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� Abstract
To study the process of morphogenesis, one often needs to collect and segment time-
lapse images of living tissues to accurately track changing cellular morphology. This
task typically involves segmenting and tracking tens to hundreds of individual cells over
hundreds of image frames, a scale that would certainly benefit from automated rou-
tines; however, any automated routine would need to reliably handle a large number of
sporadic, and yet typical problems (e.g., illumination inconsistency, photobleaching,
rapid cell motions, and drift of focus or of cells moving through the imaging plane).
Here, we present a segmentation and cell tracking approach based on the premise that
users know their data best–interpreting and using image features that are not accounted
for in any a priori algorithm design. We have developed a program, SeedWater Segmen-
ter, that combines a parameter-less and fast automated watershed algorithm with a suite
of manual intervention tools that enables users with little to no specialized knowledge
of image processing to efficiently segment images with near-perfect accuracy based on
simple user interactions. ' 2012 International Society for Advancement of Cytometry
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croscopy; Drosophila; embryogenesis

IN studying embryonic development and morphogenesis, one often needs to track

the morphological changes of individual cells in living tissues. This requires the col-

lection of time-lapse movies of labeled cells, segmentation of each image frame into

individual cells, and tracking cell identity across frames. Collecting the image sets

using confocal or multiphoton fluorescence is now routine (1), but image segmenta-

tion and cell tracking represent substantial analysis bottlenecks. A number of algo-

rithms and tools have been proposed for automated and/or manual segmentation

and tracking of surface-labeled cells (2–12, reviewed in depth in 13,14), but few can

segment and track tens to hundreds of close-packed cells over hundreds of image

frames with an accuracy that correctly segments all cells distinguishable by the

human eye. Automated methods, such as CellCognition and CellProfiler (2,4,5,7),

are fast but do not attain the needed accuracy. Manual interactive tools like TrakEM2

and ITK-SNAP can attain the needed accuracy but are prohibitively slow (9–12). The

only currently available tool that is both interactive and capable of segmenting and

tracking packed cells in tissue is Packing Analyzer (3); unfortunately, it is still quite

slow.

Our approach to solving the segmentation and tracking problem is based on the

premise that users know their data best; they may be able to interpret and use image

features that are not accounted for in any a priori algorithm design. Thus, we have

designed a system that combines a parameter-less and fast watershed algorithm with

a suite of manual intervention tools that allows users with little to no specialized
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knowledge about image processing to efficiently segment

images with near-perfect accuracy based on simple user inter-

actions.

In general, the segmentation and tracking process can be

broken into three steps: object identification, boundary gen-

eration, and object tracking (i.e., maintaining a consistent ID

on the cell through time). Each step can be performed either

manually or automatically. For example, object identification

has been performed by manually clicking on an image to gen-

erate a ‘‘seed’’ for each cell (8–10) or by automatically finding

such seeds using the minima of a Gaussian-filtered image or

taking a threshold (4,11,12). Boundary generation has been

performed manually by drawing a perimeter (4,9) or automa-

tically via seed-based space-filling algorithms like a watershed

or level set method (7,11,12). Likewise, object tracking can be

applied as a manual post-processing step or as an automated

post-process technique, for example, using maximal overlap of

segmented regions in different frames to map ID’s from one

frame to the next (5,6,14). Object tracking has also been auto-

mated in process by using the region centroids from one frame

to generate seeds for space-filling algorithms applied to the

next frame (7).

Our approach provides an initial automated guess at the

seed positions (based on minima of a Gaussian-filtered image

or the region centroids from segmentation of a previous

frame) and uses an automated watershed algorithm to gener-

ate the region boundaries. Manual intervention comes

through the use of in-process tools to add, delete, group and

move seeds. As each change is made, the watershed algorithm

automatically redraws the region boundaries. This process is

repeated as necessary, automating the tedious process of find-

ing the exact boundary locations, but allowing user control of

object identification, segmentation, and tracking to any level

of user-desired accuracy. Here, we show applications of this

method to time-lapse image sets of morphogenesis and wound

healing in Drosophila embryos.

MATERIALS AND METHODS

Sample Preparation and Imaging

The primary strain of Drosophila melanogaster used in

this study is ubi-DE-Cad-GFP (Kyoto Drosophila Genetic

Resource Center), which ubiquitously expresses a cadherin-

GFP fusion that labels epithelial cell junctions (15). Fly

embryos were dechorionated and prepared for live imaging as

described previously (16). Time-lapse image sets were cap-

tured on a Zeiss LSM410 laser-scanning confocal microscope

(inverted) with a 403 1.3 NA oil-immersion objective. Cellu-

lar ablations were performed with the third harmonic (355

nm) of a Q-switched Nd:YAG laser (Continuum Minilite II,

Santa Clara, CA; 16).

Segmentation Algorithm

Our segmentation and tracking system is based on a

watershed approach. Initiation of watershed segmentation

requires an initial set of starting pixels or seeds. Each seed has

a unique identifier value that denotes the segmented region to

which it will contribute. This allows multiple seeds for each

region. The algorithm then fills the space by expanding the

regions around each seed, starting with the darkest pixels first

and slowly raising the ‘‘water’’ level. This process continues

until the regions meet at boundaries and all pixels are assigned

a value (17–19). We chose a watershed approach for three

reasons: (1) it does a fairly good and consistent job of deter-

mining cell boundaries based on the bright lines of our

GFP-cadherin fluorescence images; (2) it has the flexibility to

use different numbers of seeds for each cell, one for most, but

two or more for cells that are difficult to segment; and (3) it

has no user-selectable parameters. This last point means that

the user does not need previous image processing expertise to

guide parameter selection.

To initialize the watershed segmentation and tracking

procedure for a xyt (or xyz) image stack, we select seeds for

the first xy-image based on the local minima after application

of a Gaussian filter. This does require a user-selectable param-

eter—the width of the Gaussian kernel—but it is easy to

manually vary this parameter until one obtains a reasonable

compromise between under- and over-segmentation as in Fig-

ure 1. A Gaussian filter is not used to identify seeds for subse-

quent images. Instead, once the user is satisfied with the seg-

mentation of image frame j, the centroid of each cell in frame

j is used as a seed for frame j 1 1 (using the same identifier

value). This approach advantageously and automatically pro-

vides in-process cell tracking (7).

Although the automated parts of this process yield gener-

ally reasonable results, there are obvious instances of incorrect

segmentation. In fact, our time-lapse image sets contain fre-

quent situations (such as sudden motion, movement of cells

into or out of the imaging plane, or unusually bright regions

internal to a cell) in which it is difficult or perhaps impossible

for any automatic algorithm to properly segment the cells

(Fig. 1). We have thus chosen to develop a general-purpose

framework and a suite of tools that enable a user to make

these difficult decisions efficiently and directly. Although

improved algorithms can tune segmentation for specific cases,

our approach should be more flexible and more generally ap-

plicable.

Our novel approach to a hybrid of manual and automatic

segmentation is not to adjust the final cell boundaries, but to

directly adjust the seeds themselves. By doing so, we have a

method that is robust, flexible, and easy to use. With a speci-

fied set of seeds, boundary generation by the watershed algo-

rithm is fast and requires no user-selectable parameters, so

incremental adjustment of the seeds and thus changes to the

segmentation can be evaluated in real time. These features

have also allowed us to create a simple save and load function-

ality that allows segmentation to be readjusted or completed at

a later date. With this approach, if a user makes detailed

changes to one section of an image, these changes will not have

to be thrown out if coarse changes are later made in another

section (as would be the case with some types of post-process-

ing correction schemes based on manual image correction).

The seed manipulation tools we have developed are based

on the ability to quickly add, delete, group, and move seeds.
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There are one-click functions to ‘‘Add Seed,’’ ‘‘Delete Seed,’’

and expand regions with ‘‘Extra Seeds.’’ This last feature allows

the user to add secondary seeds for a cell, which the watershed

algorithm then uses to expand that cell’s boundaries. These

extra seeds do not normally propagate in the tracking system,

but normal tracking can be bypassed to copy all seeds

(including extras) directly from the previous frame. This can

be very useful with strangely shaped objects like thin curves or

rings. There are also simple mouse/keyboard combinations to

‘‘Change Value’’ or ‘‘Swap Values’’ that change the identifier

value associated with each cell. Finally, there is a ‘‘Lasso’’ tool

that provides the ability to select individual seeds or groups of

seeds (regardless of identifier value), which can then be moved

or deleted en masse. A video demonstration of these segmen-

tation tools is available as Supporting Information (Movie 1).

Technical Implementation

For the core watershed algorithm, we used the function

cwatershed from the python package Mahotas (20), which is

part of the larger PythonVision project for computer vision.

This watershed function is an implementation of the standard

ordered-queue, heap-based watershed algorithm (17). To facil-

itate GUI interactions, we developed a Python program using

the packages WxPython and Matplotlib. We also made heavy

use of numpy, scipy, and the Python Imaging Library. Ultra

high performance functions were implemented in Cython.

The complete program, known as SeedWater Segmenter

(SWS), is available for download under a BSD license at

Google Code (http://code.google.com/p/seedwater/).

Manual vector segmentation was performed completely

using Inkscape (www.inkscape.org) to generate an SVG file

and a custom Python program to extract the SVG/XML data

and convert it to polygons for accurate geometric comparisons

using the python package ‘‘shapely.’’

RESULTS

Embryonic epithelial tissues in Drosophila are character-

ized by connected sheets of cells wrapped over a curved surface

with yolk beneath. Two main cell types make up the tissues:

epidermis cells and amnioserosa cells, each with very different

average sizes (Fig. 1A). These tissues undergo a number of

morphological changes during embryonic development

including extreme cell shape changes, cell rearrangements,

bulk tissue motion, and cell death. In studying these changes

and the forces underlying them, researchers often use laser

microsurgery to ablate one or more cells, creating artificial

(and sometimes very large) perturbations to the remaining

cells (16,21,22). Each of the above creates problems when seg-

menting and tracking cells in time-lapse images of living

embryos. We have designed our segmentation and tracking

software so that it provides the user with tools that can handle

these difficulties. Below, we start with an image that has an

initial set of automatically generated seeds and show that our

Figure 1. Common segmentation difficulties in confocal images of living, cadherin-GFP stained fruit fly embryos. The large cells on the

right of the image are amnioserosa cells; the smaller ones at the left are epidermal. A is an unsegmented image and B is the same image

with an overlay of seeds (small green squares) generated automatically by application of a Gaussian filter (r 5 2.5 lm) and segment out-
lines (red lines) generated by a watershed algorithm. The numbered arrows point to several common errors in automatic segmentation.

1. An object obscures the view of the cell edge.

2. A single cell is divided between two seeds, that is, oversegmentation.

3. Two cells share a single seed, that is, undersegmentation.

4. A region that should be part of the image background instead receives seeds and is assigned as cells.

5. An area of epidermis cells that is very badly missegmented because the Gaussian filter is too large for these smaller cells. The user must

decide if segmentation of this region should be completely reworked manually or skipped altogether. A smaller Gaussian filter (r 5 0.625

instead of 2.5) will effectively generate seeds for these smaller cells, but at the expense of severely oversegmenting the amnioserosa cells

(into �10 segments each, not shown).
6. Subcellular regions are misassigned. One can often determine which cells these regions belong to based on other images in the time-

lapse set.

[Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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manual correction tools are sufficient to correct common seg-

mentation errors easily and effectively.

In the first round of manual intervention, we add and

remove seeds to correctly identify the location of all the cells

in the image, assisting the Gaussian technique manually. By

right clicking to delete seeds and left clicking to add seeds, this

process proceeds very quickly (Fig. 2). Also, because of our

centroid-based tracking system, adding and deleting entire

cells becomes largely unnecessary after the first frame. Note

that the user must typically make some decisions regarding

which partially-visible cells are worth segmenting. The tools

for adding and deleting cells allow the user to make such deci-

sions on the first frame and yet revisit these decisions later as

cells enter or leave the viewing area.

Although add and delete are important tools in identify-

ing which regions are cells, the user also needs the ability to

decide which subregions belong to which cells (see Fig. 1,

arrow #6). Advantageously, the watershed algorithm allows for

more than one seed of each value to be present in a single cell.

This ‘‘extra seed’’ feature gives us the ability to use manual

seed intervention not only to identify each cell, but also to

define which subregions belong in which cell. By placing an

extra seed in a subregion, it is very easy to identify that subre-

gion as part of a particular cell (Figs. 3A–3E).

This model works very well for most problem cases, but

after segmenting a number of data sets, we realize that some

boundaries simply ‘‘misbehave’’ unless extra seeds are placed

essentially along the whole boundary. This can happen for

boundaries that are particularly discontinuous, have a low sig-

nal-to-noise ratio or have unusual image topology (such as a

gradient that makes one watershed region likely to invade

another). To quickly handle such problem cases, we imple-

mented a tool that inserts freehand lines of seeds. With this

tool, the user can essentially draw the boundary in directly

(Figs. 3F and 3G).

This seed model is simple, intuitive, and easy to teach to

new users. It benefits from the consistency and speed of the

watershed algorithm, yet still allows users to correct the seg-

mentation as much as is needed.

We also tried several preprocessing filters including

denoise, Gaussian blur, unsharp mask, and CLAHE (23) to see

if we could reduce the subsequent need for manual interven-

tion. Filtered and unfiltered image sets generally yield a similar

number of errors in cell identification, but filtered images

tend to yield artifacts during boundary generation. The one

exception was CLAHE filtering, which enhances poorly lit

regions for easier viewing and watershed segmentation with-

out compromising the shapes of boundaries that already seg-

mented well. We thus determined that it was preferable to seg-

ment unfiltered or CLAHE-filtered images—giving the truest

possible representation of cell morphology.

Tracking

Once all cells have been identified and the segmentation

has been adjusted to associate all subregions with the correct

cell, the next step is to generate seeds for the next frame.

Rather than finding these seeds using the same Gaussian

minima approach as the first frame, we generate subsequent

seeds from the centroids of each cell in the previous frame

(Fig. 4). This has the added advantage of automatic tracking

because the seed value will be the same in the second frame as

in the first.

In rare cases, a cell may move so much from one frame to

the next that the previous centroid no longer falls within the

cell’s next boundary. This is easy to correct by simply selecting

the seed point and moving it to a more appropriate location.

In fact, if there is bulk motion, seeds can be ‘‘lassoed’’ and

moved in bulk (Fig. 4). In addition, if two seeds switched cells,

their identifier values can be swapped with ‘‘Swap Values’’;

Figure 2. Adding and deleting seeds manually. A: Initial auto-

matic segmentation of an image (r 5 2.5 lm). Over-segmented
regions with unwanted seeds are circled. The upper-circled region

highlights a cell at the edge of the imaging plane with a poorly

defined boundary. The lower-left circled region has two seeds

dividing a single cell. B: Segmentation after manual removal of

unwanted seeds. C: Segmentation after manual addition of seeds

to correct under-segmented regions (cyan fill). Seeds were added

for 16 cells around the margins of the tissue. These cells had been

considered part of the background by the automatic algorithm.

Seeds were also added for three internal cells that had not auto-

matically received their own seeds. [Color figure can be viewed in

the online issue which is available at wileyonlinelibrary.com]
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and if a seed was assigned an incorrect ID (which can happen

if it is deleted and re-inserted) then ‘‘Change Value’’ can

directly change the assigned ID. In practice, these tracking

problems occur infrequently and are relatively simple to fix.

Robustness to Noise

To analyze the resilience of our watershed algorithm to

additive and multiplicative noise, we segmented an artificial

image of two ‘‘cells’’ separated by a single, central bright line

(100 pixels long, 1 pixel wide, and with a brightness S above

the background). Automatic watershed segmentation is largely

unaffected by noise up to S, begins to fail more often than it

succeeds when the noise is 2S (signal-to-noise ratio or SNR 5
0.5), and usually fails for SNR 5 0.25. At this latter level, a

Gaussian filter can rescue about 40% of the segmentations.

These results hold for both additive and multiplicative noise.

Despite the automatic segmentation failures, users can distin-

guish the appropriate boundary down to SNR 5 0.25. Thus,

the SNR-range of 0.25–1 is the real ‘‘sweet spot’’ for a semiau-

tomatic routine like SWS, especially if the noise is spatially

varied within this range. We find similar results when the cen-

tral dividing line has a Gaussian profile (with r 5 1 pixel).

Speed

We chose a watershed algorithm because it is robust and

extremely fast, lending itself to highly responsive interactivity.

Upon a change in the seeds, our segmentation program must

process a GUI event, update the seed data, rerun the watershed

algorithm, and redraw the frame. Nevertheless, all of this is

completed in approximately half a second on a typical desktop

PC. This short lag means that the user can interactively per-

form hundreds of operations in a matter of a few of minutes.

Figure 3. Adding multiple extra seeds to correct missegmentation of cellular subregions. A: Original image to be segmented. B and C: Ini-

tial segmentation shown as an overlay with green seeds and red segment boundaries in (B) and as a false-colored cell ID map in (C). The

subregion just to the right of the central seed is misassigned to an adjacent cell (blue). The upper left boundary of the central cell (pink) is

also not satisfactory. D and E: By adding a single extra seed, the originally missegmented subregion is reassigned to the appropriate cell

(pink instead of blue). For the user, this is a two-click process: a left-click on the region that needs to be expanded followed by a right click

to place the extra seed. The inset to the left of (D) shows a close-up of a remaining problematic boundary (with and without overlay). F and

G: This boundary is improved by adding a polyline of extra seeds [green line in (F) that appears as distinct seeds in the inset]. For the user,

creating a line of seeds works as above except multiple right clicks are used. A line segment of seeds is added between each successive

right-click location. As shown in the inset to the left of (F), the result is a slight improvement in the overlap of the watershed boundary and

the imaged cell-cell boundary. The best location for this boundary was determined by visually tracking its motion in previous and subse-

quent frames of the image stack (not shown). [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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To measure the speed and impact of manual intervention

on a real image set, we timed how long it took to segment a

typical 190-frame xyt stack with approximately 64 cells per

frame (62 cells appeared in all frames; 3 cells appeared in just

a subset; Figs. 5A and 5B). First, to illustrate how quickly SWS

converges on a solution, we performed minimal tracking and

generally let the algorithm do the work automatically. During

this ‘‘minimal tracking’’ phase, we inspected the intermediate

segmentations, but only to ensure that each seed stayed within

the proper region to maintain ID consistency through time;

we ignored any problems with borders and subregions. This

process took 50 min (about 16 s per frame). The initial seg-

mentation was then improved by three more rounds of man-

ual intervention, completing segmentation to user-desired ac-

curacy in �6 h (under 2 min per frame). Figures 5A and 5B

show how the overall user-defined segmentation accuracy

improved with time, albeit with diminishing returns. After the

first pass segmentation, manual intervention changed the cel-

lular assignment of only 1.4% of the pixels in the entire image

set, but in so doing, it changed the borders of 12% of the cells.

As shown in Figure 5C, the errors were distributed very nonu-

niformly over the segmented cell population, with just a few

cells having very large errors. We found that the most time

consuming part of manual intervention was simply inspecting

the current segmentation to see if it was satisfactory. When

errors were identified, the corrections were implemented very

quickly.

Segmentation Quality

To place the performance of SWS in context, we compare

its final segmentation to several automatic segmentation and

tracking methods (Fig. 5C). First, we compare to a completely

automatic watershed segmentation and tracking (SWS in a

‘‘hands off ’’ mode). This process took\4 min and correctly seg-

mented 45% of the cells, but the rest were fairly bad. In fact,

over 20% were half-wrong or worse and about 6% were essen-

tially all wrong, that is, completely outside their proper bound-

ary. This highlights the improvement achieved simply by super-

vising the tracking in our ‘‘first pass’’ segmentation above. Sec-

ond, we compare to a 3D watershed algorithm. This process

used only the initial seeds in the first frame and segmented the

entire image set in only 90s. It was much more effective than

‘‘hands off ’’ SWS, but not nearly as accurate as semiautomatic

tracking. With a 3D watershed, almost one fourth of cells had

an error[15%. This poorly segmenting subset could be reduced

to one tenth of the cells using CLAHE prefiltering. This is just

Figure 4. Cell tracking when the frame-to-frame movements of cells are large. A—C: Complete manually assisted segmentation of a cluster

of amnioserosa cells. The segmentation overlay shows seeds (green squares) and segment outlines (red lines). (B) is a close-up of the

boxed region and (C) is the corresponding false-colored cell ID map. D—F: Automatic tracking and segmentation of the next frame after

laser ablation of a central cell and with a large time interval between frames (70 s). The large time interval exaggerates cell motion between

frames and causes the centroid-based algorithm to track cells improperly in some regions, especially near the bottom middle of the image

(zoomed region in E and F). The errors are clearly discernable in (F) compared with (C). Note that even in this relatively extreme case, the

automatic tracking performs very well for most cells in the image, particularly outside the boxed region. Tracking generally works well

unless the cell moves over half its diameter. G—I: Corrected tracking and segmentation after using the ‘‘Lasso’’ and ‘‘Move Seeds’’ tools.

The ‘‘Lasso’’ tool works by clicking to form a polygon that encircles multiple seeds. These seeds are then moved using the arrow keys to

position them properly. This seed adjustment process is quite fast (a few seconds) by starting with bulk motion and then adjusting indivi-

dual seeds as needed. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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shy of the performance of semiautomatic tracking. As a final

comparison, we prefiltered with CLAHE and used the exact

same seeds as in the final SWS set. Although we expected this

prefilter to slightly improve edge delineation, we instead found

that the small changes introduced by CLAHE prefiltering did

not always work well with our manually corrected seeds. This

caused a small number of regions to fill improperly, leading to

large errors in a few cells (Fig. 5C).

To get an absolute measure of SWS performance, we cre-

ated a ‘‘gold standard’’ based on an expert’s manual segmenta-

tion using a vector editor. This manual segmentation took

over an hour per frame. We thus restrict the gold standard

comparison to just five image frames (every 47th from the

190-frame set).

As a baseline, simply pixelating the vector segmentation

leads to a fairly uniform error distribution with a per-cell aver-

age of 1.7%; any pixel-based segmentation of this image set

will have at least this minimum error. In comparison, the final

SWS segmentation had an average error of 3.7%. A handful of

cells had 10–20% errors, but the overwhelming majority had

errors just below the average (Fig. 5D). Close inspection

revealed that these errors were largely just ambiguity in the

exact boundary location. We also tried prefiltering with

CLAHE and readjusting the seeds to correct some of the

CLAHE-induced errors, but this eventually yielded results vir-

tually identical to the unfiltered SWS version. We also com-

pared the performance of another semiautomatic routine,

Packing Analyzer (3), but did not attempt to use its tracking

system. This process took about 5 min per frame and yielded

results similar to the SWS segmentation (4.7% error). Finally,

we performed 3D watershed segmentation on this five-frame

subset. Although 3D watershed performed surprisingly well

on the full data set, it performed very poorly in this subset: 7

of every 10 cells had errors [ 30%. This breakdown is

expected because the cell boundaries now move substantially

between frames (much more than the typical boundary

width). A summary of our results on the accuracy and speed

of various segmentation methods is presented in Table 1.

Measuring Cell Shape Oscillations

As a demonstration of SWS performance, we use it here

to investigate cell shape oscillations in the amnioserosa (24–

27). Prior work has shown that these cells undergo cyclical

changes in apical area with a period of 230 � 76 s (24). Adja-

cent cells have a tendency to oscillate out of phase, but they

can also quickly switch between in-phase and out-of-phase

oscillations. When the cells are visualized with a cell-boundary

marker like GFP-armadillo (a b-catenin like protein) and

Figure 5. Comparison of segmentation speed and accuracy for a typical data set: 190 frames with an average of 64 cells per frame. A and B:

Improved accuracy versus time spent on manual intervention using SWS. Both graphs represent the same data; (B) simply has a tighter zoom

in the y-axis to showmore clearly the data after 50 min. Intermediate segmentations were saved after each change in watershed borders or at
least every 60 s. The accuracy at each intermediate time point was assessed based on either the percentage of pixels whose assignment

matched the final segmentation or the percentage of cells whose boundaries matched the final segmentation. The ‘‘first pass’’ segmentation

was performed with minimal tracking, generally letting the algorithms do the work automatically (50 min), achieving a pixel-based accuracy of

98.6% and a cell-based accuracy of 88%.We then performed three more rounds of manual intervention and adjustment that improved the seg-

mentation and tracking to user-desired accuracy in �6 h (�2 min per frame). The efficacy of manual intervention will vary with user experience
and imaging quality, but this set is representative. The diminishing returns of continued manual intervention are most evident in the pixel-

based comparison, but even this is linear over large times because we made successive passes through the entire stack. C: Distribution of

errors over all segmented cells for selected intermediate segmentations and other techniques. Errors are defined as deviations from the final

SWS segmentation. The x-axis is a normalized list of cell indices sorted from largest to smallest relative error. The y-axis is the number of erro-
neous pixels for each cell divided by the average area of all cells. We compared a ‘‘Hands Off’’ SWS segmentation with no user intervention

and a ‘‘First Pass’’ SWS segmentation with minimal manual tracking assistance. For comparison, we include 3D watershed segmentation and

SWS on a CLAHE-filtered image set. D: Distribution of errors over all segmented cells in comparison to a ‘‘gold standard’’ manual segmenta-

tion using a vector editor. These comparisons are limited to five evenly spaced frames (every 47th of the full data set). Absolute errors are thus

compared for SWS segmentation, Packing Analyzer, and 3D watershed segmentation. As a baseline, we include errors induced by pixelating

the vector segmentation. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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viewed as oscillations in apical cell area, there is no evidence

for long-range, wave-like propagation (24). However, when

these same cells are visualized with a different fluorescent

marker—GFP-moesin, which highlights concentrations of

filamentous actin (21)—one can clearly discern wave-like

propagation of f-actin accumulations that are correlated with

subcellular contractions (16). To address this discrepancy, we

performed SWS segmentation of a time-lapse image set of

GFP-cadherin-labeled amnioserosa cells (66 cells over 63

image frames spanning 1300 s). We then calculated the auto-

correlation functions of both cell area and triple-junction ve-

locity (triple junctions were defined as points that touch three

or more cells). Both functions showed clear oscillatory beha-

vior; first minima at 144 s for cell area and 123 s for triple-

junction velocity; subsequent maxima at 267 s in both cases.

We then used the triple-junction velocities to calculate a time-

and-space pair correlation function (Fig. 6). The D 5 0 line of

this function is the velocity autocorrelation and clearly shows

the peaks described above. In addition, a density plot of the

pair correlation function shows that the extrema move to lon-

ger time delays s at larger spatial separations D, that is, the
correlations and anticorrelations propagate. Their propagation

speed of 0.14 lm/s is close to that observed previously for api-

cal accumulations of f-actin, 0.2 lm/s (16). The propagation

is however limited and decays within 30 lm (about one and a

half cells). Thus, one can observe contraction waves in the

amnioserosa using just cell boundary labeling, if one uses a

subcellular analysis based on triple-junction velocities and one

has a complete and accurate segmentation that allows aver-

aging over a large number of triple-junction pairs. The appar-

ent discrepancy in previous observations results from whether

one chooses to monitor the oscillations with cellular or subcel-

lular resolution.

DISCUSSION

Image segmentation and the quantitative measurement of

cell morphology are invaluable in the attempt to link physical

and biological processes (28,29). Segmentation is a very wide

Table 1. Speed and accuracy of various segmentation methods.

COMPARISON TO SWS (190 FRAMES)

APPROX. TIME

PER FRAME

PIXEL-BASED %

DISSIMILARITY

% CELLS WITH

DISSIMILARITY[5% % IDENTICAL CELLS

Final SWS (reference) 110 s – – –

First Pass SWS 16 s 1.4% 5.6% 88%

‘‘Hands Off ’’ SWS 1.25 s 28.1% 48.5% 45%

3DWatershed 0.5 s 19.9% 27.1% 1.4%

3D w/CLAHE 0.5 s 9.7% 14.7% 1.0%

SWS w/CLAHE uncorrected 110 s 1.3% 2.1% 6.8%

COMPARISON TO MANUALVECTOR

SEGMENTATION (5 FRAMES)

APPROX. TIME

PER FRAME

PIXEL-BASED

% ERROR

% CELLS WITH

ERROR[5%

Vector Segmentation (reference) 2 h – –

Pixelation of Vector Segmentation – 1.7% 0%

Final SWS 110 s 3.7% 14.3%

SWS w/CLAHE corrected 110 s 3.8% 16.3%

Packing Analyzer 300 s 4.7% 26.6%

3DWatershed 0.5 s 65.0% 100%

The first six rows compare to the final SWS segmentation and include all 190 frames of the image stack, as in Fig. 5A-C. The final six

rows compare to a manual vector segmentation (gold standard) and include only five representative frames (#1, 48, 95, 142, 189), as in

Fig. 5D.

Figure 6. Time-and-space pair correlation function of triple-junc-

tion velocities for a data set with 66 segmented cells. The x-axis
is the time separation between points (s) and the y-axis is the dis-
tance between points (D). Correlations are normalized so that the
peak at (0,0) has a value of 1. The D 5 0 axis (autocorrelation

function) is plotted above the density plot, and the s 5 0 axis

(distance correlation) is plotted to the left. Dashed lines in these

two plots represent zero correlation. The minima and maxima of

the autocorrelation appear as dark and bright spots on the D 5 0

axis of the density plot with the first of each occurring at 123 and

267 s, respectively. In the full pair correlation function (density

plot), the extrema move to longer time delays as the distance

between the pair increases. This wave-like propagation is demar-

cated by the angled dashed line, which has a slope and thus

velocity of 0.14 lm/s. [Color figure can be viewed in the online
issue which is available at wileyonlinelibrary.com]
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field and a large number of approaches have been previously

implemented. These range from direct drawing of segmenta-

tion boundaries to automatic registration of an entire image

stack (13). Before designing our own segmentation tool, we

examined several similar tools including ITK-SNAP (12),

FIJI’s TrakEM2 (9), CellProfiler (4), and Packing Analyzer (3);

none of these was able to segment our typical (and thus

imperfect) time-lapse image sequences with the speed and ac-

curacy we desired. ITK-SNAP, FIJI’s TrakEM2, and the more

recent V3D (30) have tools for direct 3D segmentation of

structures. These work very well for the smooth and continu-

ous boundaries of 3D xyz structures in MRI images but have

difficulty with some of our cells as 3D xyt structures. These 3D

tools either lack the ability to reliably generate nonoverlapping

regions (because they are focused on single anatomical struc-

tures) or provide insufficient manual adjustments. The other

tools perform 2D segmentation that can then be repeatedly

applied to a sequence of images. Some focus on high segmen-

tation accuracy for a small number of cells [e.g., fast marching

tool and pen tool of FIJI’s TrackEM2 (9) or the interactive

tools of Intelligent Scissors (31–33)]; others focus on speed

and sacrifice some accuracy for high-throughput analysis of

large numbers of cells [CellProfiler (4)]. The tool designed to

handle image segmentation tasks most similar to ours is Pack-

ing Analyzer. It is also a hybrid manual/automatic system (3),

but is parameter-based and implements post-process correc-

tion and tracking. Packing Analyzer works well with many of

our best data sets, but is neither as efficient nor as flexible as

needed for our more difficult data sets.

SWS fills a niche as a user tool for extremely accurate

tracking of cells in living tissues when image quality suffers

sporadic, but typical problems. By using a simple seeded

watershed approach, it gives users a readily understandable

way to manipulate segmentation results, save their progress,

and even redo and undo changes. Furthermore, because it is a

parameter-less system, users with no prior experience in image

segmentation can get up to speed in minutes with very little

instruction. SWS’s approach is based on a simple and useful

paradigm, manual segmentation correction using direct seed

manipulation. It is not only easy to use and understand but

also powerful and efficient.

SWS is presently a stand-alone tool, but it also has poten-

tial as a post-processing engine. For instance, one could use an

alternative segmentation to generate seed points, load these

seeds to initialize SWS, and then use its manual correction

tools to improve the quality of the final segmentation. In this

way, SWS can also be a powerful tool for ‘‘rescuing’’ imperfect

segmentations of existing image sets. The key concept could

also be integrated into existing tools like ImageJ, ITK, or V3D,

combining efficient manual correction with powerful visuali-

zation and analysis tools.

We have considered creating a fully 3D version of SWS

using a 3D watershed algorithm, but interactivity would suf-

fer. Compared with 2D, a 3D watershed segmentation is

slow, purely based on a linear increase in computation time

with the number of frames to be segmented. This could

potentially be alleviated on a massively parallel architecture.

There are also artifacts created in 3D watersheds of time-

lapse images: some cells fall into two different xyt watersheds,

one giving way to the other in time; other xyt watersheds

split into parallel time branches, creating separated regions

with a single ID.

Other possible future improvements include tools to aid

in visualization and identification of segmentation errors. De-

cision-making is often the most time-consuming part of seg-

mentation, so it could be beneficial to visually flag cells that

have large shape changes, little overlap with the previous

frame, or discontinuities in the paths of centroids or triple-

junctions. One can imagine providing a library of user-select-

able (and user-expandable) routines for flagging suspicious

segmentations. We see this as the direction in which segmenta-

tion efficiency can be most rapidly improved.
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reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell
2010;142:773–786.

4. Lamprecht MR, Sabatini DM, Carpenter AE. CellProfilerTM: Free, versatile software
for automated biological image analysis. Biotechniques 2007;42:71.

5. Li K, Miller ED, Chen M, Kanade T, Weiss LE, Campbell PG. Cell population tracking
and lineage construction with spatiotemporal context. Med Image Anal 2008;12:546–566.

6. Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for
video imaging in cell biology. J Struct Biol 2005;151:182–195.
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