
Secrecy and Safety Web Appendix, p.1

Web Appendix for Secrecy and Safety
by A. Daughety and J. Reinganum

Proof of Claim 1 from the Appendix.  We provide only the proof of part (a) below; the complete
proof of part (b) can be obtained by adapting the arguments from Reinganum and Wilde (1986),
which uses iterated D1 (Universal Divinity; see Banks and Sobel, 1987, and Cho and Kreps, 1987)
since only one iteration is required.  However, we note here a few critical attributes of the
uniqueness proof.  In a revealing equilibrium, the function s(p2; 1) must be decreasing (if higher
prices also result in no fewer sales, they will be mimicked) and continuous from the left on the
equilibrium price interval (a jump, which must be downward, would induce a defection to a lower
price by types whose (higher) equilibrium prices lie in a neighborhood of the price at which the jump
occurs).  The same argument implies that s(p2; 1) = 1 when p2 is the lowest equilibrium price.  A
jump can occur after the highest equilibrium price, since there are no types with a higher equilibrium
price that might be tempted to defect downward.  Finally, since s(p2; 1) is decreasing and continuous
on the equilibrium price interval, it is differentiable almost everywhere, and therefore must satisfy
the differential equation provided in the text.  Solving this equation through the specified boundary
condition provides a unique candidate for a revealing equilibrium.  The remainder of the proof
verifies that this is a revealing equilibrium when $ > LD

C.

First, we note that, given the beliefs specified in (i), the consumer is indifferent between
buying and not buying at any price p2 0 [V - (1 - 1)LP

C, V - (1 -  2G )LP
C].  This is because if she buys

at price p2, she expects surplus of V - p2 - [1 - (1 - (V - p2)/LP
C]LP

C = 0.  Thus it is optimal for the
consumer to randomize as specified in (ii).  Any price p2 > V - (1 - 2G )LP

C will yield negative surplus,
regardless of the consumer’s inferred value of 21 0 [1, 2G ], so it is optimal to buy with probability
zero.  Finally, any price p2 < V - (1 - 1)LP

C will yield positive surplus, regardless of the consumer’s
inferred value of 21 0 [1, 2G ], so it is optimal to buy with probability one.  Thus, given the
consumer’s beliefs as in (i), the probability of sale function given in (ii) is optimal.

Given the probability of sale function in (ii), the firm with retained technology of type 21
receives profits of A2

C(r; 21, 1) = maxp2
  Ns(p2; 1)[p2 - (1 - 21)LD

C] + N[1 - s(p2; 1)]$21. First note
that any price p2 < V - (1 - 1)LP

C is dominated by the price p2 = V - (1 - 1)LP
C since both result in a

sure sale.  Any price p2 > V - (1 - 2G )LP
C is dominated  by  p2 = V - (1 - 2G )LP

C since the former price
results in no sale and the latter results in a positive probability of sale at a profitable price.
Differentiating with respect to p2 and collecting terms implies that sN = -"s/B < 0 and sO = "(" +
1)s/B2 > 0.  The first-order condition sN[p2 - (1 - 21)LD

C - $21] + s = 0 has the unique solution p2 =
p*2(21) = V - (1 - 21)LP

C.  To see that this provides a maximum, we evaluate the second-order
condition:

sO[p2 - (1 - 21)LD
C - $21] + 2sN = ["(" + 1)s/B2][p2 - (1 - 21)LD

C - $21] - 2"s/B 

= ["s/B2][(1 + ")(p2 - (1 - 21)LD
C - $21) - 2B]

at p2 = p*2(21) = V - (1 - 21)LP
C.  Upon making this substitution, the term [(1 + ")(p2 - (1 - 21)LD

C - $21)
- 2B] reduces to [(LD

C - $)/(LC - $)][V - (1 - 21)LC - $21] < 0.  Thus, the function p*2(21) = V - (1 -
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21)LP
C provides the unique interior maximum.  Moreover, if there were another maximum at either

end of the interval [V - (1 - 1)LP
C, V - (1 - 2G )LP

C], then there would have to be an interior minimum
between p*2(21) = V - (1 - 21)LP

C and that endpoint.  Since p*2(21) = V - (1 - 21)LP
C is the unique

solution to the first-order condition, there can be no interior minimum.  Hence,  p*2(21) = V - (1 -
21)LP

C is the optimal price, given s(p2; 1).

Since the resulting payoff A2
C(r; 21, 1) = Ns(p*2(21); 1)[p*2(21) - (1 - 21)LD

C] + N[1 -
s(p*2(21); 1)]$21 is an increasing function of 21, the retention interval will be of the form [1, 2G ], with
the worst retained technology satisfying A2

C(r; 2, 2) =  A2
C(n); that is, A2

C(r; 2, 2) = N[V - (1 - 2)LC]
= N[V - (1 - :)LC] - t.  Solving for the worst technology retained yields 2C =  : - t/NLC.

It is clear that firms with technologies of types 21 > 2C are better off retaining them.  It
remains to verify that a firm of type  21 < 2C would not want to deviate from replacing the
technology to retaining it and charging some price p2 0 [V - (1 - 2C)LP

C, V - (1 - 2G )LP
C].  The best

price for a firm of type 21 < 2C is p2 = V - (1 - 2C)LP
C, which yields a sure sale (and lower quality

firms value a sale more than higher quality firms).  But then the firm’s profit is N[V - (1 -  2C)LP
C -

(1 - 21)LD
C] < N[V - (1 -  2C)LP

C - (1 - 2C)LD
C] = N[V - (1 - :)LC] - t.  Thus, a firm of type  21 < 2C

prefers to replace the technology.  Finally, it is straightforward to verify that the consumer’s beliefs
are correct in equilibrium. QED.

Proof of Proposition 1.   Write s*(21; 2C) = {A/B}", where A = V - (1 -  2C)LC - $2C, B = V - (1 -
21)LC - $21, and " = LP

C/(LC - $).  Note that A > 0, B > 0 and B > A for 21 > 2C.  Then s*N(21; 2C)
= -"s*(LC - $)/B < 0 and  s*O(21; 2C) = "(1 + ")s*[(LC - $)/B]2 > 0. The parameters V and $ enter
directly, and do not affect 2C.  Differentiation yields:

Ms*(21; 2C)/MV =  "s*(LC - $)(21 - 2C)/AB > 0 for all 21 0 (2C, 2G ] (and = 0 for 21 = 2C).
Ms*(21; 2C)/M$ =  "s*[ln{A/B}/(LC - $) + (V - LC)(21 - 2C)/AB].

Let ((21) / ln{A/B}/(LC - $) + (V - LC)(21 - 2C)/AB.  Since ((2C) = 0 and (N(21) = -(LC -
$)21/B2 < 0, it follows that ((21) < 0 for all 21 0 (2C, 2G ].  Thus, Ms*(21; 2C)/M$ < 0 for all 21 0 (2C, 2G ]
(and = 0 for 21 = 2C).  The parameters N, t and : enter only indirectly through 2C.  Since Ms*(21;
2C)/M2C =  "s*(LC - $)/A > 0, it follows that sgn{Ms*(21; 2C)/MD} = sgn{M2C/MD} for D = N, t or :.
Since 2C =  : - t/NLC, we have Ms*(21; 2C)/MN > 0; Ms*(21; 2C)/M: > 0; and Ms*(21; 2C)/Mt < 0. QED.

Partial Derivatives of H(V, t/N).  
Recall that H(V, t/N) / IC[2s*(2; 2C) - :]g(2)d2, where 2C =  : - t/NLC.  In the text, we

claimed that (a) MH/MV > 0; and (b)  MH/M(t/N) < 0.
Proof of (a).  MH/MV = IC21(Ms*(21; 2C)/MV)g(21)d21.  Recall that Ms*(21; 2C)/MV > 0 for all 21 0
(2C, 2G ], and Ms*(21; 2C)/MV = 0 for 21 = 2C (see Proposition 1).  Since 2C itself is independent of V,
it is clear that  MH/MV > 0. 
Proof of (b).  MH/M(t/N) = (2C - :)g(2C)/LC + IC{21[Ms*(21; 2C)/M(t/N)]}g(21)d 21.  The first term is
negative since 2C < :.  The second term is negative since  Ms*(21; 2C)/M(t/N) < 0 for all 21 0 [2C, 2G ]
(see Proposition 1).  Thus,  MH/M(t/N) < 0. QED.
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To ascertain parameter combinations (in terms of V and t/N) under which this is likely to
occur, we first note that E(F; 2C) < N: if and only if ICN[21s*(21; 2C) - :]g(21)d21 < 0.  Let: 

H(V, t/N) / IC[21s*(21; 2C) - :]g(21)d21.

Some Examples Illustrating Declining versus Improving Intertemporal Safety Provision
The average safety of products sold is the same in both periods when H(V, t/N) = 0.  Suppose

we begin at a parameter pair (V, t/N) at which H(V, t/N) = 0.  Then, since it can be shown (see the
Web Appendix) that MH/MV > 0 and MH/M(t/N) < 0, it follows that the average safety of products sold
is more likely to decline from Period 1 to Period 2 when V is low, or when t/N is high.  In particular,
this means that H(V, t/N) = 0 yields an increasing function when graphed in (V, t/N) space.  It is
difficult to explore H in more detail analytically, so we use some examples to illustrate this surface
between declining and improving intertemporal safety provision.  We now fix the region of analysis
and the parameter values.  Since 0 < 2C < :, this means that 0 < t/NLC < :.  Further, from
Assumption 1, we require V/LC > 1; this is also the economically relevant region, since otherwise
the product potentially generates higher social costs than value.  In the computations below:  1) 1
< V/LC < 3; 2) LP

C/LC = 0.5; and 3) [2, 2G ] = [0, 1].  Note that LP
C/LC = 0.5 and $ > LD

C implies that $/LC

> 0.5; we have chosen to use $/LC = 0.6.  Runs with higher values of $/LC gave very similar results.
The calculations were performed using Mathematica 4.2.

Diagrams for H = 0 When the Distribution is Symmetric
Figure A1 below illustrates these computations, for selected members of the family of Beta

distributions (see Johnson and Kotz, 1970, Chapter 24); that is G(2) = Beta(2; p, q), where we have
chosen to use the parameter values (p,q) to be (1,1), (2,2), and (3,3).  These (p,q) values provide
symmetric distributions, all with mean equal to ½, and with increasing “peakedness,” as illustrated
in the left panel of Figure A1 below.

In the figure the density functions are on the left, while (for each G) the boundary between
declining and improving intertemporal safety of the product sold is displayed on the right.  For
example, the case (p,q) = (1,1) is the uniform density, illustrated on the left of the figure.  The curve
on the right labeled (1,1), is the resulting H = 0 locus, which implicitly defines levels of t/NLC, as
a function of V/LC, that induce Period 2 average safety of products sold exactly equal to the average
safety of products sold in Period 1.  Points above this curve are associated (under the uniform
distribution) with declining intertemporal safety, while points below this curve are associated (under
the uniform distribution) with increasing intertemporal safety.  Thus, starting at a point on the curve,
an increase in t results in a higher cost of R&D, a lower threshold 2C and a lower value of s*(21; 2C)
at any 21 > 2C (see Lemma 1 in the main text).  Such an increase results in sufficient demand
reduction to make the average safety of products sold in Period 2 lower than that of Period 1.  A
reverse effect would occur if we had increased V instead.  This same discussion applies for the other
densities illustrated.
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Figure A1 also suggests that a distribution G~  which is a mean-preserving spread of G (as,
for example, the distribution represented by (p,q) = (1,1) yields a mean-preserving spread of the
distribution represented by (p,q) = (2,2)) will result in an associated curve in (V/LC,t/NLC) space
which is everywhere higher than that curve associated with G. Unfortunately, we have not been
successful in characterizing when (or under what conditions on G) mean-preserving spreads provide
the dominance suggested by the right-hand-side panel of Figure A1.  However, this property is
intuitively reasonable.  A mean-preserving spread G~  of G places more weight on high types and on
low types than G does.  Now consider a specific level of t/NLC (equivalently, fix a value of 2C).
While a larger proportion of types under G~  is rejected due to 2C than is rejected under G, more high
types are left, too.  Thus, for a given level of t/NLC, H should be larger under G~  than under G for
higher values of V.  This is the pattern observed above.

Diagrams for H = 0 When the Distribution is Not Symmetric
In what follows we use the same parameter values as employed above, except for the (p,q)

pairs associated with the beta distribution.  Figure A2 displays results for three mean-preserving left-
skewed distributions (: = 1/3), while Figure A3 displays results for three mean-preserving right-
skewed distributions (: = 2/3).  Note that the diagrams on the right of Figures A2 and A3 are for the
space [1, 3]×[0, :] and that : for Figure A2 is 1/3 while : for Figure A3 is 2/3.

Proof that MN(8O) < 0 and MO(8O) > 0 .
Notice that:  MN(8O) = dA 1

O( 8O)/d8O 
 = N[- (1 - :)KS](1 + G(2O)) + {N[V - (1 -  :)LO] - t}g(2O)(d2O/d8O) 

    - N[V - (1 - 2O)LO]g(2O)(d2O/d8O)  + ION[- (1 - 21)KS]g(21)d21.
The first and fourth terms above are both negative.  The two middle terms correspond to A 2

O(n) -
A 2

O(r; 2O), which cancel each other out by the definition of the retention threshold 2O.  Thus, MN(8O)
< 0.  Moreover, differentiating again yields MO(8O) = NKSg(2O)(d2O/d8O)[: - 2O].  Since d2O/d8O

> 0 and : > 2O, then MO(8O) > 0. QED.
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Details of the Impact of Third Party Harms on M(8O; N).

M(8O; N) =  A 1
O(8O; N) -  A 1

O(8C; N)
+ ICN[1 - s*(21; 2C)][V - (1 - 21)L

~C - $21]g(21)d21.
Notice that (upon recalling that 1 - s*(2C; 2C) = 0):

MM(8O; N)/MN =   MA 1
O(8O; N)/MN -  MA 1

O(8C; N)/MN 

+ ICN{[-Ms*(21; 2C)/MN][V - (1 - 21)L
~C - $21] + [1 -  s*(21; 2C)][-(1 - 21)LD

C}g(21)d21.

The first two terms cancel out when 8O = 8C, and the integrand will surely be negative if
Ms*(21; 2C)/MN > 0.  A sufficient condition for  Ms*(21; 2C)/MN > 0 for all 21 0 [2C, 2G ] is: 
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 -(V - L~C)ln{(V - L~C)/(V - $)} - (L~C - $) + (t/N)((L~C - $)/L~C)2 > 0. (*)

To see this, notice that the function s*(21; 2C) depends on N only through L~C; thus Ms*(21; 2C)/MN
= (Ms*(21; 2C)/ML~C)(ML~C/MN).  Since ML~C/MN > 0, we need only find a sufficient condition for
Ms*(21; 2C)/ML~C > 0  for all 21 0 [2C, 2G ].  Differentiating s*(21; 2C) with respect to L~C yields:

 Ms*(21; 2C)/ML~C = ["s*/A(L~C - $)]{ -Aln{A/B} + (V - $)(A - B)/B + (t/N)((L~C - $)/L~C)2}, 

where A / V - (1 - 2C)L~C - $2C  and B / V - (1 - 21)L
~C - $21.  Let 0(21) /  -Aln{A/B} +  (V - $)(A -

B)/B + (t/N)((L~C - $)/L~C)2.  Then 0(2C) = (t/N)((L~C - $)/L~C)2 > 0 and 0N(21) = -A(L~C - $)2(1 - 21)/B2

< 0.  Thus, a sufficient condition for Ms*(21; 2C)/ML~C > 0 for all 21 0 [2C, 2G ] is that 0(2G ) > 0.  The
worst-case scenario is provided by 2G  = 1.  

Upon substituting 2C =  : - t/NL~C, we can see that 0(1; :) = -[V - (1 - : + t/NL~C)L~C - $(: -
t/NL~C)]ln{[V - (1 - : + t/NL~C)L~C - $(: - t/NL~C)/(V - $)} - (1 - : + t/NL~C)(L~C - $) + (t/N)((L~C -
$)/L~C)2.  If we wanted to guarantee that 0(1; :) > 0 for all :, we would want it to be non-negative
in the worst-case scenario.  Since M0(1; :)M: =  -(L~C - $)ln{[V - (1 - : + t/NL~C)L~C - $(: +
t/NL~C)]/(V - $)} > 0, the worst-case scenario occurs when : is as small as possible.  In order to keep
2C non-negative, this means that the lowest possible value of : is : = t/NL~C.  Evaluating 0(1; :) at
: = t/NL~C yields:  0(1; t/NL~C) = -(V - L~C)ln{(V - L~C)/(V - $)} - (L~C - $) + (t/N)((L~C - $)/L~C)2 > 0
under the displayed condition (*).  Thus, this condition ensures that 0(1; :) > 0 for all : 0 [t/NL~C,
1], which implies Ms*(21; 2C)/ML~C > 0 (and thus Ms*(21; 2C)/MN > 0) for all 21 0 [2C, 2G ]. QED.

Detailed Analysis of the Confidential Regime when $ < LD
C

We have shown that a revealing equilibrium exists when $ > LD
C.  In a revealing equilibrium,

a firm with a safer product must demand a higher price (and must suffer more demand-reduction).
Thus, a revealing equilibrium can only exist if a firm with a safer product is willing to absorb a
reduction in volume in exchange for a higher price.  Recalling the firm’s profit function (equation
(4)), we see that the type that will be most willing to suffer a given reduction in demand is the type
for which p2 - (1 - 21)LD

C - $21 is the smallest (since this represents the foregone profit, net of the
opportunity cost, from selling one fewer units of the product).  Since this expression is decreasing
in 21 when $ > LD

C, the safest type suffers the least from demand reduction.  Consequently, firms
with safer products are willing to suffer more demand reduction in return for higher prices.
However, when $ < LD

C, the firm with the safest product suffers the most from demand reduction.
In this case, there cannot be a perfect Bayesian equilibrium involving revelation; any perfect
Bayesian equilibrium involves complete pooling; the following proof is of Claim 2 (see the
Appendix for the paper).

Proof of Claim 2.  It is straightforward to verify that the strategies and beliefs provided constitute
a pooling equilibrium.  Technically, any price p2 0 [V - (1 - 2CP)LP

C, V - (1 - :(2CP))LP
C] can be

supported as a PBE since upward deviations are inferred to come from type 2CP, and are therefore
rejected.  However, the PBE specified in Claim 2 is the natural analog of that characterized in
Section 3.  The more interesting part of this claim is that there can be no revelation in equilibrium.
To see why, suppose there is partial revelation.  This could take one of the following forms: (a) an
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interval of types who reveal according to the price function p(21) = V - (1 - 21)LP
C; or (b) an interval

of types [2-, 2+] partitioned by a marginal type 2m, so that the types [2-, 2m) prefer the price p2
- , the

types (2m,  2+] prefer the price p2
+ > p2

-  and type 2m is indifferent between these two prices.  We argue
that neither of these can be part of an equilibrium.

(a)  As argued above in the proof of Claim 1, if an interval of types reveals according to the price
function p(21) = V - (1 - 21)LP

C, then these types face a decreasing and continuous probability of sale
function s(p2) which must satisfy the differential equation (6) from the text.  The solution to this
equation is of the form s(p2) ={)/[p2(LC - $) + $V - $LP

C - VLD
C]}", where " / LP

C/(LC - $).  (The
constant of integration ) need not be evaluated here, as we will show that a contradiction arises
regardless of this value).  Checking the second-order condition, evaluated at p(21) = V - (1 - 21)LP

C

(see the proof of Claim 1), implies that this price now provides an interior minimum when $ < LD
C.

Thus, an equilibrium involving this sort of partial revelation cannot exist.

(b) In the second candidate for an equilibrium involving partial revelation, the prices and
corresponding probabilities of sale must satisfy:  p2

+ > p2
-  and s(p2

+) < s(p2
- ) (if the higher price also

achieves at least as high a sales volume, then it will be mimicked).  Since 2m must be indifferent
between the two prices, s(p2

+)[p2
+ - (1 - 2m)LD

C] + [1 - s(p2
+)]$2m - s(p2

- )[p2
-  - (1 - 2m)LD

C] - [1 - s(p2
- )]$2m

= 0.  However, this difference is decreasing in 2m (since s(p2
+) < s(p2

- ) and $ < LD
C), so types in

(2m, 2+] would prefer to defect from their putative equilibrium price of p2
+ to p2

- .  Thus, an
equilibrium involving this sort of partial revelation cannot exist. QED.

Continuation of Discussion of Pooling Equilibrium
Beliefs for the consumer now take the following form.  If the firm (in a confidential regime)

retains its technology, then consumers believe that 21 0 [1, 2G ].  Since the equilibrium involves
complete pooling, the maximum price consumers are willing to pay is given by V - (1 - :(1))LP

C,
where :(1) is the conditional mean of 21, given that 21 0 [1, 2G ].  That is, :(1) / I21g(21)d21/(1 -
G(1)), where the integration is over 21 0 [1, 2G ].  Notice that: (a) :(2) is the unconditional mean
(which we will continue to denote simply by :); (b) :(1) > 1 for all 1 < 2G ; and (c) :N(1) > 0.
Moreover, Assumption 1 and the fact that $ < LD

C imply that V - (1 - :(1))LP
C - (1 - 21)LD

C > $21 for
all 1 and 21 0 [1, 2G ].  Thus, every type of firm prefers to sell a unit rather than to employ the
technology in its alternative use.  Hence, all types of firms will sell N units.

Firm profits in Period 2 following retention of the technology therefore become:
A2

C(r; 21, 1) = N[V - (1 - :(1))LP
C - (1 - 21)LD

C].
These profits are clearly increasing in 21; that is, safer products are more profitable.  Thus the form
of consumers’ beliefs is rationalized, and we can find the worst type of technology retained by
equating these profits to the profits from replacing the technology, A2

C(n) = N[V - (1 -  :)LC] - t.
Thus, the worst technology retained in a pooling equilibrium, denoted 2CP, is given by:

N[V - (1 - :(2CP))LP
C - (1 - 2CP)LD

C = N[V - (1 - :)LC] - t.
Recall that the worst technology retained in the revealing equilibrium satisfies N[V - (1 -

2C)LP
C - (1 - 2C)LD

C] = N[V - (1 - :)LC] - t.  Since :(2C) > 2C, it follows that N[V - (1 - :(2C))LP
C - (1 -

2C)LD
C] > N[V - (1 - :)LC] - t.  Thus, while the firm is indifferent about replacing the type 2C

technology in the revealing equilibrium, it strictly prefers to retain this technology in the pooling
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equilibrium.  Therefore, the retention threshold when $ < LD
C (i.e., in the pooling equilibrium) is yet

lower than the retention threshold when $ > LD
C (i.e., in the revealing equilibrium); that is, 2CP < 2C.

A fortiori, 2CP < 2O.

The results stated in Propositions 1-3 apply equally to the comparison between confidential
and open regimes when the confidential regime is characterized by a pooling equilibrium, with some
minor differences.  We briefly summarize these results below without their formal re-statements.

The replacement threshold for the technology is strictly lower in a confidential regime; that
is, 2CP < 2O.  This holds now even if 8C = 8O, because the less safe products can obtain the higher
pooling price for their products.  The firm makes lower R&D investments in a confidential regime,
since it replaces the technology less often.  The average quality of the technology always improves
from Period 1 to Period 2 in both regimes, but it is higher in Period 2 in an open regime than in a
confidential regime.  The average safety of products sold in Period 2 is lower in a confidential
regime than in an open regime (however, the average safety of products sold in a confidential regime
cannot decline from Period 1 to Period 2); this is now a direct consequence of a lower average
quality of technology, since there is no demand reduction in equilibrium.

Results analogous to those in Proposition 5 can be obtained.  Note that now the maximum
willingness to pay for openness is given by M(8O) / A 1

O(8O) - A1
CP, where: 

A1
CP = {N[V - (1 - :)LC] - t}(1 + G(2CP)) + IN[V - (1 - :(2CP))LP

C - (1 - 21)LD
C]g(21)d21, 

and where the domain of integration is [2CP, 2G ].  It is straightforward to show that the functions A 1
O

and A1
CP are equal when 8O = 8C and they are evaluated at the same threshold value.  With a slight

abuse of notation, we write this function as A 1
O(8C; 2).  Of course, when 8O = 8C, we have shown that

the threshold values have the ranking 2O = 2C > 2CP.  Thus, M(8C) > (<) 0 as A 1
O(8C; 2C) > (<)

A 1
O(8C; 2CP) = A1

CP.  

The function A 1
O(8C; 2) is clearly increasing in 2 for all 2 < 2C (see below for details), which

implies that M(8C) > 0.  As before, this willingness to pay for a credible commitment to openness
decreases as 8O increases, but at a diminishing rate; this is the same result as in Proposition 4, which
is illustrated in Figure 2.

Properties of the function A 1
O(8C; 2) for the Pooling Analysis

This function is given by:
A 1

O(8C; 2) / {N[V - (1 - :)LC] - t}(1 - G(2)) 
       + IN[V - (1 - 21))LP

C - (1 - 21)LD
C]g(21)d21, 

and where the domain of integration is [2, 2G ].  Differentiating and collecting terms implies:
MA 1

O(8C; 2)/M2 = [(: - 2)NLC - t]g(2) 
 = [(2C - 2)NLC]g(2).

It is clear that MA 1
O(8C; 2)/M2 > 0 for all 2 < 2C.  Thus, A 1

O(8C; 2C) > A 1
O(8C; 2CP) = A1

CP and
hence M(8C) > 0. QED.

Third-Party Harms and Pooling
Recall that in the discussion of firm liability for third-party harms, we recognized that $
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could be such that L~D
i  > $ > LD

i .  Thus, while a revealing equilibrium would exist without firm
liability for third-party harms (since $ > LD

i ), their inclusion in the liabilities faced by the firm might
result in a level of losses for the firm such that L~D

i  > $.  Accounting for the dependence of 2CP and
2C on the level of losses, let us briefly employ the notation 2CP(C) and 2C(C).  We know that 2CP(L~C)
> 2CP(LC), and that 2C(L~C) > 2C(LC).  Since 2CP(C) < 2C(C), this means that it is possible that, should L~D

i

> $ > LD
i , then 2CP(L~C) < 2C(LC).  Thus, while third parties would now receive some compensation

for their harms, the shift from a revealing equilibrium to a pooling equilibrium could mean that third
parties (as well as consumers) might also suffer more accidents.
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