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Abstract—Learning image transformations is essential to the
idea of mental simulation as a method of cognitive inference.
We take a connectionist modeling approach, using planar neural
networks to learn fundamental imagery transformations, like
translation, rotation, and scaling, from perceptual experiences
in the form of image sequences. We investigate how variations in
network topology, training data, and image shape, among other
factors, affect the efficiency and effectiveness of learning visual
imagery transformations, including effectiveness of transfer to
operating on new types of data.

I. INTRODUCTION

Visuospatial reasoning is ubiquitous in everyday human
intelligence. In addition to its reliance on semantic knowledge
about objects, categories, and scenes, visuospatial reasoning
also requires non-semantic knowledge about object shapes,
spatial relationships, etc., including, for example [1] (p. 182):

“Transforming the spatial codings of objects, in-
cluding expansions or reductions in size, rotation,
[etc.]...accumulating sequences of such changes and
visualizing change over time....”

We do not know exactly how the human brain represents such
non-semantic visuospatial knowledge about transformations,
but we do know that this knowledge is learned through real-
world perceptual experiences, especially in infancy and early
childhood [2]; and that it is often deployed through top-
down neural activations in brain regions associated with visual
perception, i.e., using visual mental imagery [3].

Only a few studies have examined how AI systems can
represent and learn transformation-based reasoning operations
like image rotation from perceptual experience. One early
study represented each operation as a distributed set of weights
in a single-layer, 2D connectionist network, and used the
perceptron learning rule to learn each operation in a supervised
fashion from image sequences depicting that operation [4].

Other recent work uses similar distributed representations of
operations but adds a hidden layer to the network that enables
learning multiple operations in an unsupervised fashion [5],
[6]. Another study uses a robot architecture combining visual
and motor inputs for learning the rotation operation [7].

(Note: learning an operation like rotation is not the same
as learning transformation-invariance (e.g., for object recogni-
tion), though the two may be used in conjunction for certain
tasks. These are also distinct processes in human cognition
[8], [9]. Thus, AI research on representing and learning trans-
formation invariance [10], [11] is not directly relevant to the

Fig. 1. A real world image is sampled from, perceptrons take input from
euclidean neighborhoods (in this case radius = 2) of that sampling, and
then each perceptron outputs to one pixel in the resulting image

work presented here, though some recent research combines
both ideas to address problems in computer vision [12].)

In this paper, inspired by the simple and effective ap-
proach proposed by Mel [4], we examine how planar neural
networks—2D arrangements of perceptrons that can pass
visual information to neighboring units—can represent various
image transformations such as translation, rotation, and scal-
ing. We also investigate how differences in learning algorithm
parameters, training data, and spatial network layout and
topology affect learning performance.

More broadly, learning image transformations as functions
that can operate over novel visual material is essential to the
idea of mental simulation as a method of cognitive inference.
Ultimately, such representations could be added to AI systems
to support robust visuospatial reasoning, and will also help
improve our understanding of how humans represent and learn
mental image transformations.

II. METHODS

We use a supervised learning approach. Given a pair of
training images depicting some transformation (e.g., rotation
having a particular direction and velocity), each perceptron
in our plane-of-perceptrons neural network learns how the
visual information at its own location in the visual field is
transformed. Thus, each transformation is represented as a
set of local pixel intensity flows distributed across spatial
locations in the network. This is similar to notions of optical
flow, except that information about a given transformation
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is learned using purely local visual information. No explicit
feature matching is done across input images. Each perceptron
in the network learns independently from the rest.

Our system is arranged as a plane of perceptrons, each
with a position label given by Cartesian (or Polar) coordi-
nates. Given adjacency function U , node p0 has an incom-
ing edge from node p⇐⇒ p∈U(p0). By default, U(p0) =
U(pos(p0), 2), the open ball of radius 2 centered on p0.

Given input image X , node j, and its bias bj , the network
output of node j is as follows:

outpos(j) = σ(bj +
∑

i∈U(j)

wi→j ∗Xpos(i))

In an image, pixel intensities are valued between 0 and 1,
so we clamp each perceptron’s output likewise:

σ(x) = max(0,min(1, x))

A given pixel in the output image corresponds to the output
of the node at that pixel’s position, so that pixel’s value
is determined by a linear combination of the values of the
neighboring input pixels.

Weights between nodes are learned using the perceptron
update rule: given nodes i and j, target (transformed) image
T , network prediction image P , and learning rate δ,

∆wi→j = δ(Tpos(j) − Ppos(j))Xpos(i)

Weights are updated after a batch by the sum of all such
deltas from images in the batch.

Data Generation. Transformations can create blurring and
information loss; thus we transform both the inputs and target
outputs exactly once as follows.

A high resolution image I is generated or loaded. Let N be
the network. Let T be the transformation we want N to learn
and R be a random initial transformation of the same type.
Then we can calculate Ij := T j ◦ R(I) for j∈{0, 1, 2, 5}.
Each Ij is downscaled to the dimensions of N via bilinear
sampling. I0 is the input. If I is in the training set, I1 is the
target for training. Otherwise, I1, I2, and I5 are targets for
testing where error is evaluated as |N j(I0)− Ij |, the mean of
the absolute errors of all the pixels in an image. We also call
these images 1X-, 2X-, and 5X-chained outputs.

III. ILLUSTRATED EXAMPLES

Before diving into experiments, we provide a detailed
demonstration of the network’s ability to learn three trans-
formations: translation, rotation, and scaling. Our network’s
inputs and target outputs are pairs of 16x16-pixel samplings
from 160x160 centers of 320x320 images. To reduce the effect
of the law of large numbers, we generate random noise at a
lower resolution than our ‘real world’ images and upscale by
a factor of 10. Transformations are applied, and the resulting
images are downscaled bilinearly to size 16x16.

For each of these demonstrations, we use the same hyper-
parameters: a learning rate of 0.01, a neighborhood with a
constant radius of 2, an image size of 16x16, a batch size
of 50, 250 training image pairs, and 50 testing image pairs.

Fig. 2. Illustrative results for translation (top), rotation (middle), and scaling
(bottom). Top row of each section shows training images for 1X-, 2X-, and 5X-
chained transformations. Bottom row of each section shows network structure
after training (left), followed by network outputs for three chain lengths.

Weights are initialized as random values between -1 and 1.
We train for 40 epochs.

We display network structures using blue and red graphs.
Blue lines indicate positive weights and red negative. To
reduce clutter, opacities scale with the squares of weights, and
weights with magnitudes less than 0.2 are omitted.

Translation. We shift the original images by (0,1), or one
pixel upwards. Since our network is rectangular, neurons away
from the edge of the image are be able to perform translation
perfectly, provided a sufficient neighborhood size and integer-
length translations. Unlike many machine learning problems,
we know exactly what the weights should be: 1 if connecting
a pixel to its neighbor above it, and 0 otherwise. Translation
is perfectly represented, so chaining translation is as well.

Rotation. We rotate the original images ten degrees counter-
clockwise. Unlike translation, it is impossible for the rect-
angular network to perfectly replicate rotation since edges



Fig. 3. The average pixel errors for all three base transformations on 1X-,
2X-, and 5X-chained test sets

with a neighborhood size of 2 may only cover 8 angles (0,
45, 90, etc.) of three lengths (0, 1, 1.414). There are only
nine regions of high accuracy in the in any trained network’s
output, each corresponding with an almost correct angle/length
combination. As such, training and testing errors will never
converge to 0.

Scaling. We scale the original images by a factor of 0.9
about the center of the image. Like rotation, scaling is not
perfectly covered by a rectangular array of neurons, so the
average error for scaling cannot approach 0.

Figure 3 summarizes the performance of these three trans-
formations. Translation outperforms at first; however due to
the chaining of aforementioned edge errors, 5X translation
loses its edge. Rotation only loses information in the corners,
whereas scaling cannot predict values around the entirety of
its borders. Thus, rotation performs slightly better.

IV. INITIAL HYPERPARAMETER SEARCH

We demonstrate the effect of different batch sizes on rotat-
ing rectangular images. Four sizes are tested: 12, 25, 50, and
100. Each test is run for 40 epochs.

TABLE I
AVERAGE TEST SET ERROR WITH DIFFERING BATCH SIZES

Batch Size 10 25 50 100
200th Batch Error 0.152 0.096 0.063 N/A
40th Epoch Error 0.107 0.072 0.063 0.306

Next, we test the effects of using four different learning rates
during training: 0.001, 0.005, 0.01, 0.02, and 0.04. The greater
two learning rates converge to high error rates rather quickly,
but the smaller three perform similarly. 0.001 and 0.005 appear
to follow nearly the same curve as 0.01, but they train around
a tenth and a half as quickly, respectively

Since the goal of this paper is not to maximize results
but to analyze the reasoning behind network errors, we do
not exhaustively search for the optimal batch size or learning
rate. Instead, we hope to demonstrate our network’s robustness
to minor changes due to the suitability of our dataset. For
both variables, increasing the number incrementally speeds up
training, but exceeding some value causes accuracy to plateau.
A network with a batch size of 50 and a learning rate of 0.01
performs reasonably well, so we use these values in further
experiments.

TABLE II
RESULTS OF TRAINING WITH DIFFERING NEIGHBORHOOD RADII.

Radius 1 1.41 2 2.24 2.83 3
Nbhd 1 5 9 13 21 25
Error 0.14 0.08 0.06 0.07 0.30 0.33
Nbhd refers to number of nodes in a neighborhood.

Fig. 4. Top: Networks trained on 10-degree rotation with the 6 different
neighborhood radii. Bottom: 5X-chained Pikachu outputs to display errors of
the above networks.

V. VARYING IMAGE GENERATION PARAMETERS

Rotation Degrees. We trained our network to perform four
rotations: 5, 10, 15, and 20 degrees. Nine regions of low error
are arranged in a square, each corresponding with one of the
nine possible edges in the neighborhood with a radius of 2.
Outside the square, no edges are long enough to aid in output
prediction. Increasing the degree of rotation decreases the size
of this square since the distance pixels must travel increases.
Increasing the neighborhood size adds more low-error regions
at the cost of requiring a lower training rate.

Discrete versus Continuous Translations. The comparison
of most interest is discrete vs. ‘continuous’ translations, so
we compare the training of a network learning to translate
with an argument of (1,1) and one learning to translate with
an argument of (0.5,0.5). After training, the discrete transfor-
mation reaches a test set error of 0.056 and the continuous
transformation reaches an error of 0.071. Their errors remain
similar even when chaining.

Although the discrete transformation performs better than
the continuous transformation, the difference between their er-
rors is minor. The continuous transformation has an advantage:
its pixels travel half as far, meaning it suffers much less from
the effect of offscreen pixels moving onto the image. This
advantage is increased with chaining, causing error metrics to
report that the continuous translation is more robust than it
truly is.

VI. VARYING NETWORK CONNECTIVITY

Neighborhood Size. Increasing the radius of the neighbor-
hood allows for more extreme image transformations to be
captured but also increases the number of parameters. We train
on rotation using six radius lengths from 1 to 3. 1-radius nodes
receive input only from their positions.

A radius of only 1 reaches a plateau of accuracy quickly as
it cannot move pixels in an image. It learns to output almost
the same image as the input, as seen in Figure 4. Radii of
1.41, 2, and 2.24 all train similarly to one another, but the
networks with larger radii reach lower accuracy plateaus. The



Fig. 5. Sample training images: Random Noise, High-res Random Noise,
Random Dot, High-res Random Dot

large number of edges in each neighborhood causes the output
to wildly fluctuate between 0 and 1. Use of a sigmoid function
in the perceptrons’ outputs might alleviate this problem. We
perform an additional run of the 3-radius network with a
learning rate of 0.005. The new network does not plateau as
does the same network with a larger learning rate, attaining
an error of 0.138 after 200 batches.

VII. TRANSFER LEARNING

Various Noise Techniques. When images randomly gen-
erated at high resolutions are downscaled to fit our network,
values are near 0.5 due to the law of large numbers. Thus
we generate noise at low resolutions and then upscale for
transformations. Here we demonstrate the effects of using
upscaled versus high resolution noise.
• Random Noise: 32x32 images are generated, each pixel

valued between 0 and 1, and then upscaled to 320x320
• High-res Random Noise: 320x320 images; each pixel is

a value between 0 and 1
• Random Dot: 32x32 images generated and then upscaled

to 320x320; each generated pixel is 0 or 1
• High-res Random Dot: 320x320 images; each pixel is a

value of 0 or 1
The high-res group learns to output 0.5 for each pixel,

converging to test error of nearly zero after only ten batches.
Both network structures in the high-res group have seemingly
random connections, and the structures in the low-res group
learned connections indicative of rotation.

Because the networks’ errors can be low when they de-
cidedly fail to learn rotation, solely relying on test error as
a performance metric is problematic when comparing across
datasets. Instead, we must measure how well learning transfers
across differently generated datasets to discern whether a
network performs the datasets’ shared transformation.

Grayscale Data. We ran our network on four sets of data,
each generated by rotating a base image by the same amount.
For both the Pokémon and ImageNet Dogs datasets, the first
300 images were used, and random selection was used to select
250 images for the training sets and 50 for evaluation.
• Random Noise: randomly generated upscaled 32x32 im-

ages where each pixel is a value between 0 and 1
• Random Dot: randomly generated upscaled 32x32 images

where each pixel is 0 or 1
• Pokémon: a collection of 256x256-pixel drawings by Ken

Sugimori, selected for their outlines and flat colors [13]
• ImageNet Dogs: a collection of 300 photographs from the

ImageNet Dog synset [14]

Fig. 6. Examples of grayscale data (top) and black and white data (bottom).
From the left, Random Noise, Random Dot, Pokémon, and ImageNet Dogs.
While the randomly generated images are unique, the grayscale and black
and white images use the same Pokémon and Dog images at similar angles.
These images are exemplary of both input and target images in the datasets.

Fig. 7. Results from transfer learning using various greyscale datasets.

Based on how well each dataset performed when tested
upon, it is possible to rank them in order of difficulty, with
ImageNet Dogs being the easiest, followed by Pokemon,
Random Noise, and then Random Dot. The networks trained
upon these datasets’ general performances followed the reverse
order. The network trained upon Random Dot, the most
difficult dataset, performed the best on all datasets despite
reporting poor performance on its training set.

Black and White Data. Given the results of the Grayscale
transfer learning, we created a more difficult task. This exper-
iment is identical to the Grayscale Data experiment, but pixels
in the 16x16 images have values rounded to 0 or 1.

The difficulties of the Black and White datasets follow a
noticeably different pattern from the Grayscale difficulties.
Random Noise and Random Dot images are both difficult
overall, while Pokémon and ImageNet Dogs are both easy
overall. We see a similar grouping for transfer learning: both
of the random datasets perform well on random datasets, and
both of the loaded image datasets perform well on loaded
images.

Transfer between Grayscale and Black and White. Fi-
nally, we demonstrate the transfer learning between networks
trained upon four of the previous datasets: Random Noise
(Grayscale), Random Noise (Black and White), Random Dot
(Grayscale), and Random Dot (Black and White). The network
trained on Grayscale Dot images performs the best on all
datasets, despite training on the second easiest dataset.



Fig. 8. Results from transfer learning using black-and-white datasets.

Fig. 9. Transfer learning across dataset type and color type.

VIII. REAL-WORLD TRANSFORMATIONS

We use videos of handheld objects being rotated and trans-
formed in various ways to demonstrate the network’s ability
to train on real-world video data. Intra-objecttype and inter-
objecttype transfer learning is measured, as well as training
on a video of a blank wall (absent).

For each video, 250 frames are used for training, and 50
following frames are used for testing. Specific objects included
a ball, a cat, two horses, and a truck. The absent video is only
long enough for a training set of 55 images.

Because the centers of rotation change, and hands in the
video move in varied directions, none of the networks perform
well enough to produce recognizable 5X-chained outputs. Less
chaotic regions are observable in the network structures that
coincide with object and hand locations in the videos. When
objects are large and dark the effect is more pronounced

Fig. 10. Top: Example images from each training set: absent, ball, cat, horse
A, horse B, and truck. Middle: learned structures when training on rotation for
the above images. Bottom: 1X-chained output when fed the Pikachu example
image. Note that there is no ‘correct’ transformation for these images, though
the objects in the videos are rotated counter-clockwise.

Fig. 11. Example of Polar network creation (bottom path) as compared to
16x16 Cartesian network creation (top path). In the former, the original image
(top left) is downscaled bilinearly to 36x36. Then it is converted to a 7x36
Polar Picture (far right) that has 7 rings and 36 wedges.

and the example outputs are more clear. Absent forms a
surprisingly clear image; all nodes learn to output a color
similar to their neighborhoods.

IX. POLAR VERSUS CARTESIAN NETWORKS

We now use a network with a polar topology and are
especially interested in performance on rotation and scaling,
the polar analogues of translation. Our implementation, in-
spired by early work on circular image representations by Funt
[15], borrows from an earlier model developed to efficiently
rotate images for solving visual reasoning tasks [16]. A “Polar
Picture” consists of square-like regions, called “sectors”. Each
sector is located by a discrete ring (radial coordinate) and
wedge (angular coordinate). There is an equal number of
sectors in each concentric ring. As radial distance increases,
sector size increases and resolution decreases. A central blind
spot ensures a finite number of sectors. Figure 11 illustrates
polar conversion and compares the two network topologies.

We use a Polar network with 36 wedges to discretize
rotation in 10 degree increments. We choose 7 rings for the
network because 7x36 = 252 total perceptrons, which is close
to the Cartesian network’s 16x16 = 256. We convert from
36x36 because it yields an innermost sector size of 1.01 pixels,
avoiding redundant subpixel regimes. Prior to downscaling, the
Polar pre-processing and transformation pipeline is identical
to its Cartesian counterpart. We use a dynamic neighborhood
radius that varies with the square root of a sector’s radial
distance to ensure that the larger outermost sectors connect
to neighbors. Doing so yields 1748 connections, while our
Cartesian network has 2116 connections.

We compare translation, rotation, and scaling between Polar
and Cartesian networks. The former two use default argu-
ments, (0,1) and 10 respectively. The ratio of sector sizes
between neighboring rings is a constant [16], in this case
0.839. Our network is thus optimized for a scale factor of
0.839, which we use instead of 0.9.

As expected, Polar outperforms Cartesian for rotation and
scaling in spite of having fewer connections, and Cartesian
performs better with translation, seen in Figure 12. Figure 13



Fig. 12. Performance comparison of the two network topologies across the
three transformations and chains.

Fig. 13. Top: The structure of the networks after training for 5X-chained
translation, rotation, and scaling. Middle: The Polar target images for the
above tasks. Bottom: The trained networks’ outputs for the above tasks.

shows how the Polar network 5X chain transforms Pikachus.
For comparison, the input Pikachu is bottom middle in Figure
11; note the discrete 5X wedge and ring shifts for rotation and
scaling. The noise in the scaling network output is similar to
that found in Cartesian translation (Figure 2); these outputs
are ‘unlearnable’ because no input pixels transform to these
areas.

X. CONCLUSION AND FUTURE WORK

We presented several experiments to study how image trans-
formations can be represented and learned by planar neural
networks—2D spatial layouts of perceptrons. We showed that
basic image transformations like rotation, translation, and
scaling, can be learned in a supervised fashion from image
sequences, using purely local visual information. Additionally,
we characterized the robustness of our learning system along
several important dimensions including the parameters of the
network and the data it is trained upon.

In future work, we will investigate more complex visual
transformations as well as alternate forms of representation,

e.g., representing transformations as primitive basis functions
instead of discrete entities [17], or developing network struc-
tures that more closely emulate the human visual cortex in
terms of spatial layout, redundancy, etc.

Ultimately, we aim to produce a system that learns vi-
suospatial transformations from experience and may flexibly
use those transformations to solve new visuospatial reasoning
tasks. Although there are architectures that reason using visual
transformations [18] [19], we are not aware of systems that
reason using transformations they have learned from experi-
ence. We continue here in the vein of previous work on learn-
ing transformations [4], [5], [7]; these kinds of transformation
representations could later be integrated into AI architectures
for high-level reasoning, and could play an important role in
many different tasks ranging from commonsense reasoning to
natural language understanding.
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