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Abstract—This article discusses the structure of various shift-
invariant spaces of cardinal functions generated by a single
kernel, and their role in some approximate sampling methods.
Particularly, conditions on the generating kernel φ are given
which imply that the associated Lp shift-invariant space coincides
with the shift-invariant space for the cardinal function Lφ
generated by the kernel. Additionally, we discuss how such spaces
are used in summability methods for the classical sampling series.

I. INTRODUCTION

In the beginning was the classical sampling theorem, and
while its proper attribution may be disputed, the mathematical
and engineering communities took note, and saw that it was
good. The theorem states that any L2 function whose Fourier
transform is compactly supported may be represented exactly
as

f(x) =
∑
n∈Z

f
( n

2Ω

)
sinc(2Ωx− n), (1)

where the cardinal sine function is defined by sinc(x) :=
sin(πx)/(πx), the support of f̂ lies within [−Ω,Ω], and the
series converges in L2 and uniformly on R. Thus for a well-
behaved class of signals, it suffices to know only their samples
at a sufficiently fine lattice to obtain perfect reconstruction.

Nonetheless, the beauty of this representation has its lim-
its. For one thing, the sinc kernel is poorly localized, and
approximating the series in (1) may require rather a lot of
samples. Oversampling (i.e. taking the samples at a finer
lattice) gets around this difficulty, but sometimes at a non-
trivial cost. Another method proposed by I. J. Schoenberg
and which is used heavily in many areas of approximation
theory is that of a summability method, i.e. one in which the
cardinal sine series on the right-hand side of (1) is suitably
modified to converge more rapidly, at the possible cost of
replacing equality by approximate equality (in the L2 norm
sense). In [17], Schoenberg discussed summability methods
for the interpolating series involving cardinal B–splines. In
the intervening time, B–splines have come to enjoy quite a
prominent place in sampling theory and signal processing ([8],
[18], [19] and the many references therein). Another prominent
example of a summability method is the use of the well-known
Fejér kernel to make the modified partial sums of the Fourier
series of a periodic function converge to the function.

II. CARDINAL FUNCTIONS

One example of a summability method introduced by
Schoenberg in [16] is to simply replace the sinc kernel with
some other function which behaves similarly on the lattice, but
which nonetheless decays more rapidly away from the origin.
He considered specifically the following.

Definition II.1. A function L : R → R is called a cardinal
function provided L(k) = δ0,k, k ∈ Z.

Consequently, the series given by

∑
n∈Z

f
( n

2Ω

)
L(2Ωx− n) (2)

interpolates f at the lattice (2Ω)−1Z. The trade-off of using
a cardinal function to replace the sinc is that one attempts
to design L such that the interpolating series above is close
to f in the norm under consideration, while L decays more
quickly than sinc. Recalling that sinc(x) = O(|x|−1), this is
rather attainable as subsequent examples demonstrate.

From now on, we focus on the canonical case when
Ω = 1/2, and the sampling occurs at the integer lattice; the
subsequent analysis extends to other band-sizes via dilation.
Moreover, the following definition of the Fourier transform is
used in the sequel: f̂(ξ) :=

∫
R f(x)e−2πixξdx.

Of course, there are many feasible ways to construct such
cardinal functions, but we focus on a method which arises
from the theory of radial basis functions [5]. Consider a fixed
function φ : R→ R, and formally define the cardinal function
associated with it via its Fourier transform as follows:

L̂φ(ξ) :=
φ̂(ξ)∑

n∈Z φ̂(ξ − n)
. (3)

If φ̂ and the periodic symbol σ(ξ) :=
∑
n∈Z φ̂(ξ − n) are

sufficiently nice, then the inversion formula holds, and Lφ
is a cardinal function. Indeed, this follows from the (formal)



calculation

Lφ(k) =

∫
R

φ̂(ξ)∑
n∈Z φ̂(ξ − n)

e2πikξdξ

=
∑
m∈Z

∫
T+m

φ̂(ξ)∑
n∈Z φ̂(ξ − n)

e2πikξdξ

=

∫
T

∑
m∈Z φ̂(ξ −m)∑
n∈Z φ̂(ξ − n)

e2πikξdξ

= δ0,k,

where under this normalization of the Fourier transform, we
identify the torus T with the interval [−1/2, 1/2].

Assumptions on φ which make the previous analysis rigor-
ous will be discussed in later sections, and have been consid-
ered in [5], [12]. For a thorough analysis of, and introduction
to, the ideas of radial basis functions and their associated
interpolation schemes, the reader is invited to consult [6], [20].

Table I below shows the decay rates for cardinal functions
associated with some well-known radial basis functions. The

φ Decay Rate of Lφ
e−λ|x|

2
O(e−λ|x|)

1T ∗ . . .︸︷︷︸ ∗
n

1T O(e−|x|)

(|x|2 + c2)α


O(|x|−b2α+1c), α ∈ (0,∞) \ N
O(|x|−d2α−2e), α < −1
O(|x|−k), k ∈ N, α = −1.

TABLE I
DECAY RATES FOR CERTAIN RBFS.

proof of decay for the Gaussian is due to the insightful work of
Riemenschneider and Sivakumar [13], [14], while that for B–
spline is due to Schoenberg [16], whereas the general analysis
for the multiquadrics (|x|2+c2)α may be found in [10] (though
for half-integer exponents, more precise rates were already
considered [2], [5], [7]).

III. SHIFT-INVARIANT SPACES

A Shift-invariant space is a space of functions generated by
uniform translates of a single window, taking the form

Vp(φ) :=

{∑
n∈Z

anφ(· − n) : (an) ∈ `p(Z)

}
.

Such spaces are often considered in signal processing because
they are natural generalizations of the space of bandlimited
functions since the sampling theorem and (1) imply that
PW = V2(sinc), where PW is the Paley–Wiener space of
L2 functions satisfying supp(f̂) ⊂ T. (Note that sometimes in
the literature these are defined by spanLp{φ(· − n) : n ∈ Z},
but for suitably regular windows, the definitions coincide).

Given the form of (2), it is natural to consider the behavior
of the spaces Vp(Lφ), where Lφ is a cardinal function.
However, in many cases, the cardinal function itself may be
expressed in the form

Lφ(x) =
∑
n∈Z

cnφ(x− n). (4)

Generally, the nature of the convergence of this series and the
behavior of the coefficients (cn) depend on the nature of φ
itself. Consequently, we ask the following question.

Problem III.1. Under what conditions on p and φ does
Vp(φ) = Vp(Lφ)?

IV. STRUCTURE OF SAMPLING SPACES RELATED TO
CARDINAL FUNCTIONS

To make some progress on Problem III.1, let us first
consider the easier case p = 2. Recall the definition of the
Wiener amalgam space

W (L∞, `1) :=

{
f :
∑
n∈Z
‖f(·+ n)‖L∞(T) <∞

}
,

with the implicit norm there denoted ‖ · ‖W for simplicity.
Consider the following two conditions:
(A) φ̂ ∈W (L∞, `1)
(B) φ̂ ∈ C(T) with φ̂(ξ) ≥ ε > 0 on T and φ̂ ≥ 0 a.e. on R.

Note that the sinc function satisfies (A) and (B), so they are
not overly strict for our purposes.

Proposition IV.1. If φ satisfies (A) and (B), then Lφ(x) :=∫
R L̂φ(ξ)e2πiξxdξ with L̂φ defined as in (3) is a cardinal

function. Moreover, Lφ satisfies (A) and (B).

Proof. First notice that (A) and (B) imply that L̂φ ∈ L1 ∩
L2(R). Indeed, (B) implies that

L̂φ(ξ) ≤ ε−1φ̂(ξ) (5)

almost everywhere, whereby the straightforward fact that
W (L∞, `1) ⊂ L1 ∩ L2 yields the conclusion. Consequently,
Lφ defined by the Fourier inversion formula is continuous and
square-integrable on R. Moreover, the formal calculation in
Section II showing that Lφ(k) = δ0,k, k ∈ Z is justified by
the Monotone Convergence Theorem on account of (B).

To verify the moreover statement, first notice that (5) implies
that ‖L̂φ‖W ≤ ε−1‖φ̂‖W <∞, which is (A). Secondly, on T,
L̂φ(ξ) ≥ ε

‖φ̂‖W
> 0, whilst L̂φ ≥ φ̂(ξ)

‖φ̂‖W
≥ 0 a.e. on R, which

is (B).

Theorem IV.2. If φ satisfies (A) and (B), then V2(φ) =
V2(Lφ).

Proof. By Plancherel theory, it suffices to show that the
Fourier transforms of the spaces in question are equal. To wit,
notice that V̂2(φ) = {φ̂

∑
n∈Z ane

2πin· : (an) ∈ `2(Z)}, and
similarly for V̂2(Lφ). However, since (an) runs over all of `2,
we equivalently have

V̂2(φ) = {φ̂Q : Q is periodic, and Q|T ∈ L2(T)}.

Since the symbol σ(ξ) :=
∑
n∈Z φ̂(ξ − n) is continuous,

periodic, bounded, and bounded away from 0, any ĝ = φ̂Q ∈
V̂2(φ) may be expressed as

ĝ =
φ̂

σ
(σQ) ∈ V̂2(Lφ)



since σQ is evidently periodic and in L2(T). Thus V̂2(φ) ⊂
V̂2(Lφ), and the reverse inclusion follows similarly.

Note that this, in particular, implies that Lφ ∈ V2(φ), i.e.
(4) holds with `2 coefficients, with the series converging at
least in L2. However, it is not necessary that φ satisfy (A)
and (B) for the cardinal function Lφ to do so. Indeed, for the
multiquadrics with positive exponent α, the space V2(φ) is not
even well-defined, but nonetheless the decay of the Fourier
transform of Lφ is such that V2(Lφ) is well-defined and Lφ
satisfies (A) and (B) (see Table I and [10]).

Since it will lead to some additional structural conclusions
in the case of general p, we record the following fact.

Proposition IV.3. If φ satisfies (A) and (B), then {φ(· − n) :
n ∈ Z} is a Riesz basis for V2(φ).

Proof. It suffices to verify that the system {φ̂e−2πin· : n ∈ Z}
is a Riesz basis for its span. Recall a system (fn)n∈Z is a Riesz
basis for a Hilbert space H if c1‖a‖2`2 ≤ ‖

∑
n∈Z anfn‖H ≤

c2‖a‖2`2 for every a ∈ `2 for some positive constants c1, c2.
To verify this for the system in question, notice that∥∥∥∥∥∑
n∈Z

ane
−2πin·φ̂

∥∥∥∥∥
2

L2

=
∑
`∈Z

∫
T+`

∣∣∣∣∣∑
n∈Z

ane
−2πinξ

∣∣∣∣∣
2

|φ̂(ξ)|2dξ

=

∫
T

∣∣∣∣∣∑
n∈Z

ane
−2πinξ

∣∣∣∣∣
2∑
`∈Z
|φ̂(ξ + `)|2dξ.

By (A) and the fact that the `2 norm is subordinate to the `1
norm, the quantity on the right-hand side above is majorized
by ‖φ̂‖2W ‖a‖2`2 . On the other hand, it is bounded below by
ε2‖a‖2`2 by (B), which verifies the Riesz basis inequality.

Having made some conclusions in the p = 2 case, let us now
turn to the case of other p. First, note that for any 1 ≤ p ≤ ∞,
Proposition IV.1 implies that Vp(φ) and Vp(Lφ) are closed
subspaces of Lp(R) and that for 1 ≤ p <∞, {φ(· − n) : n ∈
Z} is an unconditional basis for Vp(φ), and likewise for the
analogous system in Vp(Lφ) (see [1, Theorem 2.4]).

Next, recalling that the Fourier transform may be extended
to functions in Lp(R) for 1 ≤ p ≤ 2 via the Riesz–
Thorin Theorem, we begin there. To proceed, we make another
assumption on the window:

(C) (φ(k))k∈Z ∈ `1.

The primary reason for this assumption is that it implies that
the periodic symbol σ(ξ) :=

∑
n∈Z φ̂(ξ − n) is in the Wiener

algebra A(T) of functions with absolutely summable Fourier
coefficients. Indeed, one need only notice that σ̂(k) = φ(k)
via the same periodization argument used in the calculation in
Section II.

It follows then that σ(ξ) =
∑
n∈Z cne

−2πinξ for some
c ∈ `1, and moreover by Wiener’s Tauberian Theorem that
1/σ(ξ) =

∑
n∈Z dne

−2πinξ for some d ∈ `1. With this
observation in hand, we can make the following conclusion.

Theorem IV.4. If φ satisfies (A)–(C), then Vp(φ) = Vp(Lφ)
for every 1 ≤ p ≤ 2.

Proof. Let (cn) and (dn) be the Fourier coefficients of
σ and 1/σ as discussed above. Then consider a function∑
n∈Z anφ(x − n) such that (an) ∈ `p; the following formal

calculation follows by noticing that φ̂ = σL̂φ and writing
φ(x− n) via the Fourier inversion formula:∑

n∈Z
anφ(x− n) =

∫
R

∑
n∈Z

ane
−2πinξφ̂(ξ)e2πixξdξ

=

∫
R

∑
n∈Z

(a ∗ c)ne−2πinξL̂φ(ξ)e2πixξdξ

=
∑
n∈Z

(a ∗ c)nLφ(x− n).

The interchange of the sum and the integral follows from Fu-
bini’s theorem, which is justified below. Subsequently, the fact
that `p ∗ `1 ⊂ `p yields the conclusion that Vp(φ) ⊂ Vp(Lφ).
To justify the use of Fubini’s Theorem above, consider that,
by periodization and positivity of φ̂,∫

R

∣∣∣∣∣∑
n∈Z

ane
−2πinξφ̂(ξ)e2πixξ

∣∣∣∣∣ dξ
≤
∫
T

∣∣∣∣∣∑
n∈Z

ane
−2πinξ

∣∣∣∣∣ ∑
m∈Z

φ̂(ξ −m)dξ.

=

∫
T

∣∣∣∣∣∑
n∈Z

ane
−2πinξ

∣∣∣∣∣σ(ξ)dξ.

By Hölder’s inequality, the final term above is majorized by
‖
∑
n∈Z ane

−2πin·‖Lp(T)‖σ‖Lq(T), where 1/p+1/q = 1. This
is finite since σ ∈ A(T) is continuous, and the trigonometric
series is bounded in Lp by utilizing the facts that ‖ · ‖Lp(T) ≤
‖ · ‖L2(T), and ‖ · ‖`2 ≤ ‖ · ‖`p for 1 ≤ p ≤ 2.

To see the reverse inclusion, one need only perform the
same calculation using the fact that L̂φ = φ̂/σ, and notice
that by (3),

∑
m∈Z L̂φ(ξ −m) = 1. Consequently, Vp(Lφ) ⊂

Vp(φ), which yields the conclusion for the given range of p.

It is natural to ask if Theorem IV.4 remains true for p > 2,
but thus far we have been unable to prove this. However, the
assumptions on the decay of the generating function φ are such
that equality of the spaces for large p seems quite reasonable.

Remark IV.5. Note that for the Gaussian and the Poisson ker-
nel (1+x2)−1, their Fourier transforms satisfy conditions (A)–
(C), and consequently their associated shift-invariant spaces
coincide with those associated with their cardinal functions.
This was already known under slightly different conditions
[6], but our conditions and method of proof are somewhat
different here.

V. RELATION TO APPROXIMATE SAMPLING SCHEMES

Here we briefly discuss the appearance of these shift-
invariant spaces in some approximate sampling schemes which
arise naturally from the radial basis function literature. To



begin, let us note that for bandlimited functions, we may
find unique interpolants in the shift-invariant spaces discussed
above:

Theorem V.1. If φ satisfies (A) and (B), then for every
f ∈ PW , there is a unique function Iφf ∈ V2(φ) such that
Iφf(n) = f(n), n ∈ Z.

Proof. Conditions (A) and (B) imply the conditions (A1)–(A3)
in [11], whereby the conclusion follows from Proposition 1
therein.

Naturally, Theorem IV.2 implies that this interpolant is in
V2(Lφ), and by uniqueness, it must have the form

Iφf(x) =
∑
n∈Z

f(n)Lφ(x− n),

which matches that of (2).
With this in mind, it is pertinent to consider the behavior of

the spaces V2(φ) in relation to PW . One way of doing this
is to estimate dist2(PW,V2(φ)) := inf

f∈PW,g∈V2(φ)
‖f − g‖L2 .

While for a fixed φ this may be difficult in general, some
asymptotic considerations have been done.

To wit, consider a family of kernels (φα)α∈A which are
indexed by some parameter (for example, gα(x) := e−|x|

2/α,
α > 0). Then under suitable regularity conditions on the
family of kernels (see [11], [12]), we have that

lim
α→∞

dist2(PW,V2(Lφα)) = 0,

and moreover that for any given f ∈ PW , its interpolants
given by Theorem V.1 converge (this is the content of [12,
Theorem 2] for general families, whereas for the Hardy mul-
tiquadric

√
x2 + 1 see [2]). For similar results for the Gaussian

kernel but nonuniform sampling sites, see [15], and for other
families of kernels, [9]. In another vein, interpolation and ap-
proximation methods from so-called ladders of shift-invariant
spaces of the form {V2(φh, hZ)}h>0, with φh(x) := φ(x/h)
have been thoroughly explored ([3], [4] and many subsequent
papers).

VI. CONCLUSION

We have studied briefly the structure of some Lp prin-
cipal shift-invariant spaces generated by so-called cardinal
functions, and their relationship to the (typically) radial basis
functions associated with them. Some basic conditions involv-
ing only the Fourier transforms of the generating kernel have
been given under which the spaces coincide for a restricted
range of p, and we have given a brief review of their use in
summability methods related to the classical sampling theorem
as well as some of the considerations of approximation orders
made in the classical approximation theory literature. In the
end, it is worth mentioning the heuristic idea that any aspect
of sampling theory in which B–splines enjoy success should
be amenable to the use of radial basis functions, which
sometimes due to their nice structure, may lead to more
computational feasibility. That is not to say that B–splines
should be abandoned altogether, but nonetheless there are

other options available which may allow for some additional
flexibility.
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