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This Technical Appendix contains the proofs of Propositions 1, 4 and 6.  We also provide a more
detailed discussion of why it will be an equilibrium for P1 to always use an MFN.

Proof of Proposition 1.  To verify that these strategies and beliefs provide a revealing equilibrium, we show
that (1.A) r0*(S) is an optimal strategy for D, given the beliefs b0*(S); (1.B) S0*(x) is an optimal strategy for
P, given r0*(S); and (1.C) the beliefs are correct:  b0*(S0*(x)) = x for x 0 [x, xG].
  
Proof of (1.A).  Given the beliefs b0*(S), upon observing the demand S 0 [S, SG], D expects to pay b0*(S) +
kD = S if he rejects the demand S and D expects to pay S if he accepts the demand S, so he is indifferent.
Hence he is willing to randomize as specified by r0*(S).  A demand S > SG is believed to have come from type xG
so it is optimal for D to reject it (and pay xG + kD at trial) rather than to accept it (and pay S > SG = xG + kD in
settlement).  Finally, a demand S < S is believed to have come from type x so it is optimal for D to accept it
(and pay S < S = x + kD in settlement) rather than to reject it (and pay x + kD at trial).

Proof of (1.B).  Given the strategy r0*(S), a P of type x demanding S anticipates a payoff of BP(S) =  r0*(S)(x -
kP) + (1 -  r0*(S))S.  First note that any strategy S < S is dominated by S = S since both are accepted for sure.
Moreover, any strategy S > SG is dominated by S =  SG since the former generates a payoff of x - kP for sure,
while the latter generates a convex combination of SG > x - kP and x - kP.  Thus, the optimal demand must
belong to [S, SG].  Maximizing the expression  r0*(S)(x - kP) + (1 -  r0*(S))S with respect to S yields the first-
order condition:  -{[S - x + kP]/K}exp{- (S - S)/K + exp{- (S - S)/K = 0, which has the unique solution S0*(x)
= x + kD.  To see that this is a local maximum, note that the second-order condition for a maximum is {[S -
x + kP - 2K]/K2}exp{- (S - S)/K < 0, which is satisfied at S0*(x) = x + kD.   If another maximum were to exist
on the boundary (that is, at S or SG), there would have to be a local minimum between it and S0*(x), but no
other interior stationary point exists, since S0*(x) is the unique interior solution to the first-order condition.
Thus S0*(x) provides the global maximum to P’s payoff.

Proof of (1.C).  Substitution yields b0*(S0*(x)) =  S0*(x) - kD = x + kD - kD = x for x 0 [x, xG]; thus the beliefs
are correct in equilibrium.  Moreover, the equilibrium strategies are robust to arbitrary out-of-equilibrium
beliefs.  QED

Proof of Proposition 4.  Recall the definition of h(S1; x2), namely that h(S1; x2) / (x2 + kD - S1)(S1 + K + kP -
x2)/4K.  In what follows, for the exponential distribution, take xG to be infinite.  From the definitions of r^1(x1)
and  r^0(x1), it is clear that r^1(x) =  r^0(x), and that r^1(x1) <  r^0(x1) for all x1 0 (x, xG] if and only if

I
[x, x1]

 (1 + gN(S1*(x)))/(K + g(S1*(x)))dx < I
[x, x1]

 (1/K)dx  for all x1 0 (x, xG].

If (1 + gN(S1*(x)))/(K + g(S1*(x))) < 1/K (or, equivalently, gN(S1*(x)) < g(S1*(x))/K) for all x 0 [x, xG) then the
inequality in the displayed equation above holds for all x1 0 (x, xG].

Since gN(S1) = I[Mh(S1; x2)/MS1 - h(S1; x2)/K]exp{- (S1 - S)/K}f(x2)dx2, it follows that gN(S1*(x)) <
g(S1*(x))/K if and only if:

H(x) / I[Mh(S1*(x); x2)/MS1) - 2h(S1*(x); x2)/K]exp{- (x - x)/K}f(x2)dx2 < 0,
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where the integral is taken over x2 0 T(S1*(x)) = [x, min{xG, x + 2K}].  Note that T(S1*(x)) is non-degenerate
whenever S1*(x) <  xG + kD; that is, whenever x < xG.

i) One sufficient condition for H(x) < 0 for all x 0 [x, xG)  is that F(C) is the uniform distribution.  To see this,
substitute f(x2) = 1/(xG - x), integrate and simplify to obtain: 

H(x) = [exp{- (x - x)/K}/2K2(xG - x)]Y{Y2/3  - YK/2 - K2}, where Y / min{xG - x, 2K}.  

The term in square brackets is positive, as is Y itself, so H(x) < 0 so long as M(Y) / Y2/3  - YK/2 - K2 < 0
for all Y 0 (0, 2K], which can be shown.

ii) A sufficient condition for H(x) < 0 for all x 0 [x, 4)  is that F(C) is the exponential distribution.  To see this,
substitute f(x2) = 8exp{-8(x2 - x)}, integrate and simplify to obtain: 

H(x) = -[exp{- 8(x - x)}/2K282][(exp{-2K8})(K8 + 1) + (K8 - 1)][K8 + 2].

The term in each square bracket is positive, for all K > 0 and 8 > 0, so H(x) < 0 for all x 0 [x, 4).

(iii) A sufficient condition for H(x) < 0 for all x 0 [x, xG) when F(C) is arbitrary is that:

[Mh(S1*(x); x2)/MS1) - 2h(S1*(x); x2)/K] < 0 for all x2 > x and for all x 0 [x, xG).

This integrand can be shown to be [(x2 - x)2 - K(x2 - x) - K2]/2K2, which implies the result. QED.

Proof of Proposition 6.  We fix a value of x1 and argue that, if F(C) satisfies (i), (ii) or (iii), then the expected
trial costs for the second period are lower under an MFN.  Since this will be shown to be true for all values
of x1 (except x1 = xG, in which case the MFN never binds for any x2), the expected trial costs for the second
period are lower under an MFN.

Recall that r^2(x2; x1) = 1 - {[x1 + 2K - x2]/2K}exp{- (x1 - x)/K} for x2 0 [x1, min{xG, x1 + 2K}], while
r^2(x2; x1) = 1 for x2 0 (min{xG,  x1 + 2K}, xG].  Without an MFN, r^0(x2) = 1 - exp{- (x2 - x)/K} for all x2 0 [x1,
xG].  Thus, multiplying by the cost per trial and taking the expectation over x2 0 [x1, xG] (where the probability
of a trial differs with and without an MFN) yields:

ETC2(x1) - ETC0 = KI
[x1, xG]

 r^2(x2; x1)f(x2)dx2 -  KI
[x1, xG]

 r^0(x2)f(x2)dx2 

    = KI
[x1, xG]

  exp{- (x2 - x)/K}f(x2)dx2 

- Kexp{- (x1 - x)/K}I
[x1, min{xG,  x1 + 2K}]  [(x1 + 2K - x2)/2K]f(x2)dx2.

Clearly, ETC2(xG) - ETC0 = 0, since the domains of integration are then degenerate.  Thus, consider values of
x1 < xG in the remainder of the proof.

i) Consider F(C) to be the uniform distribution; substitute f(x2) = 1/( xG - x), integrate and simplify to obtain:

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}

× [K(1 - exp{- (xG - x1)/K}) - (Z - x1)(x1 + 4K - Z)/4K],
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where Z = min{xG, x1 + 2K}.  There are two cases to consider. 
 
Case 1.  Assume that x1 + 2K < xG, so Z = x1 + 2K.  Substituting and simplifying yields 

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}[K(1 - exp{- (xG - x1)/K}) - K], 

which is clearly negative.  So ETC2(x1) - ETC0 < 0 for all x1 < xG - 2K.

Case 2.  Assume that x1 + 2K > xG, so Z =  xG.  Substituting and simplifying yields 

ETC2(x1) - ETC0 = [K/(xG - x)]exp{- (x1 - x)/K}

× [K(1 - exp{- (xG - x1)/K}) - (xG - x1)(x1 + 4K - xG)/4K].

Let v / xG - x1.  Then sgn {ETC2(x1) - ETC0} = sgn {[K(1 - exp{- v/K}) - v(4K - v)/4K]}.  Since x1 0 [xG - 2K,
xG) implies that v 0 (0,2K], we need only verify that K(1 - exp{- v/K}) - v(4K - v)/4K < 0 for all v 0 (0,2K].
This inequality holds for the specified values of v.  Thus, ETC2(x1) - ETC0 < 0 for x1 0 [xG - 2K,xG), as claimed.

ii) Consider F(C) to be the exponential distribution; substitute f(x2) = 8exp{-8(x2 - x), integrate and simplify
to obtain: 

ETC2(x1) - ETC0 = exp{-(x1 - x)(1 + K8)/K}[(1 - exp{-2 K8})/28 - K/(1 + K8)].

This expression is negative for all x1 0 [x, 4) because the term in square brackets is negative for K > 0 and
8 > 0.

iii) Now consider F(C) to be an arbitrary distribution on  [x, xG].  A sufficient condition for ETC2(x1) - ETC0
< 0 for all x1 0 [x, xG) is that (assuming xG - x < 2K) the integrand is point-wise negative:

exp{- (x2 - x)/K} - exp{- (x1 - x)/K}[(x1 + 2K - x2)/2K] < 0

for all x2 0 [x1, xG] and x1 0 [x, xG).  This will be true as long as  xG - x < "K, where " is the solution to the
equation exp{-"} + "/2 = 1.  QED.

Why is the use of an MFN always part of an equilibrium settlement demand made by P1?
We have claimed that, under conditions such that every P1 type gains from including an MFN

in its settlement demand (and D is indifferent), all P1 types will include an MFN.  A more formal
argument is as follows.  Suppose that D conjectures that every type of P1 will include an MFN.
Then upon observing an MFN, D continues to entertain the possibility that the associated demand
could have come from any type x1 0 [x, xG] and, in particular, D assigns the type x1 = S1 - kD, giving
rise to the equilibrium strategies provided in Proposition 3.  Thus, if D conjectures that every type
of P1 will include an MFN and behaves accordingly, then it will be optimal for every type of P1 to
include an MFN, and thus D’s conjectures are correct.  The out-of-equilibrium beliefs that support
this are as follows:  upon observing a demand S1 with no MFN, D believes that P1 would have made
this error regardless of type.  Thus, D reverts to the no-MFN rejection function but continues to infer
that x1 =  S1 - kD.  Given this inference and his anticipated payoff from the second-period bargaining
game without an MFN, D is indifferent between acceptance and trial against P1 and thus is willing
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to randomize according to the no-MFN rejection function.  Moreover, given that D is expected to
use the no-MFN rejection function upon observing no MFN, P1 would continue to (optimally) use
the settlement demand function S1 =  x1 + kD even if no MFN were included.  However, since every
type of P1 receives a lower payoff in the no-MFN equilibrium, no type is tempted to defect to not
including an MFN.  Thus, these out-of-equilibrium beliefs support the inclusion of an MFN by all
types of P1.

Could there be another equilibrium in which no P1 type includes an MFN and play proceeds
as in Proposition 1?  The answer is “No.”  Suppose, to the contrary, that D conjectures that no P1
type would include an MFN.  Upon observing no MFN, D would play according to the equilibrium
in Proposition 1 (the no-MFN case).  In order to deter the use of an MFN, D would have to maintain
out-of-equilibrium beliefs that punish P1 for including an MFN.  For instance, suppose that upon
seeing an MFN, D believes that P1 is the lowest possible type, x, and thus rejects any demand in
excess of x + kD.  But then the type x would defect to S = x + kD with an MFN (from the putative
equilibrium in which no P1 type uses an MFN), since this demand is accepted for sure in both cases
and the MFN adds a strictly positive expected future payment for this type.  Moreover, there would
be a neighborhood of types near x who would also defect to S = x + kD with an MFN from their no-
MFN demands.  Thus, even these extremely punishing out-of-equilibrium beliefs cannot support an
equilibrium in which no P1 type includes an MFN.


