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Abstract
The paper folding task is commonly used for the evaluation of
nonverbal, spatial reasoning skills. In this paper, we present
a computational model that attempts to use visual-imagery-
based representations and operations to solve this task. The
model was tested against all problems from the standard pa-
per folding task and achieved a perfect score, illustrating that
visual-imagery-based representations and operations are suf-
ficiently expressive to capture at least one successful solution
strategy. Although the model does not closely resemble human
cognitive processing, and thus should not be considered in its
current form to be a plausible psychological model of human
task performance, the assumptions made and their implications
for our understanding of human cognition on the paper folding
task point to fruitful lines of future work towards this goal.
Keywords: artificial intelligence; cognitive assessment; paper
folding; spatial skills.

Introduction
Paper folding tasks are cognitive assessment tools used in the
evaluation of spatial, non-verbal reasoning skills. Visuospa-
tial skills in general are thought to be critical to a variety
of human endeavors, including scientific discovery (Miller,
1984), art (Arnheim, 1969), engineering (Ferguson, 1994),
computer programming (Petre & Blackwell, 1999), mathe-
matics (Giaquinto, 2007), education (Silverman, 2002), and
even feats of memory (Foer, 2011). Visuospatial skills also
seem to be areas of intact or even superior performance for
certain individuals with developmental conditions such as
autism (Soulieres et al., 2011; Kunda & Goel, 2011) and
Prader-Willi syndrome (Verdine et al., 2008).

In research on Science, Technology, Engineering and
Mathematics (STEM) education, visuospatial ability is
viewed as a key contributor to math learning (National Re-
search Council, 2009) and to pursuing degrees and careers in
STEM disciplines (Wai et al., 2009). Studies suggest that
visuospatial ability can improve with training (Uttal et al.,
2013), and that such training can enhance math performance
in children (Cheng & Mix, 2014).

Thus, there is an urgent need for effective visuospatial as-
sessments as well as training interventions to promote learn-
ing outcomes, creative discoveries, effective design work, and
more. Understanding the specific cognitive mechanisms that
underlie visuospatial ability is a critical step along this path.

Of course, studying visuospatial ability purely through ob-
servations of human behavior is challenging because many
of the underlying cognitive processes are not directly observ-
able. Even neuroimaging yields only a coarse view of the
specific information processing steps that take place as some-
one is solving a task.

Figure 1: A sample task from the VZ-2 paper folding test.
The images on the left of the vertical line depict the stages in
a fold. The images on the right of the line are possible choices
of how the paper may look when unfolded.

In this paper, we instead adopt the approach of implement-
ing a computational cognitive model that simulates solving
the task—the cognitive systems approach of artificial intelli-
gence (AI) (Thagard, 2005). Cognitive systems model how
intelligent agents combine different cognitive processes, like
learning, reasoning, and memory, to perform a task. By im-
plementing a cognitive system that simulates solving visu-
ospatial tasks, we can look “under the hood” at specific types
of information processing mechanisms that might drive visu-
ospatial ability.

In previous work, we have implemented similar models
that investigate aspects of visuospatial cognition on other
cognitive assessment tasks. Previous work on the Raven’s
Progressive Matrices intelligence test has examined the role
of visual mental representations in solving difficult test prob-
lems (Kunda et al., 2013), the contributions of different types
of imagery operators (Kunda et al., 2013), the meaning of
different patterns of errors (Kunda, Soulières, et al., 2016),
and visual mechanisms for maintaining goal-subgoal hierar-
chies (Kunda, 2015). Previous work on the Block Design task
has looked at relationships between internal mental represen-
tations and external deployments of visual attention (Kunda,
El Banani, & Rehg, 2016), and previous work on the Embed-
ded Figures task has looked at capacity limits in visuospatial
memory, in particular the effects on task performance of in-
ternal deployments of visual attention to different parts of a
visual mental representation (Kunda & Ting, 2015).

In this paper, we present initial results from a new compu-
tational model of the paper folding task. Although the model
does not closely resemble human cognitive processing, and
thus should not be considered in its current form to be a plau-
sible psychological model of human task performance, the as-
sumptions made and their implications for our understanding
of human cognition on the paper folding task point to fruitful
lines of future work towards this goal.

In particular, the model we present can be considered as
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an experiment on the sufficiency of certain imagery-based
representations and operations for solving paper folding,
which is valuable for understanding how different cognitive
mechanisms might in theory contribute to visuospatial abil-
ity in people, and especially how certain cognitive limitations
might affect task performance. Ultimately, we hope that re-
sults from this line of work will serve as a basis to suggest
routes for how such cognitive limitations might eventually be
overcome, i.e., in developing new visuospatial training inter-
ventions for use in education.

About Paper Folding Tasks
Paper folding tasks are usually presented as line-drawings of
paper cut-outs or folded pieces of paper. People are then
asked to imagine changes that happen when this paper is ma-
nipulated in different ways. Several forms of the test exist.

Shepard and Feng (1972) presented a form of the paper
folding test which required test subjects to fold a cube out of
six connected squares. Two of the squares have arrows that
point to an edge and one square is greyed out to show that it
is the base of the cube. People are then required to predict
whether the arrows align and point to the same edge when
the cube is re-constructed. This essentially requires them to
mentally reconstruct the cube by imagining folding the pa-
per as though the shape was cut-out of the paper. Lovett and
Forbus (2013) developed a computational model developed to
reason about this specific case of paper folding tasks. Their
model takes the approach of simplifying the task by removing
unnecessary details and essentially focusing primarily on the
orientation of critical edges to solve the task.

Another form of the paper folding task (which is also called
“the punched hole test”), developed by Ekstrom and col-
leagues (1976), is administered as a 6 minute pencil and paper
test in two parts (3 minutes for each part). During the test,
subjects are presented with a sequence of images showing
the stages in folding a square piece of paper. A hole is then
punched on this folded piece. Test subjects are also presented
with five possible outcomes of how the paper looks when it is
unfolded. See Figure 1 for an example of this type of prob-
lem. Designed as part of the “Kit of Factor-Referenced Cog-
nitive Tests”, this task appears as the second test under the
group of tests that evaluate the visualisation cognitive factor
(VZ-2).

A number of research studies have used paper folding to
evaluate spatial reasoning skills. While testing a hypothe-
sis on learning styles amongst individuals, Mayer and Massa
(2003) used this test as part of their measure of spatial skills.
Keehner et al. (2004) also used this test as one of their tests
of spatial ability while investigating the correlation between
spatial ability, experience and skill in laparoscopic surgery.
Another example is the study by Silvia (2008) in which the
paper folding test was used as part of a measure of fluid intel-
ligence, while investigating relationships between creativity
and intelligence.

There is much that is still unknown about the direct cogni-

tive mechanisms involved in paper folding tests. Mental ro-
tations are believed to play a major role (Shepard & Feng,
1972). In addition to the complexity of the mental rota-
tions, people may have to deal with the additional compo-
nent of mental folding (Glass et al., 2012) and in the case
of a punched hole test, how the holes affect the final output.
Wright and colleagues (2008) showed that training on mental
rotation tasks improved performance on paper folding tasks,
just as training on paper folding tasks improved mental rota-
tions.

Next, we present a computational model that attempts to
solve the paper folding task using simulated “mental rota-
tions” in “three dimensions”. The exact formulation of the
paper folding task we intend to tackle with this model is “The
Punched Hole” test (Ekstrom et al., 1976).

Figure 2: A sequence of images sent as input to the model
(blue and white), and the corresponding bitmaps that are used
by the model after inputs are processed (black and white).
The first input row corresponds to the initial “problem” part
of a paper folding item. The second input row contains the
possible choices the model is presented with.

The Model
We present a computational model that attempts to solve “The
Punched Hole” paper folding task (Ekstrom et al., 1976) us-
ing only image based operations. The model is built in the
Python programming language and relies extensively on the
Pillow fork of the Python Imaging Library (PIL) to perform
low level image manipulation.

The main task of the model is to analyze a sequence of
images that depict the folding and punching in a problem
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of the paper folding task to determine what the paper would
look like when unfolded. It achieves this by maintaining a
three dimensional representation of the paper which is stored
as a stack of two dimensional images. Each image on the
stack represents a single level of folding performed in a single
time-slice. The actual fold operations are performed with im-
age reflections that provide a simplified simulation of three-
dimensional rotations.

Input
Inputs to the model are presented in three stages. The first
stage consists of a sequence of images that represent the state
of the folded paper in each time-slice. The second stage con-
sists of a single image that represents the state of the folded
paper after the hole has been punched. Finally, the third stage
presents the possible solutions from which the model could
select an answer after it is done predicting a solution.

All the inputs are presented as line drawings with sections
that contain paper filled with pixels to ensure the model can
properly differentiate between paper and empty space. Be-
fore any images are passed on for further processing, they are
converted to single colour images. This makes it easy for the
model to perform logical bitwise operations between images.
Once converted to a single colour image, any pixel that is set
to 1 in the image is considered to be an area containing pa-
per, and pixels set to 0 are considered to be empty spaces.
See Figure 2 for a sample sequence of input images and their
corresponding bitmap representations.

Strategy
The model’s strategy for solving the tasks relies heavily on
two stacks. The first stack (which we call the image stack)
keeps track of images that represent the layers of folds. The
second stack (which we call the operations stack) keeps track
of the operations that are performed on the images as folds
occur. In predicting the solution, the model utilizes four main
operations: Initialize, Fold, Punch and Unfold.

The Initialize operation sets up the model before solving
any task. It places an image which has all its bits set to 1
on the images stack. This image is meant to represent the
initial piece of unfolded paper on which fold operations will
be performed.

The Fold operation receives as input an image of the state
of the paper after a given fold has occurred. The model will
attempt to use this image and other images on the image stack
to find the best estimation of the line along which the fold
was made. To accomplish this, the following processing steps
are performed on the bitmap representation of the fold input
image for every image on the stack, starting from the bottom:

1. The current layer to be processed is retrieved from the im-
age stack. In the case of the first fold operation, this image
has all pixels set to 1.

2. An intersection operation is performed between an inverse
of the fold input image and the image retrieved from the
stack. This operation is constrained by the bounding box

around the image that was retrieved from the stack. The
resulting image is an image of the flap to be folded, as il-
lustrated in Figure 3.

-1  
→ ∩   

=

Figure 3: Stages the images go through to generate the folded
flap image.

3. Another intersection operation is performed between the
fold input and the image retrieved from the stack. This new
image replaces the original image on the stack, as shown in
Figure 4.

∩
  
=

Figure 4: The intersection between the input image and the
existing image on the stack to generate a replacement for the
image on the stack.

4. In order to determine the line along which the fold would
occur, a single pixel border is drawn around both the folded
flap image, and the modified image on the stack. This is to
make both images larger so they can slightly overlap. An
intersection operation is computed between the two new
overlapping images to generate an image containing the
line along which the fold is to be made. A search for two
extreme coordinates of this image is then performed on the
pixels in this image. This search is biased towards the pix-
els that are from the folded flap image. Search results will
now contain the coordinates of the fold line. These coordi-
nates are then pushed onto the operations stack.

∩
  
=

Figure 5: Intersecting the new overlapping images to deter-
mine the fold line.

5. Finally, the folded flap image is reflected across the fold
line. This reflection operation is analogous to a 180◦ ro-
tation in three dimensional space about the fold line axis.
The reflected image is then pushed to the top of the stack
to act as one of the base images for any subsequent fold
operations. After a series of fold operations is performed,
each image on the stack will represent a folded layer.
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Figure 6: The final reflection operation of the fold.

Once all fold operations are completed, the Punch opera-
tion is performed. This operation takes the punch input, and
computes the intersection of this input with all the images on
the stack, replacing all the contents on the stack with the re-
sults. See Figure 7 for an image depicting all the changes
that take place on the stack for fold operations and the punch
operation.

StackInput

Figure 7: The various states of the image stack as inputs are
fed to the model.

Unfold is the next operation after the punch has been per-
formed. This operation runs through the operations stack and
performs a reverse of all operations. It works by picking the
image on top of the stack and the one below the stack. It per-
forms the reverse operation on the image on top of the stack
(which will be the folded flap).

It then performs an OR operation between the folded flap
and the base image. The new image generated after the OR
operation is placed onto a new image stack. The unfold op-
erations are recursively called on the newly generated image
stack until the stack contains a single image. This image will
represent the model’s predicted solution to the problem.

A final solution can be chosen by the model with the last
image generated after the unfold operation. A pixel by pixel
comparison is performed between the model’s prediction and
each of the possible solutions. The comparison that yields the
largest number of matching pixels is selected as the solution.

Figure 8: The various states of the image stack during the
unfold operations.

Experiments and Observations

We tested the model against all twenty items from “The
Punched Hole” test (Ekstrom et al., 1976). Input images (for
both the fold stages and answer choices) for this experiment
were taken from the original test but redrawn as “clean” ver-
sions using the Inkscape Vector Graphics editor. Redrawn
vector images were converted to raster images before being
passed to the model.

Results for the experiment were a count of the number of
items on which the model was able to select the correct an-
swer. When this experiment was performed, the model se-
lected the correct answer on all items in the test—a score of
20 out of 20.

Looking more carefully at the operation of the model, we
observed that a constant number of operations are performed
for each fold simulated. Also, the size of the stack grows
exponentially with respect to the number of folds performed.
For every n folds, there are a total of 2n items on the stack.

Interestingly, the set of problems had 1 to 3 fold levels.
This meant that the maximum stack size required for the tasks
varied from 2 (for single folds) to 8 (for triple folds). If we
take the size of the image stack to be analogous to “work-
ing memory usage” in our model, the maximum number of
items stored while solving any of the paper folding problems
is consistent with what is known about visuospatial working
memory capacity limits in people (Luck & Vogel, 1997).

Also, working in the image domain gives the model the
ability to operate on arbitrary folding tasks. To test this abil-
ity, we ran a “paper snowflake” simulation through the model
to evaluate its output. From Figure 9, we can clearly observe
that the model generated an output that corresponds to the
snowflake folds passed through it.
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Fold Sequence Cut / Punch

Unfold Sequence

Figure 9: The model’s “solution” to a paper folding problem
with arbitrary fold and punch shapes. The top row of images
show the input to the model and the bottom row of images
showt the output of the model at the various stages of unfold-
ing the snowflake.

Discussion and Future Work
One current assumption of this model has to do with the com-
parison technique used to match possible solution choices to
the predicted solution. As stated earlier, this operation is per-
formed using a pixel by pixel comparison technique, where
pixels on the predicted solution must closely match pixels on
a possible solution. For the case of our experiment, these pos-
sible solutions were carefully drawn such that holes in both
the right and wrong choices were precisely placed.

However, as we have observed in other standardized cogni-
tive assessments (Kunda et al., 2013; Kunda & Ting, 2015),
printed figures in test booklets are not always so precise at
the pixel level. (We surmise that many of these tests must
have been hand-drafted when they were first created.) On the
actual paper folding test by Ekstrom et al. (1976), many of
the positions of the punched holes are not necessarily aligned
perfectly. However, people are still able to solve these tasks,
which suggests that the model should have more robust pat-
tern recognition and processing abilities.

Our model has shown one possible set of cognitive mech-
anisms, based on visual mental images, that are sufficient for
solving the paper folding test. Other strategies undoubtedly
exist. What is more interesting, perhaps, is a consideration
of why people might fail to solve paper folding items. What
mechanism or set of mechanisms might they lack?

One possibility is working memory capacity, simulated in
our model as the size of the image stack. Clearly, limiting the
size of the stack will immediately reduce the model’s ability
to successfully solve paper folding problems. However, there
are other possibilities as well.

One idea is that people might “forget” where the fold is
on a folded up piece of mental paper, and proceed to unfold
the paper in the wrong direction. (For example, they might
interchange the folded side and the open side of a folded page,
at the moment when they are unfolding it.) This is a subtle
error that does not have to do with raw capacity but more like
a limit on attentional capability, or the accurate persistence

of information in working memory. We speculate that these
types of fold-forgetting errors may lead participants to choose
some of the distracter answer choices that are provided.

In continued work on the model, we will implement some
of these cognitive limitations to see what might lead the
model to make particular types of errors. Then, we could
compare the errors made by different configurations of the
model to the errors made by people, to see if there are sug-
gestive connections between cognitive strategy variations and
behavioral error patterns (Kunda, Soulières, et al., 2016).
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