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In this Technical Appendix, we provide: (1) the discussion of how a small cost of conducting the
auction renders the continuation equilibrium wherein C accepts L2's demand Pareto superior to the one in
which C conducts the auction, and how L2 can make C an offer that she strictly prefers to accept; (2) the
detailed analysis of equilibrium beliefs and behavior in the continuation equilibrium between L2 and C, for
the case of unconstrained F and for the case wherein F is constrained to be zero; (3) the equilibrium
refinement arguments using D1 to select the equilibrium that involves the smallest likelihood of a second
search in the case wherein F is unconstrained; (4) the equilibrium refinement arguments using D1 to justify
the use of skeptical beliefs when F = 0; and (5) the equilibrium refinement arguments using D1 to eliminate
a separating equilibrium at the lower root of equation (6) when F = 0.

1.  Effects of a Small Cost of Conducting the Auction under PFI

When it is costless to conduct the auction and A is common knowledge, then it is always a best
response for C to conduct the auction after having visited L2.  Anticipating this, it is an optimal strategy for
L2 to make a demand that leaves C indifferent between accepting and conducting the auction.  Note that L2
cannot break C’s indifference:  (1) in the case of F = 0, he cannot make a lump-sum transfer and any other
α would be worse from C’s point of view; and (2) in the case of unrestricted transfers, L2 is already bidding
away the full case value.  Thus, there is also a continuation equilibrium wherein C conducts the auction.  We
now argue that this equilibrium is not robust to a small cost, k, of conducting the auction.  

First, consider the case of unrestricted F.  When C visits L2, if there is a small cost k to conduct the
auction, then L2 can demand (1,  ΠL(1, A) - k), which leaves C indifferent between accepting this demand
and conducting the auction and leaves L2 with profit of k if accepted, and profit of 0 if rejected.  So it is
Pareto superior for C to accept, rather than reject, this demand.  Moreover, if C were to reject this demand
when indifferent (with positive probability), then L2 could offer (1,  ΠL(1, A) - k + δ), for some δ 0 (0, k),
and induce C to accept for sure.  But this δ can be arbitrarily small, so there cannot be an equilibrium wherein
C rejects the demand (1,  ΠL(1, A) - k) with positive probability.  On the other hand, if C were to accept this
demand when indifferent, then L2 would find this to be the optimal demand.  So there is an equilibrium
wherein C accepts the demand (1,  ΠL(1, A) - k).  Tracing the effects of this cost backward, it follows that L1
will demand (1, ΠL(1, A) - s - k), which C will accept in equilibrium.  The equilibrium payoffs are:  ΠL(1, A) -
2s - k for C; s + k for L1; and 0 for L2.  The equilibrium in the text corresponds to k = 0.

Next, consider the case wherein F is restricted to be zero.  When C visits L2, if there is a small cost
k to conduct the auction, then L2 can demand the contingent fee α~C(A; k), which is defined implicitly by
ΠC(α~C(A; k), A) = ΠC(αC(A), A) - k.  Notice that α~C(A; k) > αC(A) for k > 0, with α~C(A; 0) = αC(A).  C is
indifferent about accepting this demand, whereas L2 strictly prefers that C accept it; thus, it is Pareto superior
for C to accept, rather than reject, this demand.  Moreover, if C were to reject this demand (with positive
probability) when indifferent, then L2 could offer the contingent fee α~C(A; k - δ), for some δ 0 (0, k), and
induce C to accept for sure (since this demand is closer to C’s ideal share, αC(A)).  But this δ can be arbitrarily
small, so there cannot be an equilibrium wherein C rejects the demand α~C(A; k) with positive probability. 
On the other hand, if C were to accept the demand α~C(A; k) when indifferent, then L2 would find this to be
the optimal demand.  So there is an equilibrium wherein C accepts the demand α~C(A; k).  Tracing the effects
of this cost backward, it follows that L1 will demand α~L(A; k) such that ΠC(α~L(A; k), A) = ΠC(α~C(A; k), A) -
s = ΠC(αC(A),A) - s - k, which C accepts in equilibrium.  The equilibrium payoffs are:  ΠC(αC(A), A) - 2s -
k for C; ΠL(α~C(A; k), A) for L1; and 0 for L2. The equilibrium in the text corresponds to k = 0.
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These arguments are modified below for the cases of PAI with F unconstrained, and with F = 0. The
relevant continuation games between C and L2 are described first for the case wherein it is costless to conduct
the auction; subsequently we indicate how one could incorporate a small cost of conducting the auction and
how this results in the equilibrium outcome wherein C accepts L2's demand rather than conducting the
auction.

2.  Equilibrium Beliefs and Behavior in the Continuation Game Between C and L2

Analysis of the Continuation Game Between C and L2 when F is Unconstrained

Recall that B2(α2, F2 | B(α1, F1)) denotes C’s posterior belief, after having arrived at L2 with beliefs
B1(α1, F1) and having received the demand (α2, F2 ) from L2, where:

 B2(α2, F2 | A) = A for (α2, F2) 0 u(A); for all other (α2, F2), B2(α2, F2 | A) 0 {A, AG}.

B2(α2, F2 | A
G ) = AG for (α2, F2) 0 epi(u(A))1hypo(u(AG)); for all other (α2, F2), B2(α2, F2 | AG) 0 {A, AG}.

We can now characterize the client’s optimal behavior in response to L2's demand (α2, F2).  Suppose
that B1(α1, F1) = A.  If L2's demand (α2, F2) is on u(A), then C’s beliefs are confirmed and she is willing to
accept (or reject) any such demand.  This follows since she is indifferent between every point on the curve
u(A) and the point (1, ΠL(1, A)), which is what she expects to obtain from the auction.  If  L2's demand (α2,

F2) is above u(A) but below u(AG), then C will accept it if she continues to believe A and she will conduct the
auction if she revises her belief upward to AG .  If  L2's demand (α2, F2) is below u(A), then C will initiate the

auction regardless of her beliefs.  If L2's demand (α2, F2) is on the curve u(AG), then she is indifferent between

accepting it and conducting the auction if she revises her belief upward to AG, and she will accept this demand

if she continues to believe A.  Finally, if L2's demand is above u(AG), then C will accept regardless of her
beliefs.

 Alternatively, suppose that B1(α1, F1) = AG.  If L2's demand (α2, F2) is on u(AG), then C’s beliefs are
confirmed  and she is willing to accept (or reject) any such demand.  This follows since she is indifferent

between every point on the curve u(AG) and the point (1, ΠL(1, AG)), which is what she expects to obtain from
the auction (and the most she could ever hope to obtain).  If  L2's demand (α2, F2) is on or above u(A) but

below u(AG), then C continues to believe AG and thus she will conduct the auction.  Again, if  L2's demand (α2,
F2) is below u(A), C will initiate the auction regardless of her beliefs and if L2's demand (α2, F2) is above

u(AG), C will accept the demand regardless of her beliefs.

We now characterize L2's optimal demand (α2, F2), given C’s beliefs upon approaching L2, B1(α1,
F1), and given L2's own observation of the expected case value.  In principle, there are four possibilities
(though only the first one will occur in the overall equilibrium).  First, suppose that L2 observes A and C
believes B1(α1, F1) = A. Then L2 can obtain a payoff of zero by demanding (α2, F2) = (1,  ΠL(1, A)), which
the client accepts, or by offering (α2, F2) below u(A), which the client rejects in favor of an auction.  An offer
of (α2, F2) on u(A), but different from (1, ΠL(1, A)), is acceptable to C but yields a negative payoff for L2;

this is also true for offers (α2, F2) on or above u(AG ).  An offer of (α2, F2) above u(A) but below u(AG) yields
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a payoff of zero to L2 if C believes AG and therefore rejects it, or a negative payoff if C believes A and
therefore accepts it.  Thus, it is clear that (α2, F2) = (1, ΠL(1, A)) is an optimal demand by L2 when the
expected value of the case is A, C believes B1(α1, F1) = A and C accepts this demand; C obtains a payoff of
ΠL(1, A).

Second, suppose that  L2 observes AG but C believes B1(α1, F1) = A. Then L2 can obtain a payoff of

ΠL(1, AG) - ΠL(1, A) by demanding (α2, F2) = (1,  ΠL(1, A)), which the client accepts (because it confirms her
beliefs).  Although C would also be willing to accept any other offer on u(A), these would yield lower profits

for L2.  Similarly, any offer above u(A) and below u(AG) would either provoke an auction (from which L2
expects to obtain a payoff of zero) if C were to revise her beliefs upward, or be accepted (yielding lower

profits to L2) if C were to maintain her beliefs.  Offers above u(AG) would be accepted but yield lower profits
to L2, while offers below u(A) would result in an auction, yielding profits to L2 of zero.  Thus, it is clear that

(α2, F2) = (1,  ΠL(1, A)) is the optimal demand by L2 when the expected case value is AG but C believes B1(α1,
F1) = A, and C accepts this demand; C obtains a payoff of ΠL(1, A).  To summarize:   when the client
approaches L2 believing B1(α1, F1) = A, then an optimal demand for L2 is to confirm C’s beliefs by offering
(α2, F2) = (1,  ΠL(1, A)), prompting C to accept L2's demand.

Third, suppose that L2 observes A but C believes B1(α1, F1) = AG.  Then L2 can do no better than to

provoke an auction (from which L2 expects a payoff of zero).  This is because any offer on u(AG) would yield
a negative payoff to L2, and C’s beliefs are skeptical in that she does not revise her beliefs downward when

L2 makes a demand below u(AG).  Notice that even if C did revise her beliefs down to A for, say, some (α2,

F2) below u(AG) but on or above u(A), and were to accept such a demand (with positive probability), L2 would
still strictly prefer the auction with the single exception of the demand (α2, F2) = (1, ΠL(1, A)), at which L2
is indifferent between acceptance and the auction. 

Fourth, suppose that L2 observes AG and C believes B1(α1, F1) = AG.  Then L2 can obtain a payoff of

zero by demanding (α2, F2) = (1,  ΠL(1, AG)), which confirms C’s beliefs and which she accepts; or by offering

(α2, F2) below u(AG), which the client rejects in favor of an auction (since she continues to believe that the

expected value of the case is AG).  An offer of (α2, F2) on u(AG), but different from (1, ΠL(1, AG)), is acceptable

to C but yields a negative payoff for L2; this is also true for offers (α2, F2) above u(AG).  Thus, it is clear that

(α2, F2) = (1, ΠL(1, AG)) is an optimal demand by L2 when the expected value of the case is AG, C believes

B1(α1, F1) = AG, and C accepts this demand; C obtains a payoff of ΠL(1, AG).

Notice that this last situation is where C’s skeptical beliefs come into play.  To see why these are the
“right” out-of-equilibrium beliefs, consider what would happen if C were to revise her beliefs downward

following a demand (α2, F2) below u(AG) but on or above u(A), and thus accept such a demand (with positive
probability).  The result would be that L2 could make a positive profit by deviating to such a demand and
falsely persuading C that her case has a low expected value when it actually has a high expected value.

Moreover, only an L2 of type AG could profit from such a deviation, since we showed immediately above that
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if L2 observed A but C believed B1(α1, F1) = AG, then L2 could never make a positive profit from such a
deviation, even if she were able to convince C that the expected case value was A.  Thus, C should rationally

attribute such a deviation to an L2 of type AG.

Adding a small cost to conduct the auction.  From the discussion above, it is clear that if the auction
is costless, then it is a best response for C to conduct the auction, regardless of her beliefs, after having visited
two lawyers.  Thus there is another equilibrium wherein L2's demand confirms C’s beliefs and, though she
is indifferent, C conducts the auction.  We now argue that this equilibrium is not robust to a small cost, k, of
conducting the auction.  Define the curves u~(A; k) as follows:  

u~(A; k) = {(α2, F2) | F2 = ΠL(1, A) - ΠC(α2, A) - k}, for A 0 {A, AG}.

This is the set of demands for L2 that would make C indifferent between accepting the demand and
conducting the auction under the belief that the case has expected value A (whereas L2 prefers that C accept
as this yields profit to L2 of k).  This curve lies below the curve u(A) for k > 0, with u~(A; 0) = u(A).
Furthermore, we modify C’s beliefs so that if she visits L2 believing that A = A, then she continues to believe
that A = A for any demand (α2, F2) in an arbitrarily small open neighborhood of the curve u~(A; k).  (Note that
heretofore, any belief was allowed off the curve u(A), so this modification is not inconsistent with any of the
previous analysis for k = 0; that is, it does not change anything that the previous analysis relied upon.)  C’s
beliefs are otherwise unchanged from those specified above.  The arguments above can be modified,
substituting the curves u~(A; k) for the curves u(A) (and modifying the demands to reflect k in the obvious
ways), but now when C visits L2 with the belief B1(α1, F1) = A, then L2 can make a demand above (but
arbitrarily close to) u~(A; k) and C will strictly prefer to accept this.  Thus, there cannot be an equilibrium
wherein C rejects L2's demand along u~(A; k) when B1(α1, F1) = A.  A similar argument implies that there

cannot be an equilibrium wherein C rejects L2's demand along u~(AG; k) when B1(α1, F1) = AG, since C would
always want to accept any demand above this curve.  Tracing the effects of this cost backward, the rest of the
analysis in Section 4.2 of the text can be repeated replacing the term s by the term σ / s + k.   The equilibrium
contract for A = A, (α*, n(α*, A)), and the probability with which it is rejected, r(α*, n(α*, A)), will now

depend on k.  The equilibrium payoffs are:  ΠL(1, A) - 2s - k for C, A 0 {A, AG}; if A = AG, then L1 obtains
s + k and L2 obtains 0; if A = A, then L1 obtains (1 - r(α*, n(α*, A)))(ΠL(α*, A) + ΠC(α*, A) - ΠL(1, A) +
s + k), and L2's payoff is r(α*, n(α*, A))k.  The equilibrium in the text corresponds to k = 0.

Analysis of the Continuation Game Between C and L2 when F = 0

Recall that B2(α2 | B(α1)) denotes C’s posterior belief, after having arrived at L2 with beliefs B1(α1)
and having received the demand α2 from L2, where:

B2(α2 | A) = A for α2 = αC(A); for all other α2, B2(α2 | A) 0 {A, AG}.

B2(α2 | AG) = AG for all α2.

We can now characterize the client’s optimal behavior in response to L2's demand α2.  First, suppose
that B1(α1) = A.  If L2's demand is α2 = αC(A), then C’s beliefs are confirmed and she is being offered her
most-preferred contingent fee, so she is willing to accept (or reject) this demand.  If L2's demand α2 is
anything except αC(A) and C continues to believe that B2(α2 | A) = A, then C rejects the demand α2 in favor
of an auction, from which she expects a payoff of ΠC(αC(A), A).  If L2's demand α2 is anything except αC(A)
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and C revises her belief upward to B2(α2 | A) = AG, then C is willing to accept the demand α2 = αC(AG), but she

rejects all other demands α2 in favor of an auction, from which she expects a payoff of ΠC(αC(AG), AG).  Now

suppose that B1(α1) = AG.  Since C does not revise her beliefs, the only demand that C is willing to accept is

αC(AG), which makes her indifferent; all others will be rejected in favor of an auction, from which she expects

a payoff of ΠC(αC(AG), AG).

 We now characterize L2's optimal demand α2, given C’s beliefs upon approaching L2, B1(α1), and
given L2's own observation of the expected case value.  In principle, there are four possibilities (though only
the first one will occur in the overall equilibrium).  First, suppose that L2 observes A and C believes B1(α1)
= A. Then L2 can obtain a payoff of ΠL(αC(A), A) by demanding αC(A), which confirms the client’s beliefs,
and which she accepts.  This is strictly better than his other options and their resulting payoffs:  1) he can

obtain a payoff of ΠL(αC(AG), A) by demanding αC(AG) if C is thereby persuaded to revise her beliefs upward

to AG and to accept this demand, but αC(AG) < αC(A) and the lawyer prefers the higher contingent fee αC(A);
2) he can obtain a payoff of .5ΠL(αC(A), A) by provoking an auction using a demand that C associates with

A; or 3) he can obtain a payoff of .5ΠL(αC(AG), A) by provoking an auction using a demand that C associates

with AG.  

Second, suppose that  L2 observes AG but C believes B1(α1) = A. Then L2 can obtain a payoff of

ΠL(αC(A), AG) by demanding α2 = αC(A), which confirms C’s beliefs and which she accepts.  Again, this is

strictly better than L2's other options:  1) he can obtain a payoff of ΠL(αC(AG), AG) by demanding αC(AG ) if C

is thereby persuaded to revise her beliefs upward to AG  and to accept this demand, but αC(AG) < αC(A) and the

lawyer prefers the higher contingent fee αC(A); 2) he can obtain a payoff of .5ΠL(αC(A), AG) by provoking an

auction using a demand that C associates with A; or 3) he can obtain a payoff of .5ΠL(αC(AG), AG) by provoking

an auction using a demand that C associates with AG.  To summarize:   when the client approaches L2
believing B1(α1) = A, then L2's unique optimal strategy is to confirm C’s beliefs by offering α2 = αC(A),
prompting C to accept L2's demand.

Third, suppose that L2 observes A but C believes B1(α1) = AG.  Since there is nothing L2 can do to

change C’s beliefs, L2's best demand is α2 = αC(AG), which confirms C’s beliefs and which is accepted,

yielding a payoff of ΠL(αC(AG), A) for L2 and a payoff of ΠC(αC(AG), A) for C.  Any other demand would be

rejected but C would continue to believe AG, so L2 would expect a payoff of .5ΠL(αC(AG), A) from the auction.

Fourth, suppose that L2 observes AG and C believes B1(α1) = AG.  Again, there is nothing L2 can do to change

C’s beliefs, so L2's best demand is α2 = αC(AG), which confirms C’s beliefs and which is accepted, yielding

a payoff of ΠL(αC(AG), AG) for L2 and a payoff of ΠC(αC(AG), AG) for C.  Any other demand would be rejected

but C would continue to believe AG, so L2 would expect a payoff of .5ΠL(αC(AG), AG) from the auction.  
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1  One could also imagine L2 using a demand α2 other than αC(A) simply to persuade C to revise her
beliefs downward to A, even though this demand provokes an auction in which L2 expects to obtain a payoff
of .5ΠL(αC(A), A), where A is the expected value of the case observed by L2.  This would not provide a

profitable deviation for either A or AG as long as ΠL(αC(AG), A) > .5ΠL(αC(A), A) for A = A, AG.  This inequality

surely holds when αC(A) and αC(AG) are not too far apart (recall that they are equal for our power-function

example p(x) = λxθ, and they will be sufficiently close provided that A and AG are sufficiently close).

To see why C’s skeptical beliefs are the “right” out-of-equilibrium beliefs when B1(α1) = AG, consider
what would happen if C were to revise her beliefs downward to A following an (out-of-equilibrium) demand
of α2 = αC(A) and accept this demand.  The result would be that either type of L2 could make a positive profit

by deviating to α2 = αC(A), but type AG would benefit more than type A, since ΠL(αC(A), AG) -  ΠL(αC(AG), AG) -

[ ΠL(αC(A), A) -  ΠL(αC(AG), A)] has the same sign as ΠL
12 > 0.  Thus, using a D1-type argument (essentially,

type AG would be willing to defect for a higher rejection probability than A) implies that C should rationally

attribute a deviation to the out-of-equilibrium demand α2 = αC(A) to an L2 of type AG.1

Adding a small cost to conduct the auction.  From the discussion above, it is clear that whenever C’s
beliefs are confirmed by an offer from L2 of αC(B1(α1)), she is indifferent between accepting L2's offer and
conducting the auction.  Although L2 strictly prefers that C accept, L2 cannot break C’s indifference; he is
forbidden to make a lump-sum payment and any other demand would be rejected by C in favor of the auction.
So there is a second equilibrium wherein C conducts the auction.  We now argue that this alternative
equilibrium is not robust to a small cost, k, of conducting the auction.  This requires a minor modification of
C’s beliefs so that, if she visits L2 believing that A = A, then she continues to believe that A = A for any
demand α2 in an arbitrarily small open neighborhood of α~C(A; k).  (Note that heretofore, any belief was
allowed off the equilibrium demand for type A, so this modification is not inconsistent with any of the
previous analysis for k = 0; that is, it does not change anything that the previous analysis relied upon.)  C’s
beliefs are otherwise unchanged from those specified above.  When C visits L2 with beliefs B1(α1) = A, then
C is indifferent between accepting a demand of α~C(A; k) > αC(A) and conducting the auction, whereas L2
prefers acceptance.  But if C were to reject this demand (with positive probability), then L2 could make a
demand that is less than, but arbitrarily close to, α~C(A; k), and induce C to accept for sure (since C continues
to believe that A = A and this is closer to her ideal demand αC(A)).  So there cannot be an equilibrium wherein
C rejects the demand α~C(A; k) with positive probability when she arrives with beliefs B1(α1) = A.  Similarly,

when C visits L2 with beliefs B1(α1) = AG, then there is a demand that is less than, but arbitrarily close to,

α~C(AG; k), that C would strictly prefer to conducting the auction (and that L2 would prefer to make in order

to induce acceptance).  So there cannot be an equilibrium wherein C rejects the demand α~C(AG; k) when she

arrives with beliefs B1(α1) = AG.  Tracing the effects of this cost backward, the rest of the analysis in Section
5.2 of the text can be repeated to find that L1 will still demand α~L(A; k) such that ΠC(α~L(A; k), A) =

ΠC(α~C(A; k), A) - s.  If A = AG, then C will accept for sure, but if A = A, then C will reject this demand with
positive probability r* (which now depends on k).  The equilibrium payoffs are:  ΠC(α~C(A; k), A) - 2s =

ΠC(αC(A), A) - 2s - k for C, A 0 {A, AG}; if A = AG, then L1 obtains ΠL(α~L(AG; k), AG) and L2 obtains 0; if A =
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2  We conjecture that if there were multiple optima, then the following arguments would still apply,
and only the separating equilibria involving these values of the contingent fee would survive refinement using
D1.

A, then L1 obtains (1 - r*)ΠL(α~ L(A; k), A) and L2 obtains r*ΠL(α~C(A; k), A).  The equilibrium in the text
corresponds to k = 0.

3.  Equilibrium Refinement using D1 to Select the Least-cost Separating Equilibrium when F is
Unconstrained

We argued in the text that the lawyer with an AG-type case must use the equilibrium strategy (1, n(1,

AG)), and this demand will be accepted for sure.  We also argued that any separating equilibrium contingent
fee  for the lawyer with an A-type case  – say, α^ , which must be accompanied by the transfer n(α^ , A) – must
belong to the interval [αk, 1], where αk is defined implicitly by s = ΠL(αk, AG ) - n(αk, A).  Recall  that the

minimal acceptance probability (to deter mimicry by AG) at αk is 1; for all α 0 (αk, 1], the minimal acceptance

probability (to deter mimicry by AG) is strictly less than 1 (see Figure 1).  In the text we denoted the separating
equilibrium α-value for the A-type as α*; in what follows we suppress the * so as to simplify the notational
overhead. 

In the text, we identify a particular separating equilibrium given by {(α, n(α, A)), (1, n(1,  AG))}, with

1 - r(1, n(1,  AG)) = 1 and 1 - r(α, n(α, A)) =  s/[ΠL(α, AG) - n(α, A)], where α maximizes s[ΠL(α, A) - n(α,

A)]/[ΠL(α, AG ) - n(α, A)].  Although (as indicated above) the lawyer with an AG-type case must use the second
component of the equilibrium strategy described above (and will be accepted for sure), there are many
possible alternative equilibrium strategies of the form (α, n(α, A)) for the lawyer with an A-type case, each
one supported by an associated acceptance probability and out-of-equilibrium beliefs.  Under the additional
assumption that there is a unique global maximizer α, we claim that the selected equilibrium is the unique
separating equilibrium outcome surviving refinement using D1.  We state this additional assumption below
and maintain it thereafter.

Assumption T1.  Assume that α = argmax { s[ΠL(α, A) - n(α, A)]/[ΠL(α, AG) - n(α, A)] | α 0 [αk, 1]} is unique.2

First, we will show that IC(AG) must hold with equality in any separating equilibrium surviving D1.
This implies that any D1 separating equilibrium must involve an acceptance probability on the downward-

sloping portion of the curve labeled “minimal rejection curve” in Figure 1, where the AG-type is just-deterred
from mimicry.  Second, we will argue that no separating equilibrium involving a strategy (α^ , n(α^ , A)) for
which α^  … α will survive D1.  Finally, we will prove that the sole remaining candidate, (α, n(α, A)), does
survive D1.  

Claim 1.  IC( AG) must hold with equality in any separating equilibrium surviving D1.

Proof.  Suppose there exists a separating equilibrium with strategies {(α^ , n(α^ , A)), (1, n(1,  AG))} with

associated acceptance probabilities of  1 - r(1, n(1,  AG)) = 1 and 1 - r(α^ , n(α^ , A)).  Moreover, suppose that
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IC(AG) is slack.  Then 1 - r(α^ , n(α^ , A)) < 1 (since it must be strictly less than the minimal acceptance

probability to deter mimicry by AG).  Then the AG- type’s equilibrium payoff is: 
 

s >  [1 - r(α^ , n(α^ , A))][ΠL(α^ , AG) - n(α^ , A)], 

while the A-type’s equilibrium payoff is:  

[1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)]. 

Now consider a defection to (α^ , n(α^ , A) + ε), where ε is a small positive number.  This defection must
be met with a sufficiently high rejection probability in order to support the hypothesized separating
equilibrium (which means the out-of-equilibrium beliefs must place a sufficiently high probability on type

AG; in the text, we assumed the beliefs assigned a probability of 1 to type AG, leading to rejection).  We will

argue that the equilibrium refinement D1 requires that – starting from this putative equilibrium wherein IC(AG)
is slack – beliefs at this out-of-equilibrium demand be A, leading to acceptance by the client.  This, in turn,
would induce the lawyer of type A to pursue the (profitable) defection and upset the original separating
equilibrium at (α^ , n(α^ , A)).

To see this, notice that the A-type would be willing to defect to (α^ , n(α^ , A) + ε) for any acceptance
probability 1 - r such that:

(1 - r)[ΠL(α^ , A) - n(α^ , A) - ε] > [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)]; 

that is, for any probability:

1 - r > 1 - r~(A) / [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)]/[ΠL(α^ , A) - n(α^ , A) - ε].

However, for sufficiently small ε, the AG-type would not be willing to defect to (α^ , n(α^ , A) + ε), since: 

lim ε 6 0  [1 - r~(A)][ΠL(α^ , AG) - n(α^ , A) - ε] =  [1 - r(α^ , n(α^ , A))][ΠL(α^ , AG) - n(α^ , A)] < s.
 
Thus, for sufficiently small ε, an observed demand of (α^ , n(α^ , A) + ε) must (under D1) be inferred to have
come from an A-type.  Since ΠC(α^ , A) + n(α^ , A) + ε > ΠL(1, A) - s, the client strictly prefers to accept the out-
of-equilibrium demand under the belief A.  Finally, since 1 - r(α^ , n(α^ , A)) < 1, it follows that:

ΠL(α^ , A) - n(α^ , A) - ε > [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)] 

for sufficiently small ε and thus (α^ , n(α^ , A) + ε) provides a profitable deviation for type A.  QED

Claim 2.  Any separating equilibrium involving (α^ , n(α^ , A)), with α^  … α, does not survive D1.

Proof.  Suppose, to the contrary, that there exists a separating equilibrium with strategies {(α^ , n(α^ , A)),

(1, n(1,  AG))} and with associated acceptance probabilities of  1 - r(1, n(1,  AG)) = 1 and 1 - r(α^ , n(α^ , A)),
where α^  … α.  This equilibrium is supported by out-of-equilibrium beliefs that assign a sufficiently high

probability to the AG-type.  We will argue that the A-type can deviate to the demand (α, n(α, A) + ε) for
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sufficiently small positive ε, be identified under D1 and accepted, and thereby profit from the deviation,
upsetting the hypothesized separating equilibrium.
  

To see this, first note that since IC(AG) is tight, the AG-type’s equilibrium payoff is:

s =  [1 - r(α^ , n(α^ , A))][ΠL(α^ ,  AG) - n(α^ , A)],
 
while the A-type’s equilibrium payoff is:
  

[1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)].
 
Then the AG -type will be willing to defect to (α, n(α, A) + ε) if the client’s response, denoted in terms of the
acceptance probability 1 - r, is such that:

(1 - r)[ΠL(α,  AG) - n(α, A) - ε]  >  [1 - r(α^ , n(α^ , A))][ΠL(α^ ,  AG) - n(α^ , A)]; 

that is, if:

(1 - r)  >  [1 - r(α^ , n(α^ , A))][ΠL(α^ ,  AG) - n(α^ , A)]/[ΠL(α,  AG) - n(α, A) - ε] / 1 - r~(AG). 

Similarly, the A- type will be willing to defect to (α, n(α, A) + ε) if the client’s response, denoted in terms
of the acceptance probability 1 - r, is such that:

(1 - r)[ΠL(α, A) - n(α, A) - ε]  >  [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)]; 

that is, if:

(1 - r)  >  [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)]/[ΠL(α, A) - n(α, A) - ε] / 1 - r~(A).
 

If 1 - r~(AG) > 1 - r~(A), then (according to D1), the out-of-equilibrium demand (α, n(α, A) + ε) must be inferred
to have been made by the A -type, since this type is willing to defect for the largest range of acceptance

probabilities.  The inequality 1 - r~(AG) > 1 - r~(A) holds if and only if:

[ΠL(α^ ,  AG) - n(α^ , A)]/[ΠL(α,  AG) - n(α, A) - ε] > [ΠL(α^ , A) - n(α^ , A)]/[ΠL(α, A) - n(α, A) - ε];

that is, if and only if:

[ΠL(α, A) - n(α, A) - ε]/[ΠL(α,  AG) - n(α, A) - ε] > [ΠL(α^ , A) - n(α^ , A)]/[ΠL(α^ ,  AG) - n(α^ , A)].

Notice that the inequality is true for ε = 0 since α (uniquely) maximizes the expression [ΠL(α, A) -

 n(α, A)]/[ΠL(α  AG) - n(α, A)].  Thus, there is a sufficiently small (but still positive) ε for which the inequality
still holds.  Thus, such an out-of-equilibrium demand will be believed by the client to have come from the
A-type.  Since ΠC(α, A) + n(α, A) + ε > ΠL(1, A) - s, the client will accept this out-of-equilibrium demand
with probability 1.  Finally, we claim that this will induce the A-type to make this defection, thus upsetting
the hypothesized separating equilibrium.  To verify this final claim, recall that since we need only consider
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α-values in [αk, 1], it follows that s/[ΠL(α,  AG) - n(α, A)] < 1. Note that:

ΠL(α, A) - n(α, A)  >  s[ΠL(α, A) - n(α, A)]/ [ΠL(α,  AG) - n(α, A)] 

>  s[ΠL(α^ , A) - n(α^ , A)]/[ΠL(α^ ,  AG) - n(α^ , A)] = [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)].
 

The first inequality follows since  s/[ΠL(α,  AG) - n(α, A)] < 1 and the second (strict) inequality follows since
α uniquely maximizes the ratio of the terms in brackets.  By defecting, the A-type will obtain ΠL(α, A) -
n(α, A) - ε.  Since ΠL(α, A) - n(α, A) > [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)], there is a sufficiently small
ε for which ΠL(α, A) - n(α, A) - ε > [1 - r(α^ , n(α^ , A))][ΠL(α^ , A) - n(α^ , A)].  QED

Claim 3.  The separating equilibrium outcome given by {(α, n(α, A)), (1, n(1,  AG))}, with 1 - r(1, n(1,  AG))

= 1 and 1 - r(α, n(α, A)) =  s/[ΠL(α, AG) - n(α, A)], where α maximizes

s[ΠL(α, A) - n(α, A)]/[ΠL(α, AG) - n(α, A)],

survives refinement using D1.

Proof.  In the specified equilibrium, the AG-type’s equilibrium payoff is:

s =  [1 - r(α, n(α, A))][ΠL(α,  AG) - n(α, A)], 

while the A-type’s equilibrium payoff is:  

[1 - r(α, n(α, A))][ΠL(α, A) - n(α, A)]. 

Consider any out-of-equilibrium demand (α, n(α, A) + ε), where α … α and ε > 0 or where α = α and ε > 0.

Any out-of-equilibrium demand along U(A) or between the loci U(AG) and U(A) can be represented this way.

Demands on or above U(AG) are accepted regardless of beliefs and demands below U(A) are rejected
regardless of beliefs, and neither type is tempted to deviate to these out-of-equilibrium demands.  So it is only
the out-of-equilibrium demands between the loci (and along U(A))  that must be considered.  Some of these
demands are also immune to defection (that is, there is no response by the client that would tempt either type
to defect); what we need to show is that if the A-type is willing to defect to a particular out-of-equilibrium

demand for some responses by the client, then the AG-type is willing to defect to that demand for a strictly

greater range of client responses.  D1 then requires that the beliefs assign the AG-type to the defection, which
will lead to certain rejection by the client, which will, in turn, deter both types from defecting from the
separating equilibrium involving α.

The AG-type will be willing to defect to (α, n(α, A) + ε) if the client’s response, denoted in terms of
the acceptance probability 1 - r, is such that:

(1 - r)[ΠL(α,  AG) - n(α, A) - ε]  >  [1 - r(α, n(α, A))][ΠL(α,  AG) - n(α, A)]; 
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that is, if:

(1 - r)  >  [1 - r(α, n(α, A))][ΠL(α,  AG) - n(α, A)]/[ΠL(α,  AG) - n(α, A) - ε] / 1 - r~(AG).
 
Similarly, the A- type will be willing to defect to (α, n(α, A) + ε) if the client’s response, denoted in terms
of the acceptance probability 1 - r, is such that:

(1 - r)[ΠL(α, A) - n(α, A) - ε]  >  [1 - r(α, n(α, A))][ΠL(α, A) - n(α, A)];
 
that is, if: 

(1 - r)  > [1 - r(α, n(α, A))][ΠL(α, A) - n(α, A)]/[ΠL(α, A) - n(α, A) - ε] / 1 - r~(A).
 

If 1 - r~(A) > 1 - r~(AG), then (according to D1), the out-of-equilibrium demand (α, n(α, A) + ε) must be inferred

to have been made by the AG-type, since this type is willing to defect for the largest range of acceptance
probabilities.

The inequality 1 - r~(A) > 1 - r~(AG) holds if and only if:

[ΠL(α, A) - n(α, A)]/[ΠL(α, A) - n(α, A) - ε] > [ΠL(α,  AG) - n(α, A)]/[ΠL(α,  AG) - n(α, A) - ε];
 
that is, if and only if:

[ΠL(α, A) - n(α, A)]/[ΠL(α,  AG) - n(α, A)] > [ΠL(α, A) - n(α, A) - ε]/[ΠL(α, AG) - n(α, A) - ε].

First, consider α … α and ε = 0; this is a deviation along the locus U(A).  Then the inequality holds since α
uniquely maximizes the ratio of the terms in brackets.  Since the right-hand-side decreases as ε increases, the
inequality also holds when α = α and ε > 0 and when α … α and ε > 0.  QED

Finally, we note that in the text we specified the beliefs to be B(α, F) = A for all (α, F) along the locus
U(A), even those involving α … α .  This was helpful for the purpose of exposition, it seems intuitively
reasonable, and it suffices to support the separating equilibrium outcome involving α (as specified above in
Claim 3).  However, as we have seen in the foregoing analysis, the out-of-equilibrium beliefs implied by D1

are somewhat harsher, requiring B(α, F) = AG (leading to rejection) for out-of-equilibrium values of α (i.e.,
for α … α) along the locus U(A).  These harsher beliefs support the same separating equilibrium outcome.

4.  Verification that Skeptical Beliefs Survive Refinement using D1 (uniquely) when Assumption 6 Holds
(with a strict inequality) for the case of F = 0.

By “skeptical beliefs,”we mean that B1(α) = AG for α 0 (αL(AG), αL(A)).  Recall that type AG’s

equilibrium payoff is ΠL(αL(AG), AG) and type A’s equilibrium payoff is (1 - r*)ΠL(αL(A), A), where 1 - r* =

ΠL(αL(AG), AG)/ΠL(αL(A), AG).  Now consider an out-of-equilibrium demand αN 0 (αL(AG), αL(A)).  C will reject

such a demand if she believes it comes from type AG and she will accept it if she believes it comes from A (as

long as αN >  αC(A)).  Let ρ denote the probability that C believes the demand αN comes from type AG; then C



Tech App 12

will accept the demand αN with probability 1 - ρ.  Type AG would be willing to defect from his equilibrium

demand to the demand αN if (1 - ρ)ΠL(αN, AG) > ΠL(αL(AG), AG).  Type A would be willing to defect to the

demand αN if (1 - ρ)ΠL(αN, A) > (1 - r*)ΠL(αL(A), A).  The minimum acceptance threshold for type AG is (1 -

ρ(AG)) / [ΠL(αL(AG), AG)/ΠL(αN, AG)], while the minimum acceptance threshold for type A is (1 - ρ(A)) /

(1 - r*)[ΠL(αL(A), A)/ΠL(αN, A)] = [ΠL(αL(AG), AG)/ΠL(αL(A), AG)][ΠL(αL(A), A)/ΠL(αN, A)], upon substituting

for 1 - r*.  According to D1, if the minimum acceptance threshold is strictly lower for AG than for A, then the

out-of-equilibrium beliefs must associate the demand αN with type AG (if the two thresholds are equal, it is

allowable to associate the demand αN with type AG, but not required).  After some algebraic manipulation, it

can be shown that:  (1 - ρ(AG)) < (=) (1 - ρ(A)) as ΠL(αN, A)/ΠL(αL(A), A) > (=) ΠL(αN, AG)/ΠL(αL(A), AG).  Since

αN < αL(A) and AG > A, it follows from Assumption 6 that the inequality holds.  Thus, the skeptical beliefs
survive refinement using D1; when the inequality in Assumption 6 is strict, then such out-of-equilibrium

demands αN must be assigned B1(αN) = AG.

5.  Equilibrium Refinement using D1 to Eliminate a Separating Equilibrium at the Lower Root of Equation
(6). 

Recall that equation (6) has two roots (where C is indifferent between accepting and visiting L2); the
larger root is what we refer to as αL(A) and this is L1's preferred solution under precontracting full
information.  Could there be another separating equilibrium (under asymmetric information) in which the

lower root is used by one or both types?  Consider type AG; in any separating equilibrium the lawyer of type AG
(the weak type) plays his full-information strategy, αL(AG), which is accepted for sure (so that he makes his
full-information payoff).  Now consider the lawyer of type A, and let the lower root to equation (5) be

denoted as α#; can there be a separating equilibrium wherein type A demands α# and type AG demands αL(AG)?

First, if α# < αL(AG), then type A would prefer to defect to αL(AG), which is higher and is accepted for sure (this
configuration occurs in the power-function example, so there cannot be a second separating equilibrium at

the lower root for the power-function example).  Second, if α# = αL(AG), then this pair of demands does not

separate types.  Finally, if α# > αL(AG), then C must reject α# with positive probability to deter type AG from
defecting to α#.  The corresponding IC constraints are (where r is the probability that the demand α# is
rejected): 

IC(AG):   ΠL(αL(AG), AG) > (1 - r)ΠL(α#, AG);

IC(A):  (1 - r)ΠL(α#, A) >  ΠL(αL(AG), A).

Taken together, these imply that 1 - r 0 [ΠL(αL(AG), A)/ΠL(α#, A), ΠL(αL(AG), AG)/ΠL(α#, AG)].  Assuming that

C uses the lowest rejection probability consistent with deterring mimicry by AG, then the equilibrium rejection

probability, denoted r#, is given by the upper endpoint of the interval: 1 - r# = ΠL(αL(AG), AG)/(ΠL(α#, AG).
Assume for the moment that α# does provide a second separating equilibrium (rather strange out-of-
equilibrium beliefs are needed to support it, but that will be discussed later).  We can compare the equilibrium
payoffs to the L1 of type A at the two separating equilibria (C and the L1 of type A are indifferent).  In the
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equilibrium wherein  L1 plays αL(A), his expected payoff is (1 - r*)ΠL(αL(A), A); using r* as defined in the

text, this becomes:  π(αL(A) / [ΠL(αL(AG), AG)/ΠL(αL(A), AG)]ΠL(αL(A), A).  In the equilibrium wherein L1 plays

α#, his payoff is π(α#)  / (1 - r#N)ΠL(α#, A) = [ΠL(αL(AG), AG)/ΠL(α#, AG)]ΠL(α#, A).  Notice that (after

simplification) π(αL(A)) (>, =, <) π(α#) as ΠL(α#, AG)/ΠL(αL(A), AG) (>, =, <) ΠL(α#, A)/ΠL(αL(A), A).  By
Assumption 6, it follows that  π(αL(A)) > π(α#) (with a strict inequality if the ratio in Assumption 6 is strictly
increasing).  Thus, we argue that C should expect the L1 of type A to demand αL(A), and she should accord
this the belief that B(αL(A)) = A, and reject this demand with probability 1 - r* (this still deters mimicry by

type AG).  Alternatively, the L1 of type A can make a speech to C to this effect: “I am demanding αL(A), and
you should accord this the belief that B(αL(A)) = A, and reject this demand with probability 1 - r* (this still

deters mimicry by type AG).” 

An alternative way to select the equilibrium involving αL(A) is to notice that, in order to support a
separating equilibrium at α#, C needs to reject demands in the interval (α#, αL(A)) with a sufficiently high
probability.  Since C would want to accept (reject) such a demand for sure if she believed it came from an

L1 of type A (of type AG), she would have to assign a sufficiently high probability to such a demand coming

from an L1 of type AG in order to be willing to reject it with the requisite probability.  We argue that, if the
ratio in Assumption 6 is strictly increasing in A, then the beliefs required to support the separating
equilibrium at α# do not survive refinement using D1.  (Note that for the power function example, the ratio
in Assumption 6 is constant in A; however, the “second” equilibrium at the lower root is directly eliminated
in this case; see the discussion above).  Therefore, in what follows, we assume that the ratio in Assumption
6 is strictly increasing in A.

Consider an out-of-equilibrium demand αN 0 (α#, αL(A)), and let ρ denote the probability that C

believes the demand αN comes from type AG; then she will accept such a demand with probability 1 - ρ.  Type AG
would be willing to defect from his equilibrium demand αL(AG) to the demand αN if (1 - ρ)ΠL(αN, AG) >

ΠL(αL(AG), AG).  Type A would be willing to defect from his equilibrium demand α# to the demand αN if

(1 - ρ)ΠL(αN, A) > (1 - r#)ΠL(α#, A).  The minimum acceptance threshold for type AG is (1 - ρ(AG)) /

[ΠL(αL(AG), AG)/ΠL(αN, AG)], while the minimum acceptance threshold for type A is (1 - ρ(A)) /

(1 - r#)[ΠL(α#, A)/ΠL(αN, A)] = [ΠL(αL(AG), AG)/(ΠL(α#, AG)][ΠL(α#, A)/ΠL(αN, A)].

According to D1, if the minimum acceptance threshold is strictly higher for AG, then the out-of-
equilibrium demand αN should be associated with type A (and thus accepted by C for sure, which would in

turn induce defection from their equilibrium demands by both types, since αN > α# > αL(AG) and lawyers always

prefer a higher contingent fee ).  After some algebraic manipulation, it can be shown that:   (1 - ρ(AG)) > (1 -

ρ(A)) if ΠL(α#, AG)/ΠL(αN, AG) >  ΠL(α#, A)/ΠL(αN, A).  Assumption 6 (with strictly increasing ratio) implies that
this inequality holds.


