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Abstract 
We present a new computational model that explores the role of visual working memory during 
the process of search, using the Embedded Figures Test (EFT) as an example visual search task.  
Our model offers new results to show how variations in attention to an internally stored target 
template can have a substantial effect on measures of search performance.  Furthermore, these 
variations do not necessarily relate to quantitative differences in memory capacity, but in fact can 
arise through minor changes in sequences of attentional selection over the target template, without 
changing overall system storage capacities or search processes at all.  We discuss the implications 
of our results for developing new computational models of visual attention and search as well as 
for the interpretation of human cognition through EFT observations. 

1.  Introduction 
Visual search is a fundamental process of intelligence, guiding how agents (biological or 
otherwise) sample information from their visual environment, solve problems, and achieve goals.  
As AI systems are deployed in more and more complex, real-world settings, from sensor 
networks designed for surveillance to robots operating in naturalistic environments, 
understanding the detailed information-processing mechanisms that underlie visual search will be 
an important step towards developing robust and efficient search capabilities for these systems. 
 In studies of human cognition, search is often considered within the broader context of visual 
attention, in order to understand the spatial and temporal characteristics of overt or covert (i.e. 
with or without externally observable gaze shifts) deployments of attention across a search space 
in response to bottom-up (stimulus-driven) and top-down (goal-driven) factors.   
 A less widely studied aspect of visual search is how memory interacts with attention to produce 
observed search behaviors (Hutchinson & Turk-Browne, 2012).  There are many roles that 
memory plays in visual search, including spatial memory of previous search patterns (Peterson, 
Kramer, Wang, Irwin, & McCarley, 2001) and memory-based cuing and priming of certain 
stimuli in the visual field (Desimone, 1996).  In this paper, we focus on how variations in the 
stored memory representations of target items, particularly sequential, internal access to these 
representations, can affect overall search performance. 

In general, this is a very complex problem, as stored memory representations of search target 
templates can come in drastically different flavors, depending on the search task.  Simple visual 
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searches might use an iconic visual representation of the target, as in template-based searching, 
but one can imagine more complex search tasks in which the target is represented using a 
combination of visual, semantic, phonological, and other types of information, such as looking for 
³VRPeWKLQg WR eaW´ LQ WKe ZLOdeUQeVV, RU ORRNLQg fRU ³VRPeWKLQg WKaW UK\PeV ZLWK caW´ LQ a SLcWXUe 
book. 
     In simple visual searches, the idea that working memory (WM) can store and use an iconic 
visual template of the target item is borne out by evidence that visual information in WM is 
organized at the level of objects and not at the level of individual features (Luck & Vogel, 1997).  
Furthermore, individuals with high WM capacity for visual information do better on visual search 
than individuals with lower WM capacity (Reijnen, Hoffmann, & Wolfe, 2014). 
 There have been several previous computational models of visual search that operate at various 
levels of abstraction, including: 

� Models that specify the use of iconic visual representations to guide visual search of 
objects on table (Rao, Zelinsky, Hayhoe, & Ballard, 2002);  

� Models that account for overt visual search including saccade history (Zaharescu, 
Rothenstein, & Tsotsos, 2005);  

� Models that implement a biased competition process with competition occurring 
between spatial, featural, and object information (Lanyon & Denham, 2004);  

� Models that account for top-down and bottom-up search processes (Aziz & Mertsching, 
2008);  

� Models that plan saccades to maximize information gain (Pomplun, Reingold, & Shen, 
2003);  

� Models that utilize two stages of processing to initially guide and then refine visual 
search (Wolfe, 1994).   

By and large, these models do not explicitly account for variations in the storage of or access to 
the target template that is used during search.   

A notable exception is a computational model that investigates mechanisms for target 
acquisition and similarity comparisons (Zelinsky, 2008).  This paper presents the Target 
Acquisition Model (TAM), which includes an explicit process of representing the search target 
image as an array of filter responses, intended to simulate the retinal processing of visual 
information.  The search display is then represented in the same format, and search responses are 
modeled by correlating the feature vector associated with the target to the feature vector 
associated with the search display.  While the TAM model does explicitly account for creation of 
the target template in memory, it does not address how the agent accesses this template during 
search; the TAM model assumes that the entirety of the target template is available at the same 
time, at each step during the search process. 
 In contrast, we explore what happens when the target template is itself subject to attentional 
deployments.  Attention to different parts of visual working memory is often discussed in the 
literature as a change in the content of memory (Makovski, Sussman, & Jiang, 2008).  However, 
it cannot be the case that unattended items simply disappear from visual working memory 
altogether, as people do have the capacity to sequentially remember and recall individual items 
from a single presentation of a set of many items.   
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We hypothesize that attention can be deployed internally to different spatial locations within 
visual working memory.  This hypothesis is analogous to current theories of how attention can be 
deployed covertly (i.e. without associated eye movements) to different locations of the visual 
field.  Our hypothesis is also consistent with findings from mental imagery that visual working 
memory does contain similar (and functionally useful) neural representations of visual 
information that are in many ways comparable what is received during perception (Kosslyn et al., 
1999; Kosslyn, Thompson, Kim, & Alpert, 1995; Slotnick, Thompson, & Kosslyn, 2005; Stokes, 
Thompson, Cusack, & Duncan, 2009).  

In this paper, we present a new computational model of visual search that explores this 
relationship between visual working memory, internally deployed attention, and search 
performance, by looking at how variations in sequences of attention to the target template can 
affect overall search efficiency.   The task domain that we study is the Embedded Figures Test 
(EFT), a widely used neuropsychological assessment in which participants must search for a 
simple geometric figure within a larger, more complex figure.   
 We first describe the EFT in more detail, including key findings from human cognition that 
motivate our work.  Next, we describe our computational model and present detailed results from 
the example problem shown in Fig. 1.  Then, we present experimental results from running 
different configurations of the model on the actual EFT.  Finally, we close with a discussion of 
our results and their implications for understanding the mechanisms that contribute to visual 
search and how these mechanisms can be leveraged in the design of intelligent systems. 

           

Figure 1.  Example of problem similar to those found on the Embedded Figures Test (EFT).  (Actual 
problems are not shown, in order to protect the security of the test.)  The figure on the left is known as the 
³VLPSOe fRUP´ aQd PXVW be ORcaWed LQ WKe ³WeVW fRUP´ RQ WKe ULgKW.  TKe VLPSOe fRUP LV SUeVeQW in the test 
form in its given configuration; rotating, scaling, or otherwise transforming the simple form to find it in the 
test form are not allowed.  Notably, while taking the test, the simple form and the test form are never 
simultaneously visible; the test-taker must store a representation of the simple form in memory before 
attempting to search for it in the test form. 
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2.  The Embedded Figures Test (EFT) 
Fig. 1 shows an example of an EFT-type problem.  The Embedded Figures Test (EFT) was 
RULgLQaOO\ deVLgQed b\ HeUPaQ WLWNLQ aV a PeaVXUe Rf ³fLeOd-LQdeSeQdeQce,´ ZKLcK UefeUV WR KRZ 
well an individual can differentiate an individual stimulus from background elements or patterns 
(Witkin, 1950).  Faster search times on the EFT are assumed to indicate greater field-
independence. 
 Witkin describes the original EFT as a test that is given to a subject by an examiner (Witkin, 
Oltman, Raskin, & Karp, 1971).  For each test item, tKe e[aPLQeU fLUVW SUeVeQWV WKe ³WeVW fRUP,´ 
which is the complex figure to be searched, i.e. the search environment, and then presents a 
³VLPSOe fRUP,´ ZKLcK LV WKe item to be found, i.e. the search target.  Then, the test form is 
presented to the subject once more, who then begins the actual search.  Witkin specifies that the 
simple form and the test form should never be presented to the subject at the same time, but that 
the subject can ask to refer back to the simple form as needed.  This setup effectively requires the 
subject to store the simple form in memory, before searching for it in the test form.  Performance 
is measuring according to the time taken by the subject to complete each item. 

There are several variants of the EFT that are currently in use (Ludwig & Lachnit, 2004); the 
most widely used seem to be the Group Embedded Figures Test (GEFT) and the Children¶V 
Embedded Figures Test (CEFT).  The GEFT uses some of the same items as the EFT along with 
some new items and was designed to be administered in a group setting (Witkin et al., 1971).  The 
GEFT uses a paper-and-pencil format, and subjects are given fixed time limits to complete three 
different sets of items.  The GEFT is scored according to the number of items correctly completed 
within the time limits.  The GEFT uses a clever design in which each page presents a complex 
form together with a letter indicating which simple form is to be found.  The set of simple forms, 
along with labels, is printed on the back of the test bRRNOeW.  TKLV deVLgQ eQfRUceV WLWNLQ¶V 
specifications that 1) the test form is seen prior to the simple form for each item, and 2) the test 
form and simple form are never simultaneously visible to the subject.   

The CEFT was designed to be an easier, more engaging test than the original EFT for use with 
young children.  The CEFT introduces concrete shapes (e.g. houses, tents, strollers) as both the 
simple forms and test forms (Goodenough & Eagle, 1963).  The CEFT is administered in a 
manner similar to the EFT, with a single examiner and a single subject (Witkin et al., 1971).  
Scores are recorded as the number of items correctly solved, though many research studies using 
the CEFT also record the time to completion as a variable of interest.   

In this paper, we focus on the GEFT for our computational experiments.  However, our 
observations do apply across all of the EFT variants, and so we use the more general abbreviation 
³EFT´ to refer to this task domain throughout the remainder of this paper. 

Studies of the EFT in typically developing individuals have found that EFT performance is 
UeOaWed WR SeUfRUPaQce RQ RWKeU, VLPLOaU ³dLVePbeddLQg´-type tasks (Ghent, 1956).  In addition, 
certain manipulations in administration formats, i.e. group vs. individual administration, 
differences in the coloration of test items, and memory requirements imposed by the task 
administration format can affect performance in significant ways (Jackson, Messick, & Myers, 
1964).  Interestingly, there have been substantive sex differences observed for EFT performance, 
though practice appears to reduce or remove these differences (Goldstein & Chance, 1965).  
Many cultural differences in EFT performance have been observed as well (Kühnen et al., 2001). 
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 Over the last few decades, many studies have found interesting patterns of differences in EFT 
performance between typically developing individuals and individuals diagnosed with autism 
spectrum disorders (ASD).  These studies generally find that individuals diagnosed with ASD 
show superior performance on the EFT, in line with performance on other visual search tasks 
(Jarrold, Gilchrist, & Bender, 2005), either in the form of improved accuracy or shorter reaction 
times, or both (Shah & Frith, 1983).  Similar patterns have also been found in individuals 
diagnosed with Asperger syndrome (Jolliffe & Baron-Cohen, 1997), and these differences appear 
to be related to differences in brain activity (Ring et al., 1999) and eye fixation durations (Keehn 
et al., 2009).  There have also been observations of interactions between performance and cultural 
differences in these populations (Koh & Milne, 2012).   
 The EFT shares similarities with some other cognitive tests in this regard; the EFT, a test called 
bORcN deVLgQ, aQd aQRWKeU WeVW caOOed WKe RaYeQ¶V PURgUeVsive Matrices (RPM) are all often found 
WR UeSUeVeQW ³SeaNV´ Rf abLOLW\ aPRQg LQdLYLdXaOV dLagQRVed ZLWK ASD (Dawson, Soulières, 
Gernsbacher, & Mottron, 2007; Shah & Frith, 1993).  Like the EFT, the block design task, in 
which colored blocks must be put together to match a given pattern, and the RPM, in which an 
incomplete matrix of figures must be completed with the correct missing figure, are visually 
presented tasks that involve visual reasoning, as opposed to linguistic or semantic reasoning 
(Kunda, McGreggor, & Goel, 2013).  All three tests are widely used as cognitive assessments in 
clinical and scientific settings.   

In addition to perceptual, motor, and other reasoning components, we believe visual memory 
plays an important role across all of these tasks.  Understanding the specific mechanisms at play 
in each would greatly improve the usefulness of these tasks as cognitive assessments as well as 
our general understanding of visual cognitive processes in humans and in artificial agents, with 
special relevance to populations who have experience atypical cognitive development.   

In previous work, we examined the nature of problem solving using purely visual 
representations on the RPM (Kunda et al., 2013).  Here, we focus on the EFT to more closely 
examine the interplay between visual memory and visual search.  Ultimately, we aim to develop 
integrated models that combine perception, memory, and reasoning across all of these tasks. 

3.  Our Model 
Our model of the EFT is different from many previous computational models of visual search and 
attention because it does not focus on notions of saliency as the primary variables of interest.  
Instead, our model focuses on the role of visual working memory as a key part of the overall 
search task.  In particular, our model contains parameters that produce changes in how internally-
directed attention is deployed sequentially to the stored search template, in order to 
experimentally examine how these variations affect overall search performance. 
 IQWeUeVWLQgO\, LQ WLWNLQ¶V RULgLQaO EFT SaSeU, TXaOLWaWLYe RbVeUYaWLRQV abRXW SeRSOe¶V VeaUcK 
VWUaWegLeV LQdLcaWe WKaW LQdLYLdXaOV SLcN a ³cRPSOe[´ SaUW Rf WKe VLPSOe fRUP WR aQcKRU WKeLU VeaUcK 
at various points in the test form, and then try to trace the outline in the complex figure (Witkin, 
1950).  It is this observation about human behavior that motivates the design of our model.   

In particular, the model takes as input PNG image files of the simple form and test form for 
each EFT problem, scanned directly from a paper copy of the test.  The model reads each input as 
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a grayscale image and represent it as a two dimensional array of binary true/false pixels, 
thresholded using single static threshold values chosen manually for each problem.  Values less 
than the specified threshold, or grayscale value, are considered to be black (or true), and values 
greater than the specified threshold are considered white (or false).   
 To compute image similarity, the program implements template-based matching.  In particular, 
for two images A and B, the program applies A as a convolution filter to B; similarity at each 
desired image offset is computed using a modified Jaccard coefficient, with the number of pixels 
in the intersection of the simple and test forms divided by the total number of pixels in the simple 
form.  Thus, maximum image similarity between images A and B is computed using the Jaccard 
coefficient over binary pixel counts. 

While solving a problem, the model stores each simple form as an ordered collection of visual 
³feaWXUeV,´ ZKLcK are defined manually according to points of interest in the simple form (line 4 
in Fig. 3).  Fig. 2 (top) illustrates how the example simple form shown in Fig. 1 has been broken 
into a small collection of features.  Then, the model uses these features to define a first-stage 
saliency map according to all the locations in the test form where each of these features is 
observed, i.e. locations that have high similarity values (lines 7-9 in Fig. 3).  Fig. 2 (bottom) 
shows an example of a partial saliency map computed for the example problem shown in Fig. 1, 
using the topmost corner of the simple form as the current feature of interest. 

The model then performs a random walk, without replacement, of these high-saliency points in 
WKe WeVW fRUP (OLQe 13 LQ FLg. 3).  AW eacK ORcaWLRQ, RU ³fixation,´ WKe PRdeO cRPSXWeV LWV WePSOaWe-
based similarity matching between each feature in the simple form and the corresponding location 
in the test form to determine whether a match has been found (lines 16-20 in Fig. 3).  This term 
comes from studies of human attention and eye movements, in which a fixation refers to a short 
time interval during which gaze is directed to a specific location in the environment.  Whenever 
our model makes a comparison, it is simulating a fixation in the sense that the comparison takes 
place over a short time period in which a perceptual operation over a small, localized region of 
the visual environment must be completed before the model can move onto the next step in its 
search process.   

From each location, the model searches within a 20x20 pixel window of x-y alignments in 
order to determine whether a match exists, as determined by a thresholded similarity value (lines 
39-42 in Fig. 3).  Once a match is found, the model ceases its search and goes onto the next 
feature, or if all features have been found, the item has been solved (lines 24-25 in Fig. 3). The 
model is able to search using any ordered collection of features that describe the simple form, and 
WKe PRdeO caQ aOVR WUeaW aQ\ gLYeQ feaWXUe aV WKe ³anchor feature´ WKaW defLQeV WKe LQLWLaO VaOLeQc\ 
map.   

We also implemented one additional variation in the model, which is that instead of storing the 
simple form as a sequence of individual features during the similarity matching, the model can 
store the simple form as a single search target and perform the similarity matching in one step 
(lines 27-35 LQ FLg. 3).  We UefeU WR WKe fLUVW YaULaWLRQ aV SeUfRUPLQg ³PieceWise´ cRPSaULVRQ Rf 
the simple form, going feature by feature, and the second variation as performing 
³Comprehensive´ cRPSaULVRQV Rf WKe entire simple form at once. 
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Figure 2.  Top: Example simple form from Fig. 1, carved up into six visual features of interest with which 
to search test form.  Bottom: Example of partial saliency map created for problem shown in Fig. 1.  Anchor 
feature is defined to be the topmost corner in the simple form, and five high-similarity matching locations 
for this anchor feature in the test form are shown. (This figure is best viewed in color.) 
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Figure 3.  Pseudocode for EFT computational model, with both PieceWise and Comprehensive strategies. 
 

𝒔𝒂𝒍𝒊𝒆𝒏𝒄𝒚ሺ𝒙,𝒚ሻ =
∑ ቀ𝑻𝒆𝒔𝒕𝑭𝒐𝒓𝒎𝒊ା𝒙,𝒋ା𝒚 ∩ 𝒇𝒂𝒏𝒄𝒉𝒐𝒓𝒊,𝒋ቁ𝒊,𝒋

∑ ቀ𝒇𝒂𝒏𝒄𝒉𝒐𝒓𝒊,𝒋ቁ𝒊,𝒋
 

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝐦𝐚𝐱
𝒙𝒔𝒆𝒂𝒓𝒄𝒉ି𝟐𝟎 ழ  𝒙  ழ  𝒙𝒔𝒆𝒂𝒓𝒄𝒉ା𝟐𝟎
𝒚𝒔𝒆𝒂𝒓𝒄𝒉ି𝟐𝟎 ழ  𝒚  ழ  𝒚𝒔𝒆𝒂𝒓𝒄𝒉ା𝟐𝟎

∑ ൫𝑻𝒆𝒔𝒕𝑭𝒐𝒓𝒎𝒊ା𝒙,𝒋ା𝒚 ∩ 𝑻𝒂𝒓𝒈𝒆𝒕𝒊,𝒋൯𝒊,𝒋

∑ ൫𝑻𝒂𝒓𝒈𝒆𝒕𝒊,𝒋൯𝒊,𝒋
 

1 solveItem(Image SimpleForm, Image TestForm, int anchor) 
2  // first divide SimpleForm into features f1, f2, …, fn 
3  // for our experiments, this step was performed manually for each EFT item 
4  f1, f2, …, fn = ordered list of subimages that together comprise SimpleForm 
 
5  // choose fanchor as anchor feature and compute saliency map over TestForm 
6  for all (x, y) in TestForm 

8   if  saliency(x, y) > threshold 
9    add (x, y) to list of high-saliency points HS 
 
10  // do random walk search 
11  numFixations = 0 
12  while HS is not empty 
13   (xanchor, yanchor) = point randomly selected (and removed) from HS 
   
14   // PieceWise strategy:  Comparisons are made using each feature 
15   if PieceWise strategy is selected 
16    for i in 1 to n, starting with anchor 
17     Target = fi 
18     (xsearch, ysearch) = (xanchor, yanchor) + offset of fi in SimpleForm 
19     bool success = doComparison(Target, TestForm, (xsearch, ysearch)) 
20     numFixations++ 
21     if not success 
22      break 
23    end of for loop 
 
24    if success // search has succeeded 
25     return numFixations 
26   end of PieceWise strategy 
 
27   // Comprehensive strategy:  Comparisons are made using the entire SimpleForm  
28   if Comprehensive strategy is selected 
29    Target = SimpleForm 
30    (xsearch, ysearch) = (xanchor, yanchor) 
31    bool success = doComparison(Target, TestForm, (xsearch, ysearch)) 
32    numFixations++ 
33    if success // search has succeeded 
34     return numFixations 
35   end of Comprehensive strategy 
36  end of while loop 
 
37  return null  // search has failed 
38 end of function solveItem 
 
39 doComparison(Image Target, Image TestForm, int (xsearch,ysearch))  

41  return (similarity > threshold) 
42 end of function doComparison 
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4.  Experimental Design and Results 
We tested this model across variations in two independent variables:  the feature selected to be 
the anchor feature, and also the matching strategy that is used (Piecewise vs. Comprehensive).  
The dependent variable is the number of comparisons that the model makes before finding a 
correct solution to the item.  We label this dependent variable as the number Rf ³fixations´ Pade 
by the model.   

Because the model performs a random selection as part of its search, results can be highly 
varied across multiple runs of the model.  For the experiments presented in this paper, we ran the 
model on each EFT item 10 times, to get aggregate measures of performance.  We also tested a 
few items at 100 runs; qualitative observations seemed to indicate that aggregate performance 
was not considerably different between 10 and 100 runs, and so we chose 10 runs for the full set 
of experiments.  Here, we present detailed results from the example problem shown in Fig. 1 and 
Fig. 2, along with summary results for the actual items from the EFT.   

 
 
Figure 4.  Number of simulated fixations made by the model to solve the example problem shown in Fig. 
1, using the Comprehensive matching strategy, across different choices of anchor features.  This graph 
shows mean number of fixations made across 10 runs, and error bars indicate the standard error. 
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 Fig. 4 shows the mean (and standard error) for number of fixations made by the model in 
solving the example problem, for various choices of the anchor feature, using the 
Comprehensive matching strategy.  The anchor feature corresponding to the topmost point of the 
simple form resulting in the fewest number of fixations, averaging about 3 fixations to find the 
solution, while the top right corner of the simple form resulting in the largest number of fixations, 
averaging about 8 to find the solution.  

Fig. 5 shows the minimum, mean, and maximum number of fixations over all possible anchor 
features, averaged across 10 search trials, for each of the 18 problems on the EFT.  Note that one 
problem, problem 4, was not able to be solved by the model due to misalignments in the original 
figure drawings presented in the EFT booklet. 

Fig. 6 shows comparisons between the number of simulated fixations made using the 
comprehensive matching strategy and the piecewise matching strategy, averaged over 10 search 
trials, on the problem from Fig. 1.  We also ran these two different strategies on the problems 
from the EFT and observed similar patterns of performance.  

5.  Discussion 
The primary finding of interest from our experiments is that the choice of anchor feature can have 
a significant impact on the overall efficiency of the search.  This is notable because the choice of 
anchor feature is certainly an element of search strategy that can vary from individual to 
individual, and in fact these differences do not require differences in memory capacity or even in 
the overall structure of the search process.  Yet these individual differences, if they exist, can 
yield vastly different levels of performance.   

As shown in Fig. 4, the difference in performance can vary by more than a factor of two, as we 
see moving from the most efficient anchor feature, feature A, to the least efficient, feature E.  Fig. 
5 shows that these patterns persist across the actual problems on the EFT, with very sizable 
differences for each problem between the least and most efficient anchor features.  Fig. 6 shows 
differences that emerge between the Comprehensive and PieceWise matching strategies.  As 
expected, the piecewise strategy involves many more fixations than the comprehensive strategy, 
as it is doing the final matching feature-by-feature instead of using the entire simple form at once.  
However, what is interesting about these results is that, again, the choice of anchor feature 
actually has a considerable impact on how much the piecewise strategy contributes to the overall 
slowing of the search.  
 For feature A, again the most efficient, performing a piecewise search reduces search duration 
by about a factor of three.  For feature D, the least efficient according to this new metric, the 
search is slowed by about a factor of 9.  Similar patterns were observed across the actual test 
items from the EFT, though detailed results are not shown here. 
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 There are two main implications of these results.  First, computational models of search need to 
take visual memory for the target template into account, and not just in terms of memory capacity 
but also in terms of access, indexing, and attention to the target template within memory.  Many 
computational theories and models of attention focus exclusively on how attention is deployed 
spatially and temporally across the search space, but our computational experiments have shown 
that, in fact, how attention is deployed within the target template can have an enormous impact on 
search performance.  We have shown that this impact can be observed both in total search times, 
for simple searches, as well as in nonlinear effects on search times in more complex searches. 
 Second, in relation to studies of cognition and search using the EFT, we have identified a 
significant potential source of individual differences on the task that has not been previously 
discussed in the EFT literature:  the choice of an anchor feature while solving each item.  Our 
results serve as a proof by existence that this choice can affect search results.  Our model does not 
intelligently make this choice; instead, our experiments exhaustively tested every one of a set of 

          
Figure 6.  Example of partial saliency map created for problem shown in Fig. 1.  Anchor feature is defined 
to be the topmost corner in the simple form, and five high-similarity matching locations for this anchor 
feature in the test form are shown. 
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features as the anchor feature, and we observed the effects of this variation on search 
performance.   The next important research question, then, is how this choice of an anchor feature 
is made by human subjects, if this is indeed the strategy that humans use.  An extension of this 
question becomes how artificial agents implementing this strategy should go about choosing such 
features during visual search tasks. 
 One possibility is that the anchor feature is chosen at random (as our model does).  This seems 
unlikely, given our results about the importance of this choice and given the rarity of humans 
exhibiting truly random perceptual or cognitive behaviors.  Given the wealth of literature on the 
combined effects of top-down and bottom-up influences on attention, and the fact that the choice 
of anchor feature is essentially a deployment of attention, it seems much more likely that some 
combination of perceptual and cognitive factors will drive a person¶s choice of anchor feature. 

 Another possibility is that the anchor feature is chosen based on properties of the simple form 
alone.  However, there are two interesting observations coming from Witkin¶s design of the EFT 
that make this seem unlikely.  On the EFT, the simple form changes from one item to the next, 
and Witkin found this to be an important aspect of the overall test administration (Witkin et al., 
1971).  He observed that if the simple form were kept the same for several items in a row, then 
the discriminability of the test seemed to be lessened, as all participants would begin to show 
increased field-independence, or the ability to easily find the simple form regardless of the 
complexity of the test form.   

Witkin also specifies that the test form should be presented first, and that the subject should 
spend some time inspecting the test form before looking at the simple form.  On both the original 
EFT and the CEFT, the subject is asked by the examiner to describe the test form out loud, to 
ensure that they are sufficiently attending to it:  ³During the initial 15-second exposure of each 
Complex Figure, the Subject should be asked to describe it in any way he pleases.  The purpose 
of this procedure is to impress the organization of the Complex Figure upon the Subject´ (Witkin 
et al., 1971, p. 17). 
 This suggests that there is some kind of mental set induced by looking at the test form that is 
necessary to EFT items functioning in the intended way.  If the anchor feature were determined 
purely by the simple form, then this early presentation of the test form would make no difference 
to the anchor feature selection aspect of the search strategy. 
 The third possibility, and the most interesting one with respect to our results, is that perhaps the 
anchor feature in the simple form is chosen based on visual properties of the test form, after it has 
been initially seen and inspected by the subject.  In fact, the efficiency of search using this type of 
strategy is directly a function of how frequently the anchor feature is found in the test form, not 
its relation to other features in the simple form.  This is somewhat counter-intuitive; if one is 
searching for a target, it might seem sensible to pick the most distinctive part of the target to use 
as the anchor feature.  However, under our model, the optimal strategy would be to pick the part 
of the target that is most distinctive in the search environment, even if it occurs multiple times in 
the target. 
 So what, then, is happening when the subject is gazing (for 15 seconds, which is a very long 
time) at the test form before looking at the simple form?  In line with studies of visual priming, 
we conjecture that the subject might, in fact, be primed to attend to features of the simple form 
that were most frequent in the test form.  If this occurs, it will actually result in the worst possible 
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choice of anchor feature!  Subjects who exhibit the least amount of this kind of perceptual 
priming will thus gain an advantage on the task.  This is entirely consistent with the general idea 
of the EFT being a test of ³field-independence,´ if we define field-independence as increased 
freedom from this perceptual priming effect.  This idea is also consistent with Witkin¶s 
observations that if the same simple form is used over and over, the ability of the EFT to 
discriminate field-independence is lessened. 

6.  Contributions 
We have shown, using a new computational model of search on the Embedded Figures Test 
(EFT), that differences in internally deployed attention, i.e. sequential attention to the contents of 
visual working memory, can cause substantial differences in overall search performance.  Our 
experiments directly support the existence of this relationship as a potential explanation for 
individual differences on the EFT.   

Indirectly, our experiments have suggested to us an explanation of how the sequences of these 
internal attention deployments are selected.  We propose that when a subject looks at the test form 
in an EFT item, and then afterwards are asked to look at the simple form, they exhibit a priming 
effect that causes them to attend to the part of the simple form that was most prevalent in the test 
form.  The magnitude of this priming effect will have a direct influence on the quality of the 
anchor feature that the subject chooses; the larger the priming effect, the worse the anchor feature 
and overall search performance.  Thus, our anchor-feature-based model, together with a priming 
mechanism that drives the selection of the anchor feature, represents one possible explanation of 
the origin of ³field-independence´ as a cognitive construct.  To our knowledge, no other 
computational mechanism at this level of detail has been proposed as a possible explanation for 
the construct of ³field-independence´ in human cognition. 

Our model of search on the EFT is admittedly simplified in many ways.  The model does not 
account for traditional notions of visual salience, which have been extensively described in the 
attention literature and are generally assumed to be the primary drivers of visual search 
performance.  However, our model does identify an additional mechanism that has been left out 
of much of the extant literature.  Models that integrate the internal deployments of attention that 
we describe here together with other aspects of perception, such as salience and Gestalt 
perception, will undoubtedly be crucial to more fully understanding the computational and 
cognitive strategies used by intelligent agents on visual search tasks. 
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