012). The locations of point-glyphs which overlap
one another could not be determined using this method, so
the criterion for inclusion in the subset for scagnostics mea-
sure calculation was that no point-glyphs overlap. Twenty-six
scatterplots met this criterion: eight from Set 1, six from Set
2, and twelve from Set 3. Point location values were deter-
mined for all 26 plots.

Overlapping point-glyphs present a challenge to human vi-
sual analysis not captured by quality metrics calculated on
their data values. There exist methods to represent to hu-
man viewers point-glyphs which would otherwise be hidden
by overlapping, but these methods do not affect calculated
quality metrics (Mayorga & Gleicher, 2013). Comparison be-
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Figure 4: Calculated and human ratings for the 26 plots in the set of scatterplots with non-overlapping point-glyphs.

tween human-rated and calculated scagnostics values in this
study is restricted to scatterplots without overlapping point-
glyphs to avoid discrepancy in the visual information avail-
able to human raters and the data used for calculation.

The aforementioned R package calculated a value for the
Sparse scagnostics measure, the opposite of the Dense mea-
sure used for human ratings (see Footnote 1 above). Values
of the calculated scagnostics measure Sparse were subtracted
from 1 to transform them into values of the Dense measure
for comparison to human ratings. In order to directly com-
pare calculated values on the range [0,1] and human ratings
on the range [0,10], the calculated values for all measures
were multiplied by 10.

Results

As we did in Part 2, we first examined distributions of the
ratings themselves, without regard to agreement. Figure 4
shows histograms with the proportions of particular ratings
(i.e., 1-10) given by the computer-based scagnostics calcula-
tions (top), Rater 1 (middle), and over all raters (bottom), just
to give a flavor of the comparisons.
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Figure 5: Kendall’s rank correlation coefficient across calcu-
lated ratings and those of Rater 1. The coefficient was calcu-
lated over the ordered lists of each scagnostics rating given to
the set of plots for which the data was able to be digitized.
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Calculated scores were much less evenly distributed than
human ratings. While agreement between human raters and
calculated values can be seen in the Striated and Clumpy
measures, overall it appears that human ratings of scagnos-
tics measures is poorly matched by the calculated scagnos-
tics values. Nonetheless, calculated and human ratings for all
measures combined seem to agree on a skew towards lower
values.

We then computed Kendall’s rank correlation coefficient
for ratings within each scagnostic category, as before, with
results shown in Figure 5.

Positive agreement was seen overall between Rater 1 and
calculated scagnostics values. Similar to between individual
human raters, it appears agreement between the calculated
and Rater 1’s scagnostics ratings is strongest for the Mono-
tonic measure. While Rater 1 and the calculated values had
similar distributions of ratings for the Clumpy measure visi-
ble in Figure 4, it appears that it yielded the most disagree-
ment of any measure when comparing individual scatterplots.

Contributions and Next Steps

We have conducted an open-ended exploration of the visual
properties of a set of 74 published astronomy scatterplots.
Contributions of this work include:

Creation of a dataset of 74 real-world, non-synthetic scat-
terplots used in astronomy

Characterization of individual variations in the visual per-
ception of scagnostics quality measures in scatterplots
Comparison of human interpretations and calculated values
of scagnostics measures in non-synthetic astronomy scat-
terplots

This exploratory study suggests quantifiable trends in human
perception of visual qualities of real-world scatterplots which
should be considered in the development of calculated visual
quality metrics such as scagnostics.

Continued work will build on the results presented here
to investigate how the visual properties of scatterplots held
in long-term memory, as part of semantic, domain-specific
knowledge, can help a computational cognitive system per-



form data visualization tasks. Future work will address this
study’s small sample size and unsystematic plot collection
process to produce more robust, generalizable results. We
expect that in the long term, findings from this work will not
only help to uncover the cognitive processes that people use
during data visualization but also will inform the design of in-
novative interactive data visualization systems and other cog-
nitive support tools.
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