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Abstract—In this work, Skeleton Decomposition (SD) and Sin-
gular Value Decomposition (SVD) are compared and evaluated
for reconstruction of data matrices whose columns come from
a union of subspaces. Specifically, an original data matrix is
reconstructed from noise-contaminated version of it. First, matrix
reconstruction using SD iteratively is introduced and alternative
methods for forming SD-based reconstruction are discussed.
Then, through exhaustive simulations, effects of process param-
eters such as noise level, data size, number of subspaces and
their dimensions are evaluated for reconstruction performance.
It is also shown that SD-based reconstruction is more effective
when data is drawn from a union of low dimensional subspaces
compared to a single space of the same dimension.

Index Terms—Skeleton decomposition, SVD, matrix recon-
struction, low-tail-noise, high-tail-noise

I. INTRODUCTION

In this paper, it is assumed that the columns of the data
matrix W = [w1 · · ·wN ] ∈ RD×N are drawn from a union
U =

⋃M
i=1 Si of linearly independent subspaces {Si}M

i=1 of
dimensions {di}M

i=1. In many real world applications, data lives
in a union of low dimensional subspaces [1], [2], [3], [4],
[5]. For instance, the set of all two dimensional images of a
given face i, obtained under different illuminations and facial
positions, can be modeled as a set of vectors belonging to a
low dimensional subspace Si living in a higher dimensional
space RD [4], [6], [7]. It is further assumed that W is
contaminated with noise N ∈ RD×N whose entries are i.i.d
N (0,σ2) random variables (i.e. zero-mean with variance
σ2). Given Wn = W+N, SD and SVD based techniques are
evaluated and compared for reconstruction of W. Performance
of each method is assessed based on the Frobenius norm of
the estimation error matrix (i.e. ‖W−W̃‖F ), where W̃ is the
reconstructed matrix. It is assumed that the rank of the original
data matrix is available.

II. SKELETON DECOMPOSITION

The skeleton decomposition (also known as CUR factoriza-
tion [8]) of a matrix W ∈ RD×N can be written as:

W =CA−1R (II.1)

where C ∈ RD×r, A ∈ Rr×r, and R ∈ Rr×N with r = rank(W)
are formed by any r columns and rows selected from W such
that they are full rank, and A is the matrix that is formed
by intersecting C and R. The construction of C,A,R is as
in Algorithm 1. Fig. 1 illustrates a sample case where row

and column indices are selected as {2,4,5} and {2,5,7},
respectively.

Algorithm 1: Matrix Skeleton Decomposition

Data: A data matrix W = [w1 · · ·wN ] ∈ RD×N .
Result: Skeleton Decomposition of W

1 r = rank(W)
2 do
3 Pick two index vectors vrow and vcol of size r from

{1, . . . ,N} (randomly or systematically)
4 Construct A such that A(i, j) = W(vrow(i),vcol( j)),

where i and j go from 1 to r
5 while rank(A) 6= r;
6 Construct a matrix C such that C(i, j) = W(i,vcol( j))

with j ∈ {1, . . . ,r} and i ∈ {1, . . . ,D}
7 Construct a matrix R such that R(i, j) = W(vrow(i), j)

with i ∈ {1, . . . ,r} and j ∈ {1, . . . ,N}

Fig. 1: Demonstration of skeleton decomposition of a matrix.

In general, there are numerous alternatives for choosing a
sub-matrix A [9], [10], [11], [12], [13]. In case there is no
noise, selecting A (i.e. the row and column indices) is not
much of a concern except for numerical stability. However,
in the presence of noise, the choice of A heavily affects the
performance of the reconstruction of the original data matrix.

III. MATRIX RECONSTRUCTION

This section explains SD-based, SVD-based, and hybrid
SD-SVD methods to reconstruct W using the noisy data
matrix Wn. SVD-based reconstruction is a single step process
whereas SD-based reconstruction is an iterative process as
explained below.



A. SVD-Based Reconstruction

It is assumed that the original data matrix W is noise
free and has rank r. However, due to presence of noise, Wn
should be full rank (i.e. rank(Wn) = min(D,N)). SVD-based
estimation of the original data matrix W is a single step
calculation using the first r singular values of Wn:

1) Find the SVD of noisy data matrix Wn =UΣV T

2) Estimate of the data matrix is calculated by using the
first r singular values found in step 1 as:

W̃svd = Û Σ̂V̂ T (III.1)

where Û ∈ RD×r, Σ̂ ∈ Rr×r, and V̂ ∈ RN×r.
In the presence of light noise, SVD based reconstruction

works well, yet as noise contamination becomes more severe
this method falls short of the following two methods.

B. SD-Based Reconstruction

Skeleton decomposition based estimation is similar to the
SVD based estimation in that a rank-r skeleton decomposition
of Wn is used to reconstruct the original data matrix (as in
Eq. II.1). However, unlike SVD, there is not a unique way
of forming this decomposition; hence, every decomposition
yields a different reconstruction of the original matrix. In
this work, numerous such reconstructions are found and their
average is used as the estimation of the original matrix. The
procedure is as in Algorithm 2.

Algorithm 2: Matrix Skeleton Decomposition

Data: A noisy data matrix Wn ∈ RD×N .
Result: W̃sd : Average of m SD reconstructions of W

1 r = rank(W)
2 for i = 1 to m do
3 do
4 Select a random A ∈ Rr×r submatrix from Wn
5 while rank(A) 6= r and A is not good;
6 Construct C and R as in Algorithm 1
7 Calculate the skeleton decomposition based estimate

of original data matrix: W̃i
sd =C A−1R

8 end

9 Calculate W̃sd =
∑

m
i=1 W̃i

sd
m

C. SD-SVD-Based Reconstruction

Both SVD-based and SD-based methods yield reconstruc-
tions of the original data matrix using a noisy version of it.
Yet, both methods yield different matrices. Therefore, at this
stage it is quite natural to ask what happens if the estimation
obtained by the SD-based method is fed to the SVD-based
method for one more reconstruction. It is seen that feeding
the output of the SD-based method (i.e. W̃sd) to SVD-based
method as input, improves the performance of the SD-based
method even further.

D. Assessment

Reconstruction performance of each method is calculated
as a scalar using the Frobenius norm of the estimation error
as follows:

e =

∥∥∥W−W̃
∥∥∥

F
‖W−Wn‖F

(III.2)

IV. NUMERICAL STUDIES

To investigate the effect of different process parameters,
various experiments are conducted using synthetic data. An
experiment involves the calculation of one or more estimations
of the original data matrix using a set of fixed process
parameters. Each set of estimations of the original data matrix
calculated using the same parameter set is referred to as an
experiment throughout the text. At the end of each experiment,
error statistics are calculated for each of the methods being
compared. Evidently, even if the process parameters are same,
if the original data matrix is changed, this becomes a new
experiment. To get statistically meaningful results about the
effect of process parameters, numerous experiments with the
same process parameters are conducted.

Before moving on with the experiments, some nomenclature
is presented followed by implementation details.

A. Nomenclature

In this work, experiments are conducted using synthetic
data. Data comes from a single subspace or a union of
subspaces. Parameters used in the generation of test data are
described below:

• D : The ambient space dimension
• n : The set of dimensions of subspaces from which data

comes
• N : The set of the number of data coming from each

subspace
• σ : Standard deviation of noise added to the noise-free

data matrix
• n rep : Number of estimations calculated for an experi-

ment
• n exp : Number of different experiments executed

Throughout the paper, these parameters as a set will be
referred to as process parameters.

A derived term, the so called occupancy factor is defined
as follows:

κ = min

(
∑
|n|
i=1 ni

D
,1

)
(IV.1)

where n is the set containing subspace dimensions, and D is
the dimension of the ambient space. Observe that as the sum
of subspace dimensions equals or surpasses the ambient space
dimension D, the occupancy parameter κ saturates at 1.

The effect of occupancy factor κ is investigated through
experiments as well. However, since it is a derived parameter,
it is not mentioned among the process parameters.



B. Number of Iterations in SD-Based Methods

The main contribution of this work is the use of SD obtained
from a noisy data matrix in order to reconstruct an estimate
to the non-noisy original data matrix. This involves numerous
reconstructions being averaged as explained in Section III-B.
However, the first question to be answered is: How many
reconstructions should be averaged? In our implementations a
conservative high number of iterations are set as the maximum
number (i.e. 10,000). Iterations are terminated either when the
maximum number of iterations is reached, or when the last
n error terms (where n = 100) have a standard deviation less
then a certain threshold (here the threshold is selected as 0.05).
Note that this approach is for assessment purposes only and
is not usable in practice since the original data matrix is not
known and hence actual error cannot be calculated. In other
words, this error based method is preferred here in order to
have a realistic performance assessment of different process
parameters.

C. Choosing Good Sub-Matrices

The skeleton decomposition method introduced in this sec-
tion uses the noisy data matrix to extract numerous sub-
matrices (that are referred to as matrix A). However, any
chosen sub-matrix A is not necessarily going to be helpful in
the estimation process. Two different approaches are tested in
order to select better sub-matrices. The first method is based on
the condition number of the chosen sub-matrix A. A threshold
is empirically selected (as 50), and any sub-matrix A with a
condition number larger than this threshold is not used in the
estimation process.

The second method is based on the determinant of the sub-
matrix A. Again a threshold is used, and this time sub-matrices
that have a determinant smaller than this threshold value are
discarded from the process [10]. The determinant threshold is
chosen as the average of the determinants of 100 randomly
chosen sub-matrices.

In order to decide on which method for selecting sub-
matrices should be used, a set of experiments are conducted
with the following parameter values:
• D = 20
• n = {2,2}
• N = {40, 40}
• σ = 0.25
• n rep = 25
• n exp = 100
In other words, 100 different data matrices are randomly

generated using the same D,N,n and σ values. And for each
data matrix, 25 different estimations are found. Results as
shown in Fig. 2 suggest that for this particular case, where
the ambient space is not highly occupied (κ = 0.2), using a
determinant based threshold seems to perform better.

Fig. 2a illustrates the average error of 100 experiments for
3 different methods: (1) SVD-based reconstruction, (2) SD-
based reconstruction selecting A based on condition number,
(3) SD-based reconstruction selecting A based on determinant.

(a) Estimation error (b) Time spent for each ex-
periment

(c) Number of matrices
used in reconstructions

(d) Percentage of matrices
used

Fig. 2: Comparison of condition number and determinant
based threshold in choosing sub-matrix A where κ = 0.2

It is seen that use of determinant results in a better approxi-
mation under similar termination conditions.

Fig. 2b shows that the determinant based method does not
only yield less error, but is also computationally fast for this
case. This is not a surprise since sub-matrices are very small
in size in comparison to the data matrix. Additionally, Fig. 2c
somewhat explains the fast computation since the determinant
based method uses roughly half the number of matrices to
compute the estimate. Fig. 2d on the other hand depicts a
fact to be aware of: the determinant based method discards
almost 70% of all the sub-matrices randomly found whereas
the condition number based method uses most of them (i.e.
more than 85%). Therefore, it should be expected that, as the
occupancy factor increases, this inefficiency of the determinant
based method will be reflected in execution times.

Therefore, it is worth checking what happens when oc-
cupancy increases. It is observed that as occupancy is in-
creased, the condition number based method catches up with
the determinant based method, and eventually performs even
better. In the next sets of experiments, subspace dimensions
are increased from n = {4,5} to n = {9,9}, and occupancy
values become κ = 0.45 and κ = 0.9, respectively. All other
parameters are kept the same. Results are illustrated in Figures
3 and 4.

As shown in Figs. 2a, 3a and 4a, performance of condition
number based method gradually catches up and gets even
marginally better.

Figs. 2b, 3b and 4b, suggest that as occupancy increases,
both approaches perform similar in time.

As is seen in Figs. 2c, 3c and 4c, as occupancy increases,
the determinant based method uses more matrices to compute
an estimation, whereas Figs. 2d, 3d and 4d suggest that as



(a) Estimation error (b) Time spent for each ex-
periment

(c) Number of matrices
used in reconstructions

(d) Percentage of matrices
used

Fig. 3: Comparison of condition number or determinant based
threshold in choosing sub-matrix A where κ = 0.45

(a) Estimation error (b) Time spent for each ex-
periment

(c) Number of matrices
used in reconstructions

(d) Percentage of matrices
used

Fig. 4: Comparison of condition number or determinant based
threshold in choosing sub-matrix A where κ = 0.9

occupancy increases, efficiency of the condition number based
method gradually drops down to the level of the determinant
based method.

Figs. 2a, 3a and 4a illustrate the performance of SVD as
well. However, SVD-based comparison will be presented in
the experiments that are to follow.

Finally, it is observed that changing the level of noise
does not change the relative performance of the two methods.
It is also noted that, as long as the structure of the data
is not changed (i.e. ambient space dimension, number of

subspaces and their dimensions), changing the number of data
in subspaces directly affects computation time but does not
favor one method over the other.

As a result, we can conclude that, for cases of low occu-
pancy, the determinant based matrix selection method should
be preferable over condition number based selection. Given
that most of the subspace segmentation problems present
data matrices with low occupation, SD-based reconstruction
in subspace segmentation problems should be done using
determinant based filtering.

V. EXPERIMENTS

Experiments presented in this section compare the per-
formance of SVD-based versus SD-based data matrix re-
construction performances based on the Frobenious norm of
the estimation matrix. Given the fact that most subspace
clustering problems are not highly occupied and using the
results presented in Section IV, determinant based filtering
is adopted in the calculation of SD-based reconstructions.

In these experiments, effects of the following parameters
are investigated systematically:
• Level of noise present on data
• Occupancy of ambient space
• Nature of occupancy
• Number of data in subspace(s)
• Noise type
• Rank estimation
It should also be noted that data is randomly generated in

each subspace separately with uniform probability. To be more
specific, first an orthonormal basis for a subspace is found,
and coordinates that are randomly generated in [−1,1] with
uniform probability are projected to this subspace.

The first parameter that is investigated is the level of noise.
For the same data matrix, level of added noise ∼N (0,σ2)
is gradually increased, and estimation performance of SVD-
based method is observed to fall short compared to SD-based
methods. The condition number selection threshold is also
studied for the random sub-matrix A of skeleton decomposi-
tion. Estimation performance is evaluated based on the scalar
value computed as given in Eq. III.2.

The second parameter that is investigated relates to how
much the subspace is occupied. Experiments suggest that, as
the occupancy parameter κ gets closer to 1, performance of all
estimation methods become similar, and when the occupancy
parameter is 1, all methods yield exactly the same result.

Even though it is shown that occupancy is a parameter that
affects the relative performance of the methods in question, the
nature of the occupancy is also found to impact the results.
In particular, since data with the same occupancy can come
from different number of subspaces with different dimensions,
performance is studied when the occupancy factor κ is the
same, but the number of subspaces and their dimensions varies.

Experiments are also designed to understand if the number
of data points in each subspace causes any performance
change among these algorithms. It is observed that SVD-
based methods performs better than SD-based methods as the



number of data increases. Further experiments are conducted
to verify this observation.

The first set of experiments solely focus on the case of
additive Gaussian noise as prescribed above, and results are
compared for various σ values. In order to see what happens
for other noise types, where noise has relatively lighter or
heavier tail with respect to the Gaussian noise, an additional
set of experiments are conducted.

To conclude our analysis, validity of one of our assumptions,
i.e. we can accurately estimate the rank of the original data
matrix, is tested. The last set of experiments studies the
performance of SVD-based and SD-based methods under poor
rank estimation.

A. Effect of Noise Level

This section focuses on how two proposed methods compare
with the SVD-based method under various levels of noise. An
analogous case to the motion segmentation problem [14], [15]
is constructed, where 5 different features on 3 different rigid
bodies are followed for 150 frames. This is roughly a 5 sec.
video at 30 frames per second. For this motion segmentation
scenario (Experiment-1), process parameters are set as follows:
• D = 300
• n = {4,4,4}
• N = {5,5,5}
• σ = {.010, .015, .020, .025, .030, .035, .040, .045, .050}
• n rep = 20
• n exp = 100

where the test parameter is the noise level σ . Results are
presented in Fig. 5. It is seen that as noise level increases,
SD-based reconstruction yields less error, and as expected,
SD-SVD outperforms SD.

Fig. 5: SVD, SD, and SD-SVD results for Experiment-1

Another set of experiments (Experiment-2) with different
process parameters are executed as follows:
• D = 50
• n = {2,4,6}
• N = {5,10,15}
• σ = {.025, .050, .080, .120, .200, .300}

• n rep = 20
• n exp = 100
Results are shown in Fig. 6.

Fig. 6: SVD, SD, and SD-SVD results for Experiment-2

It is seen that as noise level increases, the SD-based methods
perform better. In other words, as the noise grows, SVD-
based reconstruction performance degrades. The noise level
over which the SD-based method performs better depends on
the process parameters; however, extensive simulations point
to the fact that, above a certain noise level, the SD-based
method surpasses the performance of SVD-based method. It
should also be noted that, for very low noise levels, SD-based
methods yield errors that are larger than 1.0 which suggests
that SD-based methods are not suitable for these cases.

B. Effect of Occupancy

Occupancy factor turns out to affect the relative perfor-
mances of SVD-based and SD-based methods. As occupancy
factor κ increases, both methods start to behave similar in
terms of their estimation performance. When κ = 1.0, both
methods yield exactly the same result independent of the
remaining process parameters. This is simply due to the fact
that both methods are reconstructing the noisy data matrix
exactly. Experiments with the following process parameters are
carried out to study how these methods behave as occupancy
gradually increases.
• D = 35
• n = {{2,2},{4,4},{8,8},{15,15},{18,17}}
• N = {50, 50}
• σ = 0.100
• n rep = 20
• n exp = 100
The corresponding occupancy values are 0.11, 0.22, 0.46,

0.86 and 1.00 respectively for each value of n. Fig. 7 shows
the simulation results.

It is observed that at lower occupancy values SD-based
methods perform better than the SVD-based method for this
process, and as a matter of fact for many other sets of process
parameters that are not included in this text. It is possible to
find a case where the SVD-based method performs better at



lower occupancies, yet the trend is the same as shown in Fig. 7,
i.e. performance of all methods gradually becomes similar as
the level of occupancy increases.

Fig. 7: Effect of occupancy levels: [0.11−1.00]

C. Effect of Occupancy Structure

After understanding the effect of occupancy, a natural ques-
tion that comes to mind is whether the structure of occupancy
matters. Observe that a particular occupancy value can be
obtained as a result of various subspace configurations. For
example, every other process parameter being the same, two
cases with n = {2,2,2} and n = {3,3} yield the same occu-
pancy factor. To further understand the effects of occupancy
structure, a set of experiments with 5 different cases are
conducted where the process parameters are as follows:
• D = 35
• σ = 0.150
• n rep = 20
• n exp = 100

Values of n and N are set as follows for different cases:
• Case 1:

n = {1,1,1,1,1,1,1,1},
N = {10,10,10,10,10,10,10,10}

• Case 2:
n = {2,2,2,2},
N = {20,20,20,20}

• Case 3:
n = {2,3,3},
N = {20,30,30}

• Case 4:
n = {4,4},
N = {40,40}

• Case 5:
n = {8},
N = {80}

Observe that the number of subspaces are gradually de-
creased while their dimension is increasing to keep the occu-
pancy factor constant. Also note that the number of data points
is kept constant in these experiments.

Results shown in Fig. 8 suggest that, for cases where the
data comes from the union of a higher number of lower
dimensional subspaces, SD-based methods will perform better.

Many other tests, not included here, suggest the same con-
clusion (with similar plots) that SD-based methods should
be preferred if data comes from the union of many low-
dimensional subspaces.

Fig. 8: Effect of occupancy structure

D. Effect of Number of Data Points

The final process parameter studied is the number of data
points. In a set of experiments, while keeping all other
parameters constant, the number of data points is increased.
Note that the occupancy factor is still constant in this analysis.

Process parameters are set as follows:
• D = 50
• n = {1,2,4}
• N = { {10, 10, 10}, {20, 20, 20}, {40, 40, 40},
{100, 100, 100} }

• σ = 0.150
• n rep = 20
• n exp = 100

where the number of data in the three subspaces is gradually
increased from 10 to 100.

Results shown in Fig. 9 are representative of the results
from many other test runs with completely different process
parameters. As suggested by this figure, increase in the number
of data points favor SVD-based reconstruction over SD-based
methods at some point. What changes from one parameter
set to another is this point beyond which SD-based methods
exhibit subpar performance.

E. Effect of Noise Type

In all of the previous experiments, noise was zero mean
Gaussian with various σ values. The following probability
distribution function (PDF) is used to obtain PDFs with
different characteristics by changing a parameter φ :

f (x|σ ,φ) =
1
K

1√
2πσ

e−
|x|φ

2σ2 . (V.1)

Observe that the zero-mean Gaussian distribution is obtained
when φ = 2 (i.e. N (0,σ2)). When φ > 2 the PDF becomes
lighter tailed and when φ < 2, the corresponding PDF becomes



Fig. 9: Effect of number of data points

heavier tailed with respect to the normal distribution as illus-
trated in Fig. 10. Here, K is a normalizing term so that as φ

changes,
∫

∞

−∞
f (x|σ ,φ) remains to be 1.

Fig. 10: 3 different PDFs for φ = {1,2,3} and σ = 1

A set of experiments are conducted where noise is
generated using distributions with the following φ values:
{4,3,2,1,0.75,0.5,0.25,0.10}. Results obtained using the fol-
lowing process parameters are shown in Fig. 11.
• D = 200
• n = {4,4}
• N = {6,6}
• σ = 0.050
• n rep = 1
• n exp = 100
It is seen that noise type definitely is a discriminative

factor among SVD-based vs SD-based methods. For Gaussian
or lighter tailed noise, SD-based method have a definitive
advantage over SVD-based method, whereas, for heavier tailed
noise, SVD-based method has marginal advantage over SD-
based method.

F. Effect of Rank Estimation

Finally, our assumption that rank is properly estimated is
tested. This section focuses on what happens when rank is
poorly estimated. Many tests are run and most of the time

Fig. 11: Effect of noise type of a heavier tail

results are as expected, that is, reconstruction error is minimal
when the rank is properly estimated. However, for certain
conditions, wrong rank estimation has different impacts.

Consider the following process parameters, with relatively
low levels of noise and small number of data in each subspace:
• D = 50
• n = {2,4,6}
• N = {5,10,15}
• σ = 0.020
• n rep = 20
• n exp = 100

where, rank estimation varied as
{2,6,11,12,13,18,20,22,25,30}. Given that the correct
data rank is 12, Fig. 12 illustrates that at and around 12,
the algorithms perform best. It should be observed that in
this case, estimating rank lower yields error values above
1, which means the original noisy matrix is better than the
reconstruction, hence reconstruction does not help at all.

Fig. 12: Effect of rank approximation: Low noise, small
number of data points

It should also be observed that as rank is estimated higher
than that of the actual rank, error gradually increases to 1. In
other words, as rank is over estimated, reconstruction starts



to yield the original noisy matrix, defeating the purpose of
reconstruction.

As the noise level is increased as shown in Fig. 13, where
σ = 0.200, it is seen that, estimating the rank lower than the
actual value indeed improves performance or reconstruction
for SD-based methods. It should be noted that best recon-
struction performance coincides with the dimension of the
largest subspace. Increasing number of data points present in
subspaces (10 folds in this case), results shown Fig. 14 suggest
more intuitive results where reconstruction is best around the
actual rank.

Fig. 13: Effect of rank approximation: High noise, small
number of data points

Fig. 14: Effect of rank approximation: High noise, higher
number of data points

Unsurprisingly, proper rank estimation is important. It can
be concluded that, for low levels of noise with only small
number of data, over-estimation is safer, but reconstruction
only provides very marginal advantage, whereas for high
levels of noise with small number of data, a rank estimation
between the dimension of the largest subspace and the actual
rank yields better results. Even though only one instance
with specific process parameters are presented here, many

experiments not documented in this paper suggested similar
results.

VI. CONCLUSION

This study shows that SD-based matrix reconstruction may
perform better as data gets corrupted with higher level of noise.
Additionally, as the occupancy factor gets lower, SD-based
methods outperforms the SVD-based method in the presence
of lower level of noise. However, as this factor gets higher,
SVD-based and SD-based methods perform comparably. A
major conclusion of this work is that SD-based reconstruction
outperforms SVD-based reconstruction when data comes from
a union of low dimensional subspaces. In other words, in
subspace clustering problems, it is expected that SD-based
denoising would be more effective than SVD-based denoising.
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