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ABSTRACT

The adversarial provision of evidence is modeled as a game in which two parties
engage in strategic sequential search.  An axiomatic approach is used to characterize a court’s
decision based on the evidence provided.  Although this process treats the evidence
submissions in an unbiased way, the equilibrium outcome may still exhibit bias.  Bias arises
from differences in the cost of sampling or asymmetry in the sampling distribution.  In a multi-
stage model, a pro-defendant bias arises in the first stage from a divergence between the
parties’ stakes.  Finally, the adversarial process generates additional costs which screen out
some otherwise meritorious cases.
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1.  Introduction

Many economic analyses implicitly (or explicitly) rely upon incentives derived from

the legal system; in such discussions the legal system provides an impartial threat that

supports the economic activity of interest.  Models with contracts anticipate enforcement or

appropriate damages should breach occur; models with care-taking by potential injurers and

potential victims anticipate compensation, and this feeds back to the choice of precaution by

both parties.  Many models of markets assume an economic environment involving truthful

advertising or noncooperative behavior, implicitly relying upon the imposition of appropriate

penalties for misrepresentation or collusion.  Moreover, it is probably a common perspective

that while legal processes are costly, agents should expect that (at least on average) legal

processes are fundamentally unbiased.  After all, if a trial occurs, each participant can hire

competent counsel, access the same quality of expert testimony, and so forth.  In short, we

expect the adversarial process embodied by the legal system to generate (at least, on average)

unbiased estimates of liability and damages, and therefore agents in the economy should not

anticipate significant relative distortions due to the legal process:  a deadweight loss, yes, but

one that is not systematically influencing different sides of the market differently.1

We show that this need not be true even if the process treats the parties in an unbiased

manner and they have access to the same resources.  In our model, evidence is generated

through strategic sequential search2, with both litigants sampling the same evidence space.

Each litigant develops a case wherein they present the best evidence obtained.  Evidence is

costly and each party’s payoff reflects any potential award for damages as well as the costs
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that party incurred in developing its case.  Thus, in equilibrium, the evidence generated and

the resource costs are both stochastic, and each party’s decisions and costs are influenced by

the presence (and attributes) of the other party.

We abstract from the court’s (Bayesian) inference problem of assessing the credibility

of evidence by restricting consideration to credible evidence.  For instance, experts might be

employed by both parties to assess the extent of damages and to testify about their opinions.

Different expert witnesses (who are all independent and credible to the court, and use

“scientific” methods) may have different opinions or use different (but equally scientific)

procedures, though their estimates will be correlated because they all draw from the same

distribution of evidence.  This allows us to model the court’s problem as one of applying rules

of evidence and procedure in a systematic way to generate a judgment.  This is accomplished

by employing a set of axioms (stylized versions of the rules) that characterize the aggregation

of credible evidence.  These axioms, and our motivation for using a non-Bayesian approach

to evidence aggregation, are described in Section 2; this discussion is based on Daughety and

Reinganum (1998b; hereafter, DR).  While we are not attempting to fully characterize an ideal

system (though we do briefly address this issue in Section 3), our purpose is to provide a

framework that captures important relevant attributes of the existing legal system, some of

which are likely to be consistent with an ideal system.  We use this framework to examine the

source and nature of biases that arise in an adversarial system.

We analyze trials as a two-stage game (this is partly a simplifying assumption, but

there are many sequential aspects to a trial, which we discuss in more detail below).  In the



Daughety 3

first stage, the plaintiff and the defendant separately develop and present evidence pertaining

to liability.  If the defendant is found not liable the game ends and the payoffs reflect the costs

incurred to that point; otherwise, the next stage involves both litigants developing and

presenting evidence about damages.  Thus, for instance, in a products liability case wherein

the trial has been bifurcated into a liability phase, followed by a damages phase, the use of

expert witnesses by each side in each phase creates the sort of credible evidence generation

and presentation costs modeled in Section 2.  The anticipation of this evidence being

aggregated into a decision results in strategic behavior by both parties:  they sample the space

of experts, constructing the best case they can and suppressing inconvenient evidence when

possible. 

We identify four potential sources of bias which may be relevant to a particular case.

First, differences in evidence sampling costs can lead to systematic bias in the liability and/or

the damages stage, with the bias operating in favor of the party with the lower sampling costs.

Second, asymmetry in the sampling distribution of evidence can lead to bias; which party

benefits from this asymmetry may also depend on the level of sampling costs.  Third, a multi-

stage trial process causes a divergence in the parties’ stakes at the liability stage (since, in the

damages subgame, the defendant will lose the award plus expected trial costs, while the

plaintiff will gain the award minus expected trial costs).  This results in an equilibrium pro-

defendant bias, as it causes the defendant to search more aggressively than the plaintiff in the

liability stage.  Generally, this suggests that multi-stage legal processes, involving investments

by litigants in the various stages, create incentives for relatively greater investments by
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defendants in the early stages.  Finally, since the first move (filing suit) is the plaintiff’s,

anticipated equilibrium bias in the liability and damages stages, as well as the noncooperative,

socially excessive, investment in evidence generation, also distorts the decision to file.

Returning to our products liability case from above, we find that most (if not all) of these

biases favor the defendant.  First, the defendant (typically a corporation) seems likely to have

lower evidence sampling costs than the plaintiff in a products liability suit. Second, when

damages estimates are exponentially-distributed and there are high evidence sampling costs,

the asymmetry in the sampling distribution tends to favor the defendant (because few draws

will be taken and thus the plaintiff is unlikely to obtain a high damages estimate). Third, the

defendant is always favored by the divergence in stakes. Finally, these accumulated biases

lower the plaintiff's expected return to litigation, while the dissipative investment in evidence

gathering raises the costs of litigation, leading to a greater likelihood that such cases will be

screened out (i.e., never brought by the plaintiff).

Our analysis raises questions about the distortion in economic decisions due to

adversarial legal processes, since systematic bias in the outcomes of such processes is likely

to influence markets and bargaining that occurs in the “shadow” of the law.  For example,

again in the products liability context, the typical plaintiff is a consumer and the typical

defendant is a manufacturer.  We have shown elsewhere that if both parties anticipate

undercompensation of consumers then there are reduced incentives for safety-enhancing R&D

(Daughety and Reinganum, 1995) and increased incentives for intentional misrepresentation

of product safety (Daughety and Reinganum, 1997, 1998a).  As another example, this one in
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a contracts setting, anticipated undercompensation makes breach more likely, reducing the

incentive to make relationship-specific investments.

We discuss some piecemeal remedies in Section 3.  Examples of such remedies include

taxes and subsidies on evidence gathering, fee-shifting and decoupling of monetary judgments

and awards.  The main problem with all of these remedies concerns the pervasive asymmetric

information between the court and the parties.  Employing the above remedies generally relies

upon information that courts do not have and are not able to acquire in a purely adversarial

system.

These biases, and the market distortions they induce, may be unavoidable and reflect

a more fundamental tradeoff involving the costs and benefits of decentralized evidence

generation in judicial systems. The adversarial process, as a means by which a judicial system

generates and evaluates evidence, is one of the two main procedures employed by democratic

legal systems; the other is the inquisitorial process, used in many civil law countries, which

involves considerably more centralized management of evidence generation by courts (as

opposed to each litigant’s counsel).  We do not consider alternative processes in this paper,

but the concentration of power such a centralized process entails may also induce

inefficiencies,3 possibly in excess of the strategically-induced bias we consider here.

Plan of the Paper

In Section 2 the model of the court’s evidence aggregation procedure is described.

In addition, models of the liability and damages stages are developed and analyzed.  Section

3 illustrates potential sources of equilibrium bias via a series of examples and discusses
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potential remedies and problems with their implementation.  Section 4 provides a brief review

of related literature.  Section 5 contains a summary and conclusions. Formal statements and

proofs of the propositions and related results are contained in the Appendix.

2.  Model and Analysis

Imagine the following setting.  An incident has occurred in which someone has

suffered a harm; that person is the plaintiff (P), who sues the defendant (D).  We assume that

the likelihood, p, that D actually caused the harm and the level of the harm, d, are common

knowledge to both P and D but are not verifiable, so they are unknown to the court.4  Courts

recognize the litigants’ incentives  to misrepresent the level of p and d, so courts require

evidence about the likelihood of liability and about the level of damages.  Our model involves

the selective presentation of verifiable facts which, in aggregate, make a case.  This

production and presentation of the case is viewed as occurring in two stages, each of which

involves strategic search in the relevant evidence space by both litigants.  In the first stage

evidence on the likelihood that D is liable is presented by both sides; if D is found liable then

the game proceeds to the second stage wherein each side again engages in strategic search,

now in the space of damages estimates.

Thus, formally, we study a “bifurcated” trial.  Federal Rule of Civil Procedure 42(b)

specifies the court’s option5 of conducting separate trials “in furtherance of convenience or

to avoid prejudice.”  For instance, bifurcated trials 6 occur in medical malpractice cases in

which the plaintiff was severely affected.  Trials have been bifurcated in insurance cases if

coverage of an event was disputed; the second stage considered the extent of the insurance
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company’s liability.  This procedure is also used in various tort cases and some states require

it in actions involving punitive damages awards.  A very important sphere of application of

bifurcation is to class action suits.  In cases involving, for example, a dispute over whether

a particular product (or company policy) caused plaintiffs’ injuries, the issue of liability may

be determined jointly for all plaintiffs, with individual suits for damages following upon a

finding of liability (see Federal Rule of Civil Procedure 23).

Finally, an alternative interpretation of our two-stage model is that the first stage

represents trial, while the second stage represents appeal.  Although we view the trial and

appeals stages as being inherently about different things (facts versus law; see DR), the impact

of sequentiality is the same:  the existence of a second stage makes the first-stage stakes

diverge for the parties, inducing the type of liability-stage bias we find in Section 3.

In each stage of our model we focus on the incentives for litigants to develop and

present evidence, when there is a given cost for acquiring evidence and a known process

which aggregates the evidence submitted.  In general, we think of each stage as having three

components:  1) evidence generation; 2) determination of the credibility of the evidence

submitted; 3) aggregation of both parties’ evidence into the court’s assessment for that stage.

As suggested earlier, we collapse the first two components into a model of strategic search

for credible evidence.   Since both litigants must anticipate how the court will aggregate the

submitted evidence, we turn to that issue first.

Modeling the Court’s Evidence Aggregation Process

Any positive analysis of a court faces a basic modeling issue:  how to model the
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outcome of the court as a function of the evidence presented (in Section 4 we briefly review

how others have modeled court decision-making).  It is tempting to assume that the judge or

jury is a sophisticated Bayesian decision-maker.  Certainly, there are points in a trial where

this seems to be an appropriate model; for example, the court can exercise its discretion in

determining the credibility of witnesses, and in interpreting the law (subject to review by a

superior court).  In addition, there are specific uses of statistical evidence (such as DNA

evidence), where the probability of misclassification can be clearly quantified, in which

Bayesian inference is suitable. 

More generally, in a Bayesian model of the liability stage, a court would posit a

subjective prior distribution over the submitted evidence on liability (denoted BP* and BD*)

and true liability p.  Then it would try to estimate p using BP* and BD*.  Note that BP* and

BD* are both statistically related to p (since they represent the result of sequential sampling

from a distribution conditioned on p) and strategically related to p (since they represent the

parties’ best observations under strategically-chosen stopping rules).  Thus, the court is trying

to “unwind” both statistical effects and strategic effects.  However, the court lacks much of

the usual information which would be useful in this “unwinding” process.  For instance,

included in the category of “missing information” are:

1) Evidence that is relevant and available, but not presented, either because it is

strategically suppressed by the parties or because it is inadmissible under the rules of

evidence.  For example, less favorable observations are not presented, while character

evidence, settlement offers and information concerning the insurance status of the
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defendant are inadmissible (under, e.g., Federal Rules of Evidence 404, 408 and 411,

respectively).

2) The extent of each party’s search behavior (e.g., how much the party spent on

evidence-gathering and the stopping rule employed) as well as information needed to

compute equilibrium stopping rules (such as the parties’ wealth and their costs of

search) are also unobservable to the court.

3)  Finally, the sampling distributions for evidence are conditional on the true values

of p and d, which are unobservable to the court (but known by the parties).

Thus, a Bayesian court’s decision process would, of necessity, substitute a subjective prior

distribution for this missing data, making the resulting estimate highly prior-dependent.  As

Posner (1999) points out, to the extent that a court’s decision relies on a (possibly strong)

subjective prior, this reduces the incentives for the parties to provide evidence.  It seems likely

that exculpatory evidence will be easier to produce if the defendant really has been careful,

so reducing the value of exculpatory evidence also reduces the defendant’s incentive to take

care.  To support the provision of both care and evidence, it is reasonable for the legal system

to try to restrict the fact-finder’s reliance on subjective priors and to focus it instead on the

evidence presented at trial.

Moreover, the trial court process itself is not purely Bayesian, since some rules of

evidence and procedure are distinctly inconsistent with Bayesian decision-making.  This does

not mean that these rules are inefficient, only that they may be designed to promote broader

objectives than accurate decision-making in the instant case given the instant evidence.
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Posner (1999) discusses efficiency-based rationales for many rules of evidence and procedure

and Lewis and Poitevin (1997) and Sanchirico (1997c) provide models wherein a

sophisticated Bayesian decision-maker prefers to commit (ex ante of observing the evidence)

to a decision rule that would not be optimal ex post.

Some policies clearly conflict with an unconstrained Bayesian treatment.  In some

cases (e.g., the self-incrimination privilege), no inference is to be drawn from a party’s

decision not to present certain evidence.  On the other hand, if a plaintiff provides only

statistical evidence, then the plaintiff loses.  As  Posner (1992, p. 552) observes, “If, for

example, the only evidence the victim of a bus accident had linking the accident to the

defendant bus company was that the defendant operated 80 percent of the buses on the route

where the accident occurred, the victim could not win without additional evidence of the

defendant’s liability.”  This is because the “burden of production” of evidence is (at least

initially) allocated to the plaintiff, so as to discourage nuisance suits.

Alternatively, the law sometimes requires a specific inference.  For example, in

employment discrimination cases, the McDonnell Douglas rule “permits a plaintiff ... to

establish his prima facie case ... with evidence merely that he was qualified for the job but was

passed over in favor of someone of another race.  But the rule does more:  satisfying the just-

described burden of production creates a presumption of discrimination, meaning that if the

defendant puts in no evidence the plaintiff is entitled to summary judgment,” even though “the

probability that he lost the job opportunity because he was discriminated against might not

seem to be very high if the only evidence is as described” (Posner, 1999).
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If a judge determines that the evidence in a case is insufficient to support (that is,

cannot be construed as supporting) a verdict of liable, he may dismiss the case, enter a

directed verdict in favor of the defendant, or even overrule a jury finding of liability by

entering a judgment notwithstanding the verdict (j.n.o.v.).  Indeed, self-interest alone is not

viewed as a reason to discount evidence which is not otherwise impeached by the adversary.

According to James and Hazard (1985, p. 348):

“Where the proponents, having also the persuasion burden, offer testimonial evidence
that strongly supports their side of the case and the opponents fail to shake it on
cross-examination and offer no countervailing evidence, the proponents may move for
a directed verdict.  If at this point no presumption operates in the proponents’ favor
the question may arise whether the jury may reasonably disbelieve their evidence...
the prevailing view regards the clear, uncontradicted, self-consistent, and
unimpeached testimony of even interested witnesses as sufficient basis for a directed
verdict in favor of the party having the persuasion burden as well as the initial
production burden.”

The aforementioned rules and conventions conflict with a purely Bayesian approach,

since one could certainly construct very reasonable subjective priors which would reach a

decision opposite to the one implied by the rule or convention.  Rather, these rules and

conventions seem to focus decision-making on the evidence presented at trial and to

discourage the substitution of the court’s subjective prior.  This focus on the evidence

presented at trial, and restrictions on the conclusions that can be drawn from it, may also

prevent the judge/jury from exercising ideological preferences that differ from the social

objective (which is embodied in the restrictions).   James and Hazard (1985, Section 7.4)

provide a detailed discussion of devices available to judges (such as the provision of

instructions, directed verdicts, j.n.o.v. and special verdicts) for the express purpose of
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controlling a jury with the intent of focusing them on their mission of fact-finding.

Thus we model the trial court’s assessment of credible evidence in non-Bayesian

terms, not because we do not believe in Bayesian decision-making, but because we believe

that the evidence-aggregation process is highly constrained.  Whether one models this as

“mostly-Bayesian with a few constraints”  or “mostly-constrained with a few opportunities

for Bayesian updating” is a judgment call.  In this paper we take the latter route, but the

former is also potentially interesting.  As suggested earlier, we confine the use of Bayesian

updating to the assessment of credibility and the interpretation of law, and model the evidence

aggregation process axiomatically; that is, we use a set of properties (axioms), representing

rules of evidence and procedure, to characterize this process.  Moreover, we abstract from

the credibility issue by assuming that the evidence presented by the parties and evaluated by

the court is credible evidence.  Alternatively, one could view the trial process as having a

preliminary stage which involves evaluating evidence with respect to credibility (using a

Bayesian model to appropriately discount it).  Thus, the litigants provide credible evidence

whether directly submitted or as the result of “pre-processing” for credibility by the

jury/judge.

Elsewhere we have considered the problem of modeling a court’s assessment process,

whereby it aggregates credible evidence on D’s liability into an overall assessment (see DR).

In particular, let  x and y denote the assessments of the likelihood of D’s liability proffered

at trial by P and D, respectively, where x 0 [0,1] and y 0 [0,1].  In DR we require that the

court’s aggregation of credible evidence be:  1)  strictly monotonically increasing in each of
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the submissions; 2) bounded by the minimum and maximum of the cases presented;

3) unbiased in the sense that it is symmetric in the evidence in both an absolute and

proportional sense and 4) independent of the order in which individual elements of the

submissions are compared.

We have assumed symmetry, that is, the court’s assessment would be the same for the

credible evidence pair (x,y) and (y,x).  Since the court is unable (due to informational

problems) to “unwind” both the strategic and statistical relationships between evidence and

the true p and d, and in light of the assumption that the evidence is credible, it seems

reasonable to examine a process for evidence aggregation which is not biased toward either

party.  Thus, the responsibility for redressing the impact of a party’s evidence on the trial

outcome falls on the adversary.  In DR we also examine the effect of relaxing the symmetry

assumption; we maintain it here because our focus is on how bias might arise within an

unbiased (symmetric) system. 

In DR we show that the foregoing properties imply that the court’s liability assessment

function can be represented by a member of the family of continuous functions of the form

R(x,y; q) = {(xq + yq)/2}1/q, q 0 (-4, 4), q … 0; and R(x,y; 0) = (xy)½.  It can be shown (see

DR) that R(x,y; q) is an increasing function of q (for x … y), so that as q increases, D is more

likely to be found liable for any given evidence pair (x,y).  Thus, q can represent the breadth

of the court’s interpretation of the applicable law, with a broader interpretation working

against D.  In DR we model how different levels of the court system (trial versus appeals
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courts) determine an appropriate value of q; in Daughety and Reinganum (1999), we use this

model to examine horizontal influence (via inference about q) among a collection of appeals

courts.  In this paper, we simply assume that a value of q has been determined and is common

knowledge, and we examine how the parties gather evidence in anticipation of this

aggregation process.

Differentiation of  R(x,y; q) shows that the cross-partial Rxy is positive for q < 1, zero

if q = 1, and negative for q > 1.  For a given q, the sign of the cross-partial derivative is the

same for all possible evidence submissions (x,y).  This property will be of significant interest

in discussing the slopes of the best response functions of the litigants later in this section.

In the damages stage we could employ a similar notion of a “damages assessment

function,” but have elected to simply use the average of the damages evidence in that stage

of the game.  This is for two reasons.  First, since the damages stage is a subgame of a fairly

complex two-stage game, tractability suggests a simple damages function.  Second, simple

averaging of the damages estimate is consistent with the court imposing the Nash bargaining

solution for the bargaining game that would arise once all evidence has been presented; that

is, the court splits the difference between the competing claims.  For the sake of brevity, we

provide the analysis for the liability stage only, and simply summarize the results of a similar

analysis for the damages stage at the end of this section. 

The Liability Stage

Let VP(d) and VD(d) denote the values of continuing optimally for P and D,

respectively, following a finding of liability, when it is common knowledge to the parties that
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the true harm is d.  For P, this value represents the expected award less the expected costs

associated with equilibrium evidence generation in the damages stage.  For D, this value

represents the expected award plus the expected costs associated with equilibrium evidence

generation in the damages stage.  Thus these values, which represent the “stakes” for the

liability stage, will not be equal.  Rather, VD(d) > VP(d); that is, the defendant has more to

lose than the plaintiff has to gain.  

In this stage, D’s liability is to be determined (or, more precisely, the likelihood that

D is liable for P’s harm will be assessed, with determination modeled as a coin-flip employing

the assessed likelihood).  Recall that p is the true probability that D harmed P and that we

assume that p is common knowledge to P and D, but is not verifiable to a third party.  Hence,

in the liability stage, both parties will develop and present evidence regarding p.  Evidence is

represented by a draw from a distribution function which is conditioned on p; since evidence

is assumed to be independent of the parties’ preferences (i.e., it cannot be manufactured at

will), we assume that both parties draw their observations from the same distribution.

However, each party’s number of observations and their realizations are assumed to be

private information.  The best observation7 among those taken will be presented by each party

at trial.  We assume that each party must take at least one draw:  P must present a case based

on some evidence and D must respond with some evidence.

Let B i
P represent the outcome of a single observation by P; similarly, let B j

D represent

the outcome of a single observation by D.  Both are assumed to be drawn from the interval
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[B,BGG] according to the distribution function G(x|p) = Pr{Bk # x | p} with mean p and density

function g(x|p), where the interval itself may also depend on p.  Both parties may sample as

many times as they wish from the distribution G(@ |p).  We assume that each draw costs kP for

P and kD for D.  There is also a fixed cost of presenting evidence at trial for each litigant; we

denote these costs as KP and KD for P and D, respectively.  We assume a large number of

potential sources of credible evidence, so the sampling is with replacement; thus the draws

are independent and identically distributed.  Each party will choose as a strategy a stopping

rule, which specifies when that party should stop sampling as a function of the observations

to date.  Since each party’s number of draws taken and realized observations are private

information, each party’s stopping rule can depend only on the outcomes of its own evidence-

generation process and a conjectured stopping rule for the other party.  Larger observations

are preferred by P and smaller observations are preferred by D.  Thus an optimal stopping rule

for P can be characterized by a minimum stopping value, denoted rP:  stop the first time the

evidence draw exceeds rP.  Thus, a higher value of rP corresponds to more aggressive

(“tougher”) search behavior on the part of P.  Similarly, an optimal stopping rule for D can

be characterized by a maximum stopping value, denoted rD:  stop the first time the evidence

draw falls below rD.  In this case, a higher value of rD corresponds to less aggressive (“softer”)

search behavior on the part of D.   Let BP* and BD* denote the best evidence observed by P

and D, respectively, using these stopping rules.  From the perspective of the parties (who

know p), the density function for P’s evidence at trial is given by g(x|p)/[1 - G(rP|p)] on the
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interval [rP,BGG].  The density function for D’s evidence at trial is given by g(y|p)/G(rD|p) on

the interval [B, rD].

For arbitrary evidence pairs (x,y), the court uses the function R(x,y) to aggregate the

evidence so as to assess the likelihood of D’s liability (we suppress the parameter q when it

is not relevant to the discussion at hand).  As will become clear, the sign of Rxy determines the

sign of the slope of the best response functions for P and D (recall that, given q, this sign is

the same for all (x,y) pairs).   If this cross-partial derivative is positive, then this suggests that

R(x,y) displays the property of complementarity of evidence, while if it is negative, R(x,y)

displays the property of substitutability of evidence.8  In what follows we will assume that Rxy

> 0 for the following theoretical and empirical reasons.  Under complementarity, the resulting

best response functions will have intuitively reasonable slopes (P’s will be positive and D’s

will be negative) in that they predict that as P becomes more aggressive, D does, too; this

prediction seems particularly appropriate as it is D’s wealth that is at stake should D be found

liable.  If we assumed Rxy < 0 (that is, substitutability), our technical analysis would go

through, but the slopes of the best-response functions (and some comparative statics results)

would be reversed.  We do not consider this the most plausible case:  we would be predicting

that D would become less aggressive in response to P being more aggressive.  Moreover, it

is complementarity that is consistent with empirical analysis of the slopes of the best response

functions in the strategic search for evidence.  Shepherd (1999) uses data from 369 federal
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civil suits and studies the responses of litigants to pre-trial discovery effort; he finds the

pattern of response implied by complementarity.  For these reasons, we proceed under the

assumption that R(x,y) displays the property of complementarity; that is, Rxy > 0 at all points

in the evidence space E.

Propositions 1 and 2 (see the Appendix for formal statements and derivations)

characterize the best-response functions for the parties.  For any stopping rule rD chosen by

D, P has a unique best response BRP(rD), and for any stopping rule rP chosen by P, D has a

unique best response BRD(rP).  Our maintained assumption that Rxy > 0 ensures that the

function BRP(rD) is increasing:  as D searches less aggressively (referred to earlier as playing

“softer”), P searches more aggressively (plays “tougher”).  This same assumption ensures that

the function BRD(rP) is decreasing:  as P searches more aggressively, D searches more

aggressively.  Proposition 3 (see the Appendix) asserts that there is a unique Nash equilibrium

in stopping rules, (rP*, rD*).  Figure 1 illustrates the best response functions and the

equilibrium for a representative case. 

----------------------------------------------

Place Figure 1 about here

-----------------------------------------------

The impact of changes in the underlying parameters on the best response functions and

on the equilibrium strategies are displayed in Table 1 below.

----------------------------------------------
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Place Table 1 about here

-----------------------------------------------

The signs in the table indicate the effect of an increase in the column entry on the row

entry.  In Table 1, a positive entry for BRP or rP* corresponds to a rightward shift of the curve

in Figure 1, while a positive entry for BRD or rD* corresponds to an upward shift of the curve

in Figure 1.  If an increase in d leads to increases in both VP(d) and VD(d), then the new

equilibrium involves D being more aggressive but the effect on P’s behavior is indeterminate.

Increases in sampling costs have an impact that depends upon whose costs increased.  If P

alone suffers an increase in both sampling costs (kP and P’s sampling cost in the damages

stage, an increase in which lowers VP(d)), then rP* falls and rD* rises:  both parties play softer

by adjusting their stopping rules, so as to put less effort into evidence gathering.  This is

because both the direct effect (via kP) and the indirect effect (via the negative effect of an

increase in P’s sampling costs in the damages stage on VP(d)) reduce rP* and increase rD*.

On the other hand, if D alone suffers an increase in both sampling costs (kD and D’s sampling

cost in the damages stage, an increase in which raises VD(d)), then the effect is ambiguous for

both parties:  the direct effect via the liability sampling cost kD is to make P more aggressive

and D less aggressive.  The indirect effect (the positive effect of an increase in D’s sampling

costs for the damages stage on VD(d)) is to make P less aggressive and D more aggressive.

The net result will be case-specific.

Since P stops the first time an observation occurs in the interval [rP*, BGG], it follows
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that the expected number of draws for P is given by 1/[1 - G(rP*|p)] and the expected cost of

liability evidence for P is given by kP/[1 - G(rP*|p)] + KP.  Similarly, since D stops the first

time an observation occurs in the interval [B, rD*], it follows that the expected number of

draws for D in the liability stage is given by 1/G(rD*|p) and the expected cost of liability

evidence for D is given by kD/G(rD*|p) + KD.  Note that, in equilibrium, these expressions are

also conditional on d since both rP* and rD* depend on both d and p; we suppress this

dependence unless it is of specific interest.

The Damages Stage

Finally, we briefly indicate how the same analysis can be used to derive the

continuation values VD(d) and VP(d), which are the equilibrium payoffs for the damages stage

(for details, see Daughety and Reinganum, 1998c).  Let * i
P represent the outcome of a single

observation by P; similarly, let * j
D represent the outcome of a single observation by D.  Both

are assumed to be drawn from the interval [*,*GG] according to the distribution function F(x|d)

= Pr{*k # x | d} with density function f(x|d) and mean d, where the interval [*,*GG] may also

depend on d.  Both parties may sample as many times as they wish from the distribution F(@

|d), at constant per draw costs of cP and cD, respectively (sampling costs may also depend on

true harm d, but we suppress this dependence for notational convenience; we return to this

issue in Section 3).  There is also a fixed cost of trial associated with presenting the evidence

for the damages stage at trial;  we denote this cost for P by CP and for D by CD.  As before,
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we assume that P submits only the most favorable evidence at trial, which is denoted *P*;

similarly, D’s most favorable evidence is denoted *D*.  Thus, the court observes only the pair

(*P*, *D*).    In the damages stage, we consider the case of q = 1; that is, the award at trial

is the simple average of the evidence:  A = (*P* + *D*)/2.

An equilibrium stopping rule for P is characterized by a minimum stopping value,

denoted sP*, while an equilibrium stopping rule for D is characterized by a maximum stopping

value, denoted  sD*.   Under these stopping rules, the expected award at trial, given true

damages d, is given by E(A|d) = (1/2)[E(x | x $ sP*; d) + E(y | y # sD*; d)], where the

expectation is with respect to the distribution F(C|d).  The expected number of draws for P

is given by 1/[1 - F(sP*|d)] and the expected cost of damages evidence for P is given by cP/[1 -

F(sP*|d)] + CP.  Similarly, the expected number of draws for D is given by 1/F(sD*|d) and the

expected cost of damages evidence for D is given by  cD/F(sD*|d) + CD.  Thus, VD(d) = E(A|d)

+ cD/F(sD*|d) + CD and VP(d) = E(A|d) - cP/[1 - F(sP*|d)] - CP.

3.  Sources and Examples of Equilibrium Bias

Here we illustrate the sources of equilibrium bias via a series of examples.  We employ

a uniform distribution for evidence because it allows straight-forward computation and

because its symmetry allows us to isolate differences in sampling cost and differences in stakes

as sources of bias.  We also consider the exponential distribution in the particular case of

damages evidence, on the basis that very high damages estimates, substantially in excess of

the average estimate, are rare but possible.   After presenting the examples we will discuss

some potential remedies and problems with their implementation.
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Example 1:  Uniformly-Distributed Damages Evidence

Conditional on the true harm d, let the distribution of evidence obtained on a single

draw be given by the uniform distribution F(x|d) = (x - *)/), where ) / *G - * .  The

endpoints of the interval (*G and *) are assumed to be increasing in d.  In order to understand

whether adversarial sampling leads to equilibrium bias, assume that simple random sampling

would yield an unbiased estimate of the true damages:  E(x|d) = (*G + *)/2 =  d.  In order to

ensure interior solutions for sP* and sD*, we assume that both sampling costs are less than

)/4.  The equilibrium strategies are sP* = *G - 2()cP)½ and sD* = * + 2()cD)½.  The expected

award can be calculated to be E(A|d) = d + {[()cD)½] - [()cP)½]}/2, where the term in

brackets is the difference between the defendant’s and the plaintiff’s expected sampling costs.

Thus, the expected value of the award penalizes the party with the higher sampling cost.  If

both parties have the same sampling costs (cP = cD = c), then the award will be unbiased in

that the expected award will equal the true harm.9

Example 2:  Exponentially-Distributed Damages Evidence

Conditional on the true harm d, suppose that the distribution of evidence is given by

F(x|d) = 1 - exp(-x/d) for x , [0, 4).  Thus, for this case, the support of F is unbounded on

the right and * = 0.  This sampling distribution represents conditions wherein there is a higher

probability that a draw comes from the portion below the mean than from the portion above.

For instance, limitations on what the law allows as part of a damages estimate (is mental
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anguish allowed?  how are foregone profits on a new product to be computed?) suggest a

higher probability of damages estimates below the mean than above it.  Thus, for example,

in the case of expert witnesses, this may reflect the accumulation of statutes and precedents

which have influenced a sizable proportion of these experts to provide relatively

“conservative” estimates of damages.  On the other hand, creative accounting, varying choices

of future returns and likely discount rates, as well as novel but well-supported arguments

about sources of potential losses may result in very high damage estimates.  Both possibilities

are better-represented by the exponential distribution, which concentrates much of the mass

of the distribution below the mean but has a rapidly thinning tail to the right of the mean.

While it is true that, in reality, damages estimates are not unbounded, specifying an upper

bound creates tractability problems, and adds nothing to the analysis.  Note also that the tail

of the exponential distribution converges (exponentially!) to the axis, suggesting that the

probability of draws even moderately higher than the mean is small.

By construction, the expected value of evidence on any one draw is equal to the true

harm:  E(x|d) = d.  Thus, again, simple random sampling will lead to an unbiased estimate of

the damages.  The equilibrium strategy for P is sP* = max{dRn(d/2cP), 0} (that is, a boundary

solution occurs when d/2cP # 1).  D’s equilibrium strategy, sD*, is defined implicitly by

(sD*/d) + exp(-sD*/d) = 1 + (2cD/d).  Since the left-hand-side is increasing in sD*, there is a

unique interior solution to this equation; moreover, 2cD < sD* <  d + 2cD.

The expected award given true harm d is E(A|d) = d + [sP* + sD* - dsD*/(sD* - 2cD)]/2.

The term in brackets may be positive, negative or zero; that is, the plaintiff may be over-,
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exactly-, or under-compensated relative to the actual harm d.  Comparative statics analysis

indicates that an increase in sampling costs (holding d fixed) makes the respective litigant less

aggressive while an increase in harm d (holding sampling costs fixed) makes P more

aggressive and D less aggressive.

Recall that the plaintiff’s expected cost of gathering damages evidence is

cP/[1 - F(sP*|d)] and that, similarly, the defendant’s expected cost of gathering evidence is

cD/F(sD*|d).  For the exponential case, it is straightforward to show that the equilibrium

strategies, the expected award and these expected evidence costs, as well as the measure of

bias bA(d) = E(A|d) - d, are all homogenous of degree 1 in (d, cP, cD).  Thus, equal

proportional increases in the basic model parameters d, cP, cD result in equal proportional

increases in the equilibrium levels of the stopping rules, the equilibrium expected award and

the equilibrium expected evidence costs.

Although we have heretofore suppressed any dependence of the sampling costs on the

magnitude of harm, it is not unreasonable to assume that there is some relationship between

these two.  Assuming that  cP = cD = c, Figure 2 below describes combinations of c and d that

yield various outcomes.  The dashed line labeled “bA = 0" gives  (d,c) combinations for which

E(A|d) = d.  For instance, a case involving more harm may be 

----------------------------------------------

Place Figure 2 about here

-----------------------------------------------

(technically) more complex, so one would expect that sampling costs should increase with
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harm d.  Let c(d) denote the sampling costs for P and D as a function of the commonly known

damages d.  If c(d) is proportional to d, then the equilibrium outcome is associated with a ray

in Figure 2; two such rays are illustrated as solid lines from the origin.  The uppermost ray

corresponds to a high proportional sampling cost.  In this case, sampling always yields

outcomes in which the resulting equilibrium is biased towards D in the sense that bA < 0.  The

lowermost ray corresponds to a low proportional sampling cost, yielding outcomes in which

the resulting equilibrium is biased towards P in the sense that bA > 0.   Note that this means

that whatever is true for an outcome of a given level of damages, say dN, is true for all levels

of damages:  in the case of proportional sampling costs, all outcomes are either biased

towards D (bA < 0), biased towards P (bA > 0) or unbiased (bA = 0).

The case of c(d) concave is shown as the curved line in Figure 2.  This is likely to be

a reasonable representation in that increases in the severity of the harm may initially occasion

greater reliance on specialized experts, but this specialization effect should eventually

disappear:  as d increases, the same general level of experts will be used.  In the concave-cost

case, plaintiffs with low values of d will suffer pro-defendant bias, while those with high levels

of d will enjoy pro-plaintiff bias.10  Thus, the general pattern is one of systematic bias in

equilibrium, but who benefits is dependent on the level of actual harm.  Plaintiffs with low

levels of harm tend to be under-compensated, while those with high levels of harm are

potentially over-compensated in equilibrium.

Example 3:  Equilibrium Bias in the Liability Stage

Due to the complexity of the analysis of the liability stage, we consider the simplest
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possible unbiased system, wherein R(x,y) = (x + y)/2, the distribution of evidence (given p)

is uniform on [B,BGG] with (B + BGG)/2 = p, and B and BGG are also functions of p.11  Thus, the

court gives equal weight to both parties’ evidence and the common evidence distribution

being sampled provides equal likelihood of any piece of evidence being drawn.  As shown

below, even if the sampling costs in both stages are symmetric (that is, kP  = kD and cP = cD),

the fixed costs are symmetric (KP = KD and CP = CD) and the damages stage is unbiased (for

example, F is the uniform distribution), the liability stage will favor the defendant.

In this example the equilibrium strategies are given by rP* = BGG - 2(kPA/VP(d))½ and

rD* =  B  + 2(kDA/VD(d))½, where A / BGG - B.12  The expected costs of liability evidence for

P are [(AVP(d)kP)½]/2, while for D they are [(AVD(d)kD)½]/2.  Thus, in each case, the

expected costs of gathering liability evidence is increasing in both the continuation payoff

from the damages stage and in the per sample evidence cost of the liability stage.

The question of bias in the liability stage concerns the liability assessment that such

a trial is likely to produce.  In particular, the liability stage is unbiased if the expected

assessment of liability produced by the trial, E[R(BP*,BD*)|p,d], equals the true underlying

likelihood, p.  To measure this, let bR(p,d) / E[R(BP*,BD*)|p,d] - p.  The equilibrium

expected liability assessment is given by E[R(BP*,BD*)|p,d] = [E(BP*|p,d) + E(BD*|p,d)]/2

= ([(BGG + rP*)/2] + [(B + rD*)/2])/2.  Substituting the equilibrium strategies for P and D yields:
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E[R(BP*,BD*)|p,d] =  p + [(AkD/VD(d))½ - (AkP/VP(d))½]/2.

Assuming an otherwise symmetric process in which sampling costs are the same for both

parties (i.e., kP = kD = k), it is clear that the liability stage is equilibrium-biased toward

defendants, since VD(d) > VP(d).  In this case, 

bR(p,d) =  (Ak)½[(VD(d))-½ - (VP(d))-½]/2 < 0.

Notice that the direction of the liability stage equilibrium bias is independent of both

the extent and direction of any damages stage equilibrium bias, including the possibility that

the damages stage is unbiased (as was discussed in the uniformly-distributed damages

evidence example presented above).13  Moreover, if there is systematic bias in the damages

stage, the liability stage may simply reinforce it.  If we consider exponentially-distributed

damages evidence with concave sampling costs, then plaintiffs with low actual damages, who

expect the damages stage to be pro-defendant equilibrium-biased, also suffer from pro-

defendant equilibrium bias in the liability stage.  On the other hand, plaintiffs with high actual

harm, who expect the damages stage to be pro-plaintiff equilibrium-biased, anticipate a pro-

defendant equilibrium bias in the liability stage.  Finally, if VP(d) and VD(d) are linearly

homogeneous in d, then the extent of bias diminishes as d increases.14

Example 4:  Adversarial Bias

As shown above, systematic bias can readily arise in either stage and the two biases

studied need not cancel each other.  In each stage bias which favors one party disfavors the

other.  If we consider the overall game, however, the  adversarial procedure as the means for

generating evidence may readily work against both parties.  To see this, we compare the
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payoffs from the game (denoted VP*(p,d) and VD*(p,d)) with a hypothetical payoff

constructed from a non-adversarial alternative (denoted VPN(p,d) and VDN(p,d)).  For the non-

adversarial alternative we consider the expected payoffs if each party drew one observation

for each stage and liability and damages were based on these draws using simple averaging

for both the liability assessment and the damage award assessment.  Thus,  VPN(p,d) = p(d -

cP - CP) - kP - KP and VDN(p,d) = p(d + cD + CD) + kD + KD, while

VP*(p,d) =  E[R(BP*,BD*)|p,d]{E(A|d) - cP/[1 - F(sP*|d)] - CP} - kP/[1 - G(rP*|p)] - KP

and

VD*(p,d) = E[R(BP*,BD*)|p,d]{E(A|d) + cD/F(sD*|d) + CD} + kD/G(rD*|p) + KD.

For example, in VP*(p,d), the expression on the right-hand-side in braces is the net expected

value to P from the damages stage (expected award minus the expected costs of damages

evidence).  Multiplying that on the left is the expected outcome from the liability stage while

to the right of the braces we subtract the expected costs to P of liability evidence; the terms

in VD*(p,d) can be similarly interpreted.  In order to discuss adversarial bias, we define

BP(p,d) / VP*(p,d) - VPN(p,d) and BD(p,d) / VD*(p,d) - VDN(p,d).

The presence of variable and fixed costs of evidence-gathering and presentation, even

in the non-adversarial case, screens out some otherwise meritorious cases, but this would

seem to be an unavoidable friction necessary to ration use of the court system.  If BP(p,d) is

negative, however, this means that adversarial process results in yet more meritorious cases

never reaching trial.  As the earlier examples suggest, BP(p,d) is likely to be strongly negative
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unless the award bias bA(d) is sufficiently positive.  Thus if damages estimates are uniformly

distributed (or exponentially distributed with high proportional sampling costs), all plaintiffs

would expect to be undercompensated.  In the exponential case with concave sampling costs,

cases with low-to-moderate harm would be screened out entirely:  only cases involving

substantial harm are likely to actually benefit from adversarial evidence generation.

The results for the defendant are more mixed.  In general, as should be clear from the

biases examined earlier in this section, cases involving lower levels of harm are likely to favor

the defendant, both in absolute terms and when compared with a non-adversarial process.

However, in cases involving high levels of harm, adversarial process may work against the

defendant as well (when compared with non-adversarial evidence generation, since adversarial

litigants will typically sample more than once).  While these conclusions regarding the nature

and extent of equilibrium bias are based on computational examples using simple functional

forms, it seems unlikely that more complex functional forms will result in a complete

“undoing” of the biases described here.

Remedies and Problems of Implementation

While a number of possible piecemeal remedies suggest themselves, all are plagued

by problems of implementation due to the limited information available to the court.  For

example, suspicion of bias due to asymmetry of sampling costs suggests taxing the low-cost

(or subsidizing the high-cost) sampler, so as to re-level the playing field.  To tax or subsidize

each draw necessitates knowing the number of draws.  Since this is private information, there

are incentives to misrepresent it.  Shifting some or all of one litigant’s costs to the other
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creates yet more problems, as it encourages overinvestment in evidence generation by the

party able to shift costs.  For instance, following a finding of liability, a pure loser-pays rule

means that P should spare no expense in the damages stage.  Thus, this would both raise costs

and contribute to a pro-plaintiff bias in the damages stage; anticipating this will lead both P

and D to further overinvest in the liability stage.

As we found in the exponentially-distributed damages evidence example, even when

sampling costs are equal, bias arises.  Here correction would require that the court know d,

the true damages, because the sampling distribution is conditioned on d and the direction of

the bias may change as a function of d (as in the nonlinear case illustrated in Figure 2).  Of

course, “knowing” d begs the question, as the point of the trial is to estimate d.  Moreover,

since each trial presents biased evidence, one cannot rely upon experience in “similar” cases

to generate a valid estimate of the underlying damages evidence distribution:  the outcome

of a series of trials does not provide, for example, a simple random sample; it provides a

complexly-biased sample, with unknown characteristics of how the sample was generated.

A natural solution to the bias induced by the divergence of stakes is to make the stakes

equal (a form of decoupling; see Polinsky and Che, 1991).  Either society subsidizes at least

one of the litigant’s costs (with the attendant problems of mis-reporting and over-investment

in evidence generation) or the award P receives must be subsidized to equate the stakes.

Moreover, the amount of subsidy required depends upon unobservables (e.g., d).

Finally, as discussed in our last example, adversarial litigants sample too much.  A tax

is the natural remedy, with all the problems raised earlier for taxes and subsidies when the
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underlying parameters are unknown and the number of draws is unobservable.

A possible solution lies in greater centralization, via either a properly designed

mechanism for  (decentralized) information gathering and revelation or centralized

information gathering.  The latter possibility is subject to the problems raised by Posner

(1999) and others with respect to inquisitorial systems.  While the former is appealing, it

cannot be applied to the trial portion of the legal process in a vacuum.  Rather, one needs to

characterize the optimal mix of incentive constraints and opportunities for discretion

throughout the entire legal process, so as to induce efficient choices of care as well as

evidence generation and revelation.  This does suggest, however, an intermediate remedy that

may ameliorate the aforementioned informational effects.  Courts in adversarial systems could

independently acquire evidence, something that is commonly used in child custody disputes

and has been used in a few tort cases (e.g., appointing a scientific panel to evaluate the

medical evidence regarding breast implants).  A careful analysis of the incentives facing

litigants, and the implications for bias in the aggregate decision, generated by use of this

option lies beyond the scope of the current paper.

4.  Related Literature

There are several different models of trial court decision-making.  For instance, one

alternative views the trial outcome as an exogenous function of the litigants’ levels of effort

or expenditure (for a review of much of this literature, see Cooter and Rubinfeld, 1989;

specific examples include Danzon, 1983; Braeutigam, Owen and Panzar, 1984; Katz, 1987,

1988; Plott, 1987; Hause, 1989 and Landes, 1993).  Our approach differs in that the function
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which is used by the court to assess the evidence is not specified exogenously, but is derived

from a set of axioms (Skaperdas, 1996, has recently provided an axiomatic basis15 for the

relative effort models used in these earlier works).  A second difference is that the trial

outcome is based on evidence provided by the parties, rather than effort or expenditure, both

of which are unobservable in our model.  Indeed, we find that trial outcomes cannot be

represented by a function of expenditure (and expected trial outcomes are not a function of

expected expenditure).16  Since evidence is obtained through sequential search, trial effort and

expenditures are stochastically related to the actual evidence presented in such a way that one

cannot substitute effort or expenditure for evidence in the liability determination.

Another expenditure-based approach assumes multiple potential types of defendant

(e.g., innocent and guilty; or negligent and non-negligent).  A defendant’s type is private

information; only the level of expenditure can signal (to a sophisticated Bayesian decision-

maker) his guilt or innocence.  Assuming it is less costly for an innocent defendant to claim

innocence,  an innocent defendant reveals himself to be innocent by (essentially) outspending

a guilty one (specific examples include Rubinfeld and Sappington, 1987; and Sanchirico17,

1997a,b).  In these signaling-based models, the litigants are unable to present evidence which

is inherently credible (i.e., “scientific”); rather, it is his willingness to engage in significant

expenditures which reveals his type.  Sobel (1985), Shin (1994, 1998), Lewis and Poitevan

(1997) and Sanchirico (1997c) provide models in which the parties have private information,

but may not present it because it is costly to do so.  They allow a sophisticated Bayesian

arbitrator or court to re-allocate the burden of proof (either ex post, based on the evidence
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provided, or ex ante, to influence the evidence to be provided).

Milgrom and Roberts (1986) assume that the decision-maker is uninformed and

strategically naive, but that both parties know all the pieces of relevant information, which can

be conveyed costlessly and credibly to the decisionmaker.  They show that the adversarial

behavior of the parties results in full revelation; thus the outcome coincides with the full

information optimal decision (extensions include Lipman and Seppi, 1995; and Seidmann and

Winter, 1997).    In our model, the parties have common knowledge of the defendant’s true

liability and the plaintiff’s true damages, but these are unverifiable to the court; and while the

outcomes of their evidence draws are verifiable, they are also private information for each

party and will therefore only be provided selectively.

Finally, Froeb and Kobayashi (1996) address the issue of trial bias by focusing on

liability determination by a jury in a comparative negligence framework (with known

damages).  They model evidence-generation as a sequence of coin flips conducted by both

litigants; each litigant chooses when to stop.  The jury is assumed to be strategically naive

(i.e., it does not recognize the parties’ strategic incentives to present or suppress evidence)

and potentially biased.  On the other hand, it is statistically sophisticated, updating its prior

distribution on the basis of the number of heads and tails reported.  Given this updating

process and the specific functional form of the sampling distribution, Froeb and Kobayashi

show that the jury will nevertheless make unbiased decisions (i.e., its posterior expected

liability equals the defendant’s true liability).  However, this result is sensitive to a number of

assumptions, including the form of the sampling distribution, the symmetry of the litigants and
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the specification of comparative negligence.18  Farmer and Pecorino (1998) reexamine this

model under an alternative specification of jury bias and find that initial bias can be

exacerbated (not ameliorated) by selective evidence production.  Our model differs from

Froeb and Kobayashi’s (as well as from the signaling-based literature described above) in that

our court is constrained by the  rules of evidence and procedure to obey a set of axioms in its

aggregation of (credible) evidence, rather than using statistical methods.

5.  Conclusions and Extensions

In this paper we have examined aspects of the adversarial trial process which might

lead to systematic bias in trial outcomes.  Through a collection of algebraic examples we have

shown that systematic bias can be imparted in several ways.  First, systematic bias can arise

due to differences in the cost of sampling evidence.  For instance, when the damages stage

involves a uniform distribution from which evidence is drawn, the party with the lower

sampling costs will sample (on average) more often and the award will be systematically

biased in this party’s favor.  Second, asymmetry in the sampling distribution (given equal

sampling costs) can result in systematic bias.  When the damages stage involves an

exponential distribution from which the evidence is drawn, if sampling costs are identical and

proportional to true harm, then the award will exhibit a constant proportional bias which may

be either positive or negative, with the direction of the bias a function of the sampling cost

parameter.  A high value of the cost parameter favors the defendant, since few draws will be

taken and the chance of the plaintiff obtaining a draw in the upper tail is low; a low value of

the cost parameter favors the plaintiff, since many draws will be taken and the chance of the
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plaintiff obtaining a draw in the upper tail is higher.  If sampling costs are not proportional

to actual harm, the award will be downward-biased for some levels of harm and upward-

biased for others; however, there is no reason to believe that these biases “cancel out” in

expectation.  Third, a systematic pro-defendant bias arises in the liability stage due to a

divergence between the parties’ respective stakes.  This divergence is a consequence of

sequential decision-making over multiple stages:  at each stage, the plaintiff’s continuation

value is the expected award less future evidence and trial costs, whereas the defendant’s

continuation value is the expected award plus future evidence and trial costs.  Finally, the

adversarial process itself generates additional costs relative to a non-adversarial evidence

generation process and acts to further screen out otherwise meritorious cases.

Such systematic bias is important because it is likely to have an impact on market

processes which rely on legal enforcement.  For example, the undercompensation of

consumers harmed by products is likely to lead to reduced demand, which may mean fewer

products developed or units produced.  Products liability defendants who anticipate that

consumers will be undercompensated have a further incentive to intentionally misrepresent

safety and weakened incentives to improve it.  Our example with exponentially distributed

damages evidence and concave sampling costs suggests that R&D may be diverted to

developing products with a low probability of causing high harms but a relatively high

probability of causing low-to-moderate harms.  This pattern of bias may also encourage firms

to devote resources to legal and political efforts to limit compensatory damages; such limits

have been implemented in a number of states.  Finally, in a contracts setting, anticipated



Daughety 36

undercompensation reduces the incentive to make relationship-specific investments, as breach

becomes more likely.

The point of this paper is that there is reason to expect that adversarial processes are

not unbiased and may create inefficiencies in the economic relationships that depend upon

them for enforcement or compensation.  The source of such inefficiencies is the now familiar

combination of incomplete information and sequential choice by self-interested agents.  If

agents in economic relationships anticipate a systematic bias in enforcement or compensation,

then prediction of the outcome of those relationships (prices charged, units sold, investments

made, bargains struck) must also account for this bias.
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Appendix

Proposition 1:  P’s optimal strategy is to stop after m draws with most favorable evidence of

B-P
m, given that D uses the stopping rule rD and the true probability of liability is p, if and only

if the expected contribution of the incremental evidence, net of the cost of another draw, is

nonpositive:

W P(B-P
m, rD; p) / [VP(d)/G(rD|p)]II [R(x,y) - R(B-P

m, y)]g(y|p)g(x|p)dydx - kP # 0,

where the first integral is over x 0 [B-P
m, BGG] and the second is over y 0 [B, rD].

Proof:  Since the sampling cost is constant, a myopic stopping rule is optimal.  Let WP(B-P
m,

rD; p) denote the payoff to the plaintiff from stopping now with best observation B-P
m, given

that the defendant uses the strategy rD and that the true probability that D harmed P is p; then:

WP(B-P
m, rD; p) = [VP(d)/G(rD|p)]I R(B-P

m ,y)g(y|p)dy,

where the integral is over y 0 [B, rD].  If, rather than stopping with evidence B-P
m, P samples

once more and then stops, P’s payoff (gross of sampling costs) is given by: 

EWP(B-P
m+1, r

D; p) = WP(B-P
m, rD; p)G(B-P

m|p) + I WP(x, rD; p)g(x|p)dx,

 where the integral is over x 0 [B-P
m, BGG].  Thus, it is optimal for P to stop at B-P

m if and only if

the benefits of one more draw do not exceed the costs of one more draw.  Let the benefit of

one more draw net of the cost of one more draw be denoted:

W P(B-P
m, rD; p) / I [WP(x, rD; p) - WP(B-P

m, rD; p)]g(x|p)dx - kP,

where the integral is over x 0 [B-P
m, BGG].  Substituting and simplifying yields W P(B-P

m, rD; p) /
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[VP(d)/G(rD|p)]II [R(x,y) - R(B-P
m, y)]g(y|p)g(x|p)dydx - kP, where the first integral is taken

over x 0  [B-P
m, BGG] and the second is taken over y 0 [B, rD].  QED

Note 1.  Notice that W P(BGG, rD; p) < 0 and that W P(B-P
m, rD; p) is a decreasing function of B-P

m.

The limiting value of W P(B-P
m, rD; p) as rD 6 B is W P(B-P

m, B; p) = VP(d)I [R(x, B) - R(B-P
m,

B)]g(x|p)dx, where the integral is taken over x 0  [B-P
m, BGG].  Under the additional assumption

that W P( B, B; p)  > 0, it follows that for all rD, P has a unique best response BRP(rD) 0 (B,

BGG) which is defined implicitly by W P(BRP(rD), rD; p) = 0.  The sign of  dBRP(rD)/drD is the

same as the sign of

 MW P/MrD = [VP(d)g(rD|p)/(G(rD|p))2]

CII [ R(x, rD) - R(B-P
m, rD) - (R(x,y) - R(B-P

m, y))]g(y|p)g(x|p)dydx,

where the first integral is taken over x 0 [B-P
m, BGG] and the second is taken over  y 0 [B, rD].

 Our previous assumption that Rxy > 0 ensures that MW P/MrD > 0.

Proposition 2: D’s optimal strategy is to stop after m draws with most favorable evidence of

B-D
m, given P uses the stopping rule rP and the true probability of liability is p, if and only if:

W D(B-D
m, rP; p) = [VD(d)/(1 - G(rP|p))]II [R(x,B-D

m) - R(x, y)]g(x|p)g(y|p)dxdy - kD #

0,

where the first integral is over y 0  [B,B-D
m] and the second is over x 0 [ rP, BGG]. 
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Proof:  Again, since the sampling cost is constant, a myopic stopping rule is optimal.  Let

WD(B-D
m, rP; p) denote the payoff to the defendant from stopping now with best observation

B-D
m, given that the plaintiff uses the strategy rP and that the true probability that D harmed P

is p.  Then:  

WD(B-D
m, rP; p) = [VD(d)/(1 - G(rP|p)]I R(x,B-D

m)g(x|p)dx,

where the integral is taken over x 0 [rP, BGG].  If, rather than stopping with evidence B-D
m, D

samples once more and then stops, D’s payoff (gross of sampling costs) is given by: 

EWD(B-D
m+1, r

P; p) = WD(B-D
m, rP; p)[1 - G(B-D

m|p)] + I WD(y, rP; p)g(y|p)dy,

where the integral is over y 0 [B,B-D
m].  Thus, it is optimal for D to stop at B-D

m if and only if

the benefits of one more draw do not exceed the costs of one more draw.  Since D wants to

minimize loss, the benefit of one more draw net of the cost of one more draw is given by: 

W D(B-D
m, rP; p) / I [WD(B-D

m, rP; p) - WD(y, rP; p)]g(y|p)dy - kD,

 where the integral is over y 0 [B, B-D
m].  Substituting and simplifying yields W D(B-D

m, rP; p) =

[VD(d)/(1 - G(rP|p))]II [R(x,B-D
m) - R(x, y)]g(x|p)g(y|p)dxdy - kD, where the first integral is

over y 0  [B,B-D
m] and the second is over x 0 [ rP, BGG].  QED

Note 2:  Notice that W D(B, rP; p) < 0 for all rP and that W D(B-D
m, rP; p) is an increasing

function of B-D
m.  The limiting value of W D(B-D

m, rP; p) as rP 6 BGG is W P(B-D
m, BGG; p) =

VD(d)I[R(BGG,B-D
m) - R(BGG,y)]g(y|p)dy, where the integral is over y 0  [B, B-D

m].  Under the
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additional assumption that W D(BGG, BGG; p) > 0, it follows that for all rP, D has a unique best

response BRD(rP) 0 (B, BGG) which is defined implicitly by W D(BRD(rP), rP; p) = 0.  The sign

of  dBRD(rP)/drP is the opposite of the sign of 

MW D/MrP = [VD(d)g(rP|p)/(1 - G(rP|p))2]

CII [ R(x,B-D
m) - R(x,y) - (R(rP, B-D

m) - R(rP, y))]g(x|p)g(y|p)dxdy,

where the first integral is over y 0 [B, B-D
m] and the second is over x 0 [rP,BGG].   Our previous

assumption that Rxy > 0 ensures that MW D/MrP > 0.

Proposition 3:  There exists a unique Nash equilibrium for the liability stage (rP*, rD*).

Proof:  The composition of the two continuous monotonic best response functions is a

continuous, decreasing function from [B, BGG] to itself.  Therefore, a fixed point exists and,

since the composition function intersects the 45o-line only once, the fixed point is unique.

QED
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Footnotes

We thank Luke Froeb, Tracy Lewis, Richard Posner, Kathryn Spier, Nick Zeppos and two

anonymous referees for helpful comments and suggestions.

1.  Our interest here is in sources of bias in the adversarial process.  One might want to affect

different sides of the market differently if the issue is deterrence, which is not our focus in this

paper.

2.  Strategic sequential search was first discussed by Jennifer Reinganum (1982) in the context

of R&D by firms in a duopoly.

3.  See Posner (Section II.A.1, 1999) for an extensive discussion of the relative efficiencies

of adversarial and inquisitorial processes.  See also Shin (1998) and Dewatripont and Tirole

(1999) for models in which the adversarial process is superior to the inquisitorial process.

4. Our model picks up after any settlement negotiations have failed.  Typically, pre-trial

negotiation occurs after some preliminary evidence-gathering by each side, but before all the

evidence that would be used at trial has been gathered.  Thus, the negotiations are conducted

under asymmetric information.  In a revealing equilibrium for a signaling model of such

negotiations (see, e.g., Reinganum and Wilde, 1986) two things happen:  the asymmetric

information is revealed and some cases fail to settle.  Thus, the parties can end up failing to

settle despite having learned the true values of p and d.  They then continue to gather

evidence for the anticipated trial, generating asymmetric information again, now about what

can be demonstrated to the court.

5.  According to Landes (1993, pp. 99-100), “Rule 42(b) gives courts wide discretion to
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separate substantive issues.  These include bifurcating liability and damages, separating claims

asserted by the plaintiff, separating counterclaims raised by the defendant, deciding whether

a contract exists before considering claims based on its existence, and deciding  whether a

product-liability defendant manufactured the allegedly defective product before considering

liability and damages.”

6.  Usually the two stages follow in close succession, though in some cases there may be a

substantial lag.  When Polaroid sued Kodak for patent infringement with respect to instant

photography, the liability trial occurred in 1985 and the damages trial occurred in 1990

(Landes, 1993, p. 99, fn 1).

7.  An alternative (but fundamentally equivalent) approach to that used here is that a case is

developed incrementally and is the sum of evidence observations rather than the

maximum/minimum.  In this approach, the distribution of each additional evidence draw is

conditional on the current sum, with an increasingly higher mass point at zero (corresponding

to the outcome “no new favorable evidence”) to reflect decreasing returns to sampling.

8.  In terms of R(x,y; q), complementarity implies that q < 1 while substitutability implies that

q > 1.  This means that if R(x,y; q) reflects complementarity, then it acts like a production

function from neoclassical economics (in this case, a symmetric CES production function),

while if R(x,y; q) reflects substitutability, it acts like a norm, or distance measure.

9.  If c # )/16, then sP* $ sD*; that is, P’s evidence will always suggest damages in excess

of those suggested by D’s evidence. If  c > )/16, then sP* < sD*; in this case, there is a chance
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that P’s evidence will suggest lower damages than those suggested by D’s evidence.  This

counter-intuitive second possibility can occur if sampling is very costly because of the

simultaneous presentation of evidence.  One might think that, upon hearing the plaintiff’s

expert ask for lower damages than the defendant’s expert, the defendant would simply

stipulate to the plaintiff’s estimate.  However, this should lead the plaintiff to wonder why the

defendant’s expert is not testifying and might lead the plaintiff to call the defendant’s expert

to get his higher estimate into the record as well.  This possibility suggests a model involving

the sequential submission of evidence and the ability to cross-examine, which is beyond the

scope of the present analysis.  

10.  Note that, if c(d) was a constant positive number, then the same pattern would arise.  It

is possible, however, that the sampling costs curve eventually becomes convex at high values

of d, where congestion effects predominate (e.g., where extensive use of technology-intensive

batteries of expert witnesses may be necessary).

11.  Note that, in this case,  Rxy = 0; thus, the litigants have dominant strategies.

12.  In order to ensure that rP* and rD* lie in the interval [B,BGG],  it is necessary to assume that

kP # AVP(d)/4 and kD # AVD(d)/4, respectively.   Again, it is possible for the stopping sets

[B, rD*] and [rP*,BGG] to overlap if sampling is relatively costly; for the case of symmetric costs

(kP = kD = k), a sufficient condition for rP* $ rD* is k # AVP(d)VD(d)/4[(VP(d))½ +

(VD(d))½]2.

13.  Landes (1993) uses an “inconsistent priors” model (i.e., parties have individual subjective
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assessments of the probability of their winning at trial, which are common knowledge, but do

not obey any consistency condition such as being conditional probabilities derived from the

same prior) to examine the impact of bifurcating trials on the aggregate cost of litigation.  He

notes (p. 117) that the sequential nature of a bifurcated trial affects the parties’ incentives to

invest (lowering the plaintiff’s incentives and raising the defendant’s), so that the defendant’s

chance of prevailing (as perceived by either party) is increased relative to a non-bifurcated

trial.  While he does not address the issue of bias directly, if the non-bifurcated trial were itself

unbiased (which issue cannot be addressed using inconsistent priors since there is no “correct”

probability), then his finding would be consistent with ours.

14.  If we consider the exponential damage estimates case with symmetric sampling and trial

costs which are proportional to d, then VP(d) and VD(d) are linearly homogeneous in d.

15.  We thank Tracy Lewis for pointing out this related paper.

16.  This is because we employ sequential search with a continuous evidence space.  A model

employing non-sequential search, in which parties commit to a specific number of draws (or

commit to a specific level of evidence), could generate such a representation.

17.  In Sanchirico’s principal-agent model, the cost of evidence is actually determined by the

court; that is, the defendant is charged a fee which varies with the evidence presented.

18.  Since completing this paper, we have become aware of another working paper by Froeb

and Kobayashi (1999), in which they model evidence generation as sequential search.  Each

party presents only their best evidence at trial, and the court aggregates evidence by using a

simple average (leading to dominant strategies).  Thus, their model is similar to our treatment
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of the damages stage.  However, they do not address the issue of bias; indeed, they eliminate

bias by construction and focus on comparing the adversarial and inquisitorial processes in

terms of cost and variance.  Moreover, they consider a single stage, rather than the two-stage

trial we consider; we also allow more general aggregation procedures, leading to equilibria

that do not rely on dominant strategies.
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Figure Captions

Figure 1:  Best Response Functions and Nash Equilibrium

Figure 2:  (d,c) Combinations Yielding Various Damages-Trial Outcomes and Three

Sampling Cost Functions
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   Table 1: Comparative Statics

VP(d) VD(d) kP kD

BRP + 0 - 0

BRD 0 - 0 +

rP* + - - +

rD* - - + +
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