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In support of the recent vision for humans to return to the Moon, we are studying 

decision support for planetary surface traversals. A key aspect of this investigation is the 

appropriate role allocations and balance between automation and human participation in 

the decision process. Some degree of automation is necessary during on-route replanning 

because there are many variables and models to consider within a short span of time.  Yet, 

keeping the human in the decision-making loop is critical because astronauts will be able to 

more readily adapt to change and provide flexibility in problem solving tasks under 

unexpected circumstances.  In this paper, we present a prototype path planner that allows 

human-automation interaction in the attempt to plan and optimize paths based on objective 

functions important to planetary traversals. One promising path planning visualization 

technique is based on the numerical potential field method (NPFM), which communicates to 

the user how the automation calculates least-costly paths. Our pilot experiment 

demonstrated that even with simple cost predictions for planned paths, all subjects planned 

a route within 25% of the optimal route. The results also suggest the NPFM visualization 

was particularly helpful for subjects tasked to create least-costly paths for a complex 

objective function. 

Nomenclature 

AS = Azimuth Score 

EVA = extra-vehicular activities 

LOA = levels of automation 

LOEC =  levels of equal cost 

NPFM = numerical potential field method 

PATH = Planetary Aid for Traversing Humans  

SS = Sun Score 

I. �Introduction 

n January 2004, a new set of human space exploration objectives were set forth: to return to the Moon, Mars 

and beyond
1
. Human presence on planetary surfaces will involve extra-vehicular activities (EVA) as part of the 

many surface operation activities, from construction work to scientific excursions. The types of Lunar and Martian 

EVA traversals could be diverse; for example, they could be conducted on foot or pressurized rovers, with or 

without robotic assistants, and may have multiple objectives to meet. From a cognitive decision-support perspective, 

a single traversing astronaut needs to manage navigation, physiologic- and mission-specific information, all in time-

finite situations. Planning traversals on other planetary surfaces will be a time consuming task undertaken weeks and 

months before the mission, involving many scientists who will have to solve for a feasible path while keeping within 

the constraints and achieving mission goals. Managing all this information becomes increasingly difficult when the 

task changes to real-time replanning of a traversal, i.e., the astronaut must change and select a new path within a 

finite amount of time while not violating constraints. Astronauts will have many, and often, competing goals (for 
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example, science objective versus safety constraint) for which they will have to find an acceptable satisficing 

solution. Real-time replanning computer aids will be required to support astronauts as they adapt to unfamiliar 

circumstances that accompany exploration in extreme environments. 

 In order to support replanning, we need to better understanding path planning under different types of computer 

assistance, concentrating on only one part of this larger problem: EVA carried out by humans on foot with their own 

life support system, e.g., spacesuit. In conjunction, we have assessed the Apollo missions to obtain “lessons learned” 

and develop tools that avoid repetitions of mistakes. In this paper, we discuss the need for human-computer 

collaboration for the task of path planning, the implementation of a potentially collaborative visualization into a 

prototype path planning tool, and preliminary results that test this visualization.  

II. �Background 

A. Going Beyond Apollo 

Pre-mission traversal planning for Apollo was a time-consuming task that occurred during the weeks and months 

prior to the mission. It involved the input of scientists, engineers, and astronauts to plan several traversals that would 

maximize scientific return and were feasible within the terrain and operational constraints
2
. For example, extensive 

preparation was undertaken for the field geology mission of Apollo 16. Each site and task was prioritized based on 

its relative importance to the overall scientific mission goal. Routes were established using pre-mission low-

resolution photographic images and crude topographic maps, estimating traveling times and allocating finite times to 

the scientific tasks themselves. Yet, unexpected circumstances forced replanning: “The premission plan as finalized 

shortly before launch underwent modification during the mission as the science support team evaluated revised 

times available for traverses, problems that arose during the mission, and changing geologic concepts of the area 

being investigated.”
2
 During Apollo 16, the second EVA had problems with the lunar rover vehicle’s navigation 

system as well as trafficability of the terrain.   

The second EVA conducted by Apollo 14 astronauts Alan Shepard and Edgar Mitchell also incurred problems 

that required on-route replanning. Their goal was to walk to the rim of Cone Crater, which they failed to 

accomplish
3-5

. There were multiple reasons why the EVA goal destination was abandoned. First, the astronauts had 

poor situation awareness of their location; this was caused by the combination of inadequate surface contrast, sun 

position, and the monochromatic terrain. Consequently, they fell behind in the planned schedule. In addition, the 

path they actually walked resulted in high metabolic rates and increased heart rates. The only “tool” the astronauts 

had was a handheld map where the pre-planned traversal was drawn on aerial images of the Cone Crater area. 

Ground control kept time and reviewed their heart rates, but it was up to the crew’s judgment to decide how to 

proceed with the traversal. The astronauts had to adapt to the reality of Moon exploration. They were in an 

unfamiliar environment, encumbered by bulky, life support systems, unaware of their deviations from the planned 

path, and attempting to resolve a problem where there were high costs (life threatening) for mistakes. In future 

planetary exploration, astronauts will need more than just a map; we should provide them with a decision support 

tool that will assist them during replanning of traversals. 

Previous post-hoc analysis of Apollo traversals delineated some key parameters for assessing human 

traversals
3,6

. These parameters include path distance, metabolic cost, average slope, and visibility (line of sight and 

sun contrast). In order to maximize scientific objectives while keeping within safety requirements, future traversals 

should be planned to minimize particular objective functions, be it a single or a combination of the parameters 

previously listed. Each objective function must be modeled and incorporated into any planning or replanning tools. 

Our research focus is to understand how humans try to optimize these functions using computer assistance and 

different levels of automation.  

B. Automation for Knowledge-Based Reasoning 

 Planning EVA is a task with a large problem space that includes surface models, physiological models, life 

support constraints, and other operational constraints. For on-route replanning, all these models and constraints must 

be integrated quickly as human space exploration is a high-risk and time-critical domain. Additionally, as astronauts 

spend more time away from Earth and with larger communication time delays (like on Mars), they will further rely 

on their own tools and less on Earth ground control. For these reasons, automated decision support tools will be 

integral for planning and replanning EVA on planetary surfaces, as this is a large problem space and too complex to 

be solved simply by hand. 

 While automation is a necessary component, three decades of research since Apollo demonstrated the potential 

effects of automation dependence on human task performance. When automation fails to work as expected, there is 

an increased chance for errors of omission and commission
7,8

 and a decrease in automation trust
9
. Even when 
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automation functions correctly, there is the risk of inappropriate knowledge acquisition
10

, inability to maintain mode 

awareness
11

, lack of situation awareness
12,13

, and skill degradation
14

. Many of these effects stem from over-reliance 

on the automation
15-17

. In order to keep both the automation and humans in the decision making process, these 

effects need to be mitigated. 

 One method for mitigating these effects is to properly balance the role of humans and automation, tailored to the 

specific task; suitable human-automation functional allocation is essential to this balance. Levels of automation 

(LOA) is a broad classification that describes different types of functional allocation within the decision process. 

There are several proposed lists of LOA
13,18-20

; the most referenced
19

 is listed in Table 1. On one extreme, the human 

makes all the decisions and actions, and in another, the automation decides and acts; a middle ground between 

humans and automation constitutes collaboration. While open to interpretation, we propose collaboration falls 

generally under level 3. Although LOA provides a framework for discussing different types of functional 

allocations, the question still remains: what is the proper level of automation that will accomplish the selected task?  

Furthermore, how can we leverage collaborative strategies? 

 The proper LOA is not obvious, and past replanning studies
21

 within the aeronautics domain have argued for 

varied levels of automation (see Ref. 21 for review). Over-reliance and selection of sub-optimal solutions was 

shown for a replanning task that implemented LOA 4
15

, yet some researchers were willing to overlook this under the 

additional constraint of time-pressure
22,23

. Moreover, some researchers do not advocate implementations of LOA 5 

(and greater) for automated decision plans within high-risk domains
24

. For the task of traversal planning, the answer 

may lie in permitting users to collaborate with a path planning tool, making sure knowledge-based reasoning
25

 is 

accommodated. Knowledge-based reasoning is the ability to make decisions under novel and uncertain situations 

that are not based on a predetermined set of rules, but rather adapting past experiences and judgment to solve a 

problem. 

 We propose that LOA 3 approximates what could be collaboration, though this definition falls short of all the 

factors that affect the level of collaboration between the human and automation. Collaboration can occur between 

two or more agents, a combination of people, computers, and/or robots. During collaboration, this group works 

together to achieve a shared goal
26

, sharing intellectual efforts. Collaboration specifically between a human and a 

computer should exploit the strengths of both humans and automation in order to accomplish a task. Take, for 

example, the task astronauts face when on another planetary surface: adapting a pre-determined solution to an 

unexpected change within the large problem space. In these circumstances, it is important to keep the human “in-

the-loop” during the decision process, as their inductive reasoning is essential to complement automation’s potential 

inflexibility in handling unexpected scenarios.  

 One of the key aspects of our research has been to keep the human-in-the-loop through interactivity, and to help 

the user understand how the automation determines the best path. For our prototype path replanning computer aid, 

this was achieved by creating a visualization of the algorithm utilized in calculating a path. We in effect narrow the 

possible optimal paths for the user – mapping directly to LOA 3. It is important though to point out that the intent of 

the visualization is to both assist the user in making the correct paths and keep the user informed of how the 

automation is working. It is this type information communication that factors into collaboration. 

Table 1. Levels of Automation  

Automation Level Automation Description 

1 The computer offers no assistance: human must take all decision and actions. 

2 The computer offers a complete set of decision/action alternatives, or 

3 narrows the selection down to a few, or 

4 suggests one alternative, and 

5 executes the suggestion if the human approves, or 

6 allows the human a restricted time to veto before automatic execution, or 

7 executes automatically, then necessarily informs humans, and 

8 informs the human only if asked, or 

9 informs the human only if it, the computer, decides to. 

10 The computer decides everything and acts autonomously, ignoring the human. 
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III. � PATH: Planetary Aid for Traversing Humans 

We have developed a prototype path planner that permits users to plan paths with minimal cost under different 

objective functions. Using this path planner, we are investigating the appropriate level of automation for the task and 

the cross effect with the type of objective function (Fig. 1). There are three developed versions of PATH (Planetary 

Aid for Traversing Humans), differentiated by how the optimal path is chosen by the user. The first version 

automatically creates a path, while another allows the user to determine waypoints to make a path. In the third 

version, a visualization narrows down the possible paths for the user, though humans must make waypoints for a 

path.   

A. Common Functionality Across Versions of PATH 

 Currently, PATH utilizes lunar terrain elevation information from the explored Cone Crater area where Apollo 

14 astronauts landed (Fig. 1). Obstacles (seen in black) are areas that are too steep for suited astronauts to climb.  

The sun’s position is graphically (and numerically) shown on the left using the sun’s azimuth and elevation angles. 

For this particular implementation of PATH, we are considering only environmental lighting conditions (though 

future additions will include variables such as metabolic cost). Below is the objective function and variables that 

determine the cost of a particular path. This function is pre-determined. A scale and a legend of the map are also 

included on the far left corner.  

 Users are able to make or modify up to three paths based on a given start and goal. The cost for each of the 

paths, based on the objective function, is automatically calculated and shown in the lower portion of the display.  

The associated costs are shown in a table and in a plot (the cost of each path segment is charted along the distance of 

the path). Also, an elevation profile shows the terrain elevation along the path.   

Finally, regardless of how a path is created, be it by the user or by the automation, the user always has the ability 

to modify the path. With this functionality, the user can delete, add, and move waypoints along a selected path. The 

alterations can then be saved, and the display will update the cost changes. This is an important functionality as it 

permits the user to conduct a sensitivity analysis on their paths, tweaking the waypoints and assessing the cost 

penalties or benefits of the change. 

B.  Decision Support Visualization 

There are currently three versions of PATH: manual, automated, and combination. In the manual version of 

PATH, the user must determine waypoints on the map to make the path. The first user-made waypoint is connected 

to the start with a straight line representing a straight-line path; each subsequent waypoint is connected with the 

previous waypoint in the same straight-line manner. When the user selects the goal as the last waypoint, the path is 

completed.  Path segments that cross obstacles are not permitted and not accepted by the interface.  

 
Figure 1. Screen capture of PATH.  Elevation contour lines shown. 
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 The automated version of PATH utilizes the numerical potential field method
27,28

 (NPFM) in order to find the 

optimized path based on the given objective function. This method uses Dijkstra’s algorithm
29

 to search for paths in 

a grid decomposition of the space. The first step in NPFM is to discretize the state space. Each cell is labeled either 

as an obstacle, with an associated cost penalty, or a free space. The algorithm then determines the minimum cost 

from every cell to the goal based on the objective function. The penalty cost for that cell is also added to the 

minimum cost. If obstacles are given very high penalties, the minimum cost associated with that cell is always high.  

By doing this, one creates a “total cost” field for the space, where the goal has minimum total cost (usually zero) and 

obstacles are peaks of high total cost.  In order to find the minimum total cost path (e.g., by avoiding obstacles), that 

is, the sequence of grid cells that incurs minimum cost, gradient descent on the total cost field is used.  This version 

of PATH would correspond to level of automation 4 in that it would recommend a single best path. 

 The third PATH version 

combines the two previously 

described functionalities; the result is 

an interface that narrows down the 

possible paths for users through a 

visualization technique. Users have 

to make waypoints for paths but they 

do so with the visualization of the 

levels of equal cost (LOEC) 

generated by the NPFM (Fig. 2), 

helping the users see the high cost 

areas. To make the visualization, the 

“total cost” field is rendered using 

color, in a gradient fashion; each 

specific grid cell is colored relative to 

the total cost associated with each 

cell. The name of this display 

(LOEC) comes from the analogy it 

has with elevation contour lines.  

Between elevation contour lines, one 

knows that the relative height is the 

same for that area. Similarly, with LOEC, the same color indicates equal levels of cost. In this manner, the 

visualization reveals directions of minimum cost. This version of PATH falls under levels of automation 3. This 

visualization is very powerful not only because it narrows down the possible optimal paths, but also provides insight 

into the process of how the automation calculates minimum cost paths. This potentially can increase the user’s 

situational awareness, allowing them to understand the underlying models and thus, create better paths. 

IV. Preliminary Results  

A small pilot experiment was conducted that focused on testing the LOEC visualization for PATH.  There were 

two groups of subjects: LOA 2 (no LOEC visualization) and LOA 3 (with LOEC). Subjects were asked to make an 

obstacle-free, least-costly path, based on the given objective function, start, goal, and sun position (environmental 

conditions). All subjects were asked to make paths based on one of two possible objective functions: Azimuth Score 

(AS) and Sun Score (SS). Finally, there were two possible orders in which the subjects saw the functions: either Sun 

Score first or Azimuth Score first.  Thus, this was a 2 (LOA) x 2 (objective function) x 2 (order) experiment. 

 

! 

AS = cos(2") + 2

" = "
sun
#"

observer

 (1) 

 

! 

SS = (cos(2") + 2) # (cos(2$) + 2)

" = "
sun
%"

observer
;$ = $

sun
%$

observer

 (2) 

Azimuth and Sun Scores were the functions selected for this pilot experiment because only a single variable 

distinguishes them, thus we could assess the effect of adding one variable. A secondary objective of this experiment 

was to test if users could minimize cost functions that related sun position and direction of travel, as these are not 

common functions. Nonetheless, these functions are important for human space exploration because surface 

 
Figure 2. Screen capture of PATH with levels of equal cost shown. 
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visibility has demonstrated to be a key factor in the success and failure of planetary traversals. Azimuth Score (AS, 

Eq. (1)) relates the sun’s azimuth angle and the person’s azimuth angle (i.e., their direction of travel). The sun’s 

azimuth angle was presented to the subject as a cardinal direction (north, south, east, west).  The Sun Score (SS, Eq. 

(2)) takes into account the sun’s elevation angle, linking it to the slope of the terrain (the observer’s elevation angle). 

During the test trials, the sun’s position, both azimuth and elevation angle, did not change.    

There were twelve subjects, six in each LOA group, of which half saw AS first. Their average age was 25.8 ± 

2.9 years, and most were graduate students. One subject was removed from the data set due to a failure to adhere to 

experiment rules. There were two dependent measurements in this pilot experiment: time to completion of task and 

cost of path.   

The time to completion dependent variable was transformed 

(square root transformation) in order to have a normal distribution 

and equal variance across cells, a requirement to use ANOVA 

models for analysis. The ANOVA analysis yielded no significant 

difference between LOA 2 and 3 (α = 0.05), meaning the LOEC 

visualization did not have an effect on how fast subjects were able 

to complete their task (Fig. 3). There was a significant difference 

between functions (F(1,14) = 4.407, p = 0.054), so regardless of 

level of automation meaning subjects took longer when making 

paths based on Sun Score. This was expected, as SS is a more 

complex objective function compared to AS, having an extra 

variable to integrate in the path planning. However, there was a 

significant interaction between objective function and presentation 

order (F(1,14) = 4.454, p = 0.053), which indicates a learning effect. 

Therefore, we cannot distinguish if the time differences were due to 

presentation order or the function itself. 

For the second dependent variable, the subjects’ path 

costs were compared to the minimum cost the automation 

calculated, resulting in a percent cost difference. Using 

this percentage also normalized comparisons between 

paths made to optimize AS versus SS. Results showed 

that all subjects, regardless of the level of aid, were able 

to generate paths within 25% of the optimal path. Since 

all cost differences were less than 25%, the errors were 

binned into five equally spaced categories (0 - 4.99%, 5 – 

9.99%, etc.) and the differences in categorical distribution 

were analyzed. With respect to average path cost error, 

the distribution of cost difference categories was not 

significantly different between groups (LOA 2 vs. LOA 

3), across all conditions (Fig. 4). In addition, using the 

Mann-Whitney U test, no difference was found within 

either objective function. However, the path cost errors 

were significantly (p < 0.05) smaller for paths made based 

on AS than those made based on SS. This makes sense, as 

subjects with the simpler function were able to achieve 

more near-optimal results.  

However, these results should be regarded with 

caution, like the time dependent variable results. An 

analysis of the order in which subjects saw the functions 

revealed that some learning effect took place. Out of the 

four possible conditions, it appears that having LOEC visualization was very helpful when the first-seen function 

was the more difficult one, permitting subjects to make smaller errors than subjects without LOEC when minimizing 

the cost of a path. Thus, the combination of a challenging function and visualization was conducive to learning 

faster. Learning can be a significant confound for any experiment so another is currently underway that will rectify 

this problem. 

 
Figure 3. Average time (transformed) 

based on level of automation and objective 

function. 

 
Figure 4. Cost difference categories distributions 

by level of automation and objective function 
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V. � Conclusion and Future Work  

Understanding how path planning can be enhanced through collaborative elements is just one step in the process 

of improving computer decision support tools for human space exploration.  Designing these first-generation 

systems for surface operations will involve the development of many models that are necessary to estimate energy 

consumption, equipment reliability, communication limitations, terrain characteristics, just to name a few.  Because 

planetary exploration is knowledge-based task that cannot be easily automated, we need to facilitate the ease of use 

of computationally powerful computer aids by leveraging human-computer collaboration. 

PATH was designed after having reviewed past Apollo EVA problems and assessed the information needs for 

future explorers.  Our challenge was to devise a collaborative element that assist users in replanning traversals, 

whose cost is optimized based on a variety of objective functions.  As a result, the levels of equal cost visualization 

was implemented.  LOEC is helpful because it narrows down the possible optimal paths and provides insight into 

the process of how the automation would calculate least-costly paths.  Based on the results of our pilot experiment, it 

appears that this visualization was to some extent successful, yet there is still room for improvement.  

In the future, we will assess other aspects of PATH.  Even though the pilot experiment showed that all path 

errors were less than 25%, subjects only attempted to manipulate one or two variables.  More complex, and thus 

challenging, functions are planned for upcoming experiments, such as total traversal time, metabolic cost, and the 

combination of these with Sun Score. While observing subjects utilizing PATH, it was apparent that different 

strategies were implemented to complete the task.  We plan to investigate these further and connect them to the 

appropriate visualization, so that we can better understand typical cognitive strategies.  Finally, we would like to 

compare the effects of the visualization with the automated PATH version to explore the effects on situational 

awareness and selected strategies. 
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