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My interests lie in fields of Harmonic Analysis, Partially Differential Equations, Prob-
ability and Statistics. For my research, I use methods from geometric measure theory,
potential theory, probability theory, and operator theory. More specifically, my current
research interests can be divided into following categories:

• Various methods of distributing points over compact sets; separation and cover-
ing properties of these distributions.
• Asymptotic behavior of discrete energy and Chebyshev constants on compact

sets; relation to problems of best covering and best packing.
• Boundedness of singular integral operators, such as Hilbert or Cauchy Trans-

forms and Toeplitz operator on Bergman space.

In all of these topics I have made some progress and there are many open problems
that I want to solve in the future. In what follows, I explain these problems, their history,
difficulties and my motivation for solving them. I also state results that I have already
proved and their possible extensions.

1. DISTRIBUTING POINTS OVER COMPACT SETS

Let A ⊂ Rp be a compact set, and ωN = {x1,x2, . . . ,xN} be a multiset; i.e., a set of N
points counting multiplicities. We define the separation constant of ωN by

(1) δ (ωN) := min
i6= j
|xi− x j|,

and the covering radius of ωN with respect to A by

(2) ρA(ωN) := max
y∈A

min
j
|y− x j|.

We notice that ωN is always an ρA(ωN)-net in A; i.e., for any point y ∈ A there is a
point x ∈ ωN with |y− x| 6 ρA(ωN). In compressed and 1-bit sensing [34] and [6] the
existence of an ε-net with sufficiently small cardinality is important; in my works, I prove
that certain constructive point distributions can be used as these ε-nets.

The notion of covering radius also plays an important role in various numerical approx-
imation schemes (see, e.g., [28] and [14]).

We introduce a class of sets that arises in various contexts and originates from geomet-
ric measure theory.

Definition 1. A compact set A ⊂ Rp is called d-regular, d 6 p, if for some positive
constants c and C, any x ∈ A and any positive r with r < diam(A), we have

(3) crd 6 Hd(A∩B(x,r))6Crd.

Here B(x,r) = {y ∈ Rp : |y− x|< r} and Hd is the d-dimensional Hausdorff measure on
Rp, normalized by Hd([0,1]d) = 1.

1
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Notice that if A is d-regular, then for some positive constants c1,c2 we have for any
N-point set ωN ⊂ A:

(4) δ (ωN)6 c1N−1/d, ρA(ωN)> c2N−1/d.

Thus, we call N−1/d an optimal order of separation and covering for a d-regular set A.
We would like to study the order of separation and covering of point sets ωN distributed
over A according to some specific law.

1.1. Independent random distributions. Fix a Borel measure µ supported on A, and let
x1, . . . ,xN be random points independently distributed with respect to µ; i.e., for a Borel
set B⊂ A let

P(x j ∈ B) = µ(B)/µ(A).

If A is a d-regular set, one can consider dµ = 1AdHd . In this case E. Saff and I proved
the following asymptotic behavior of expected covering radius; for A = Sd it proves the
formula conjectured in [11].

Theorem 1.1. Let A⊂ Rp be a d-regular compact set and ωN = {x1, . . . ,xN} be a set of
N points randomly and independently distributed over A with respect to 1AdHd . Then
there exist positive constants c1 and c2, such that for any N > 1

(5) c1

(
logN

N

)1/d

6 EρA(ωN)6 c2

(
logN

N

)1/d

.

Moreover, if A is a d-dimensional closed C1,1–smooth manifold, then

(6) lim
N→∞

EρA(ωN) ·
[

N
logN

]1/d

=

(
Hd(A)

υd

)1/d

,

where υd := πd/2

Γ(1+d/2) is the volume of a d-dimensional unit ball in Rd .
Further, for the d-dimensional unit ball Bd we have

(7) lim
N→∞

EρBd(ωN) ·
[

N
logN

]1/d

=

(
2(d−1)

d

)1/d

,

and for the d-dimensional unit cube [0,1]d we have

(8) lim
N→∞

Eρ[0,1]d(ωN) ·
[

N
logN

]1/d

=

(
2d−1

dυd

)1/d

.

We see that in all cases the order of expected covering radius of ωN is not optimal;
however, it differs from the optimal one by a power of logN. Thus, the covering ra-
dius ρA(ωN) is much more forgiving than the separation δ (ωN)

1, where together with J.
Brauchart et. al. I proved (cf. [11]) that for A = Sd we have

lim
N→∞

Eδ (ωN) ·N2/d =Cd,

where Cd is an explicit constant.

1Citation from a preprint by Bourgain, Sarnak and Rudnick, [10]



RESEARCH STATEMENT, EXTENDED VERSION 3

1.2. Determinantal point processes. For the sake of simplicity we work only on the
unit sphere Sd . Besides considering N independent random points, there is another way
to generate N random (but dependent) points on the sphere. Namely, fix a symmetric
function K : Sd×Sd → R, such that the integral operator

f 7→
∫
Sd

K(x,y) f (y)dHd(y), f ∈ L2(Sd,Hd)

is a projection on L2(Sd,Hd) with eigenvalues 0 and 1 and trace N. We define N random
points X1, . . . ,XN on Sd by their joint intensities; i.e., for every k = 1, . . . ,N we set

ρk(x1, . . . ,xk) := det(K(xi,x j))
k
i, j=1

and require the equality

E ∑
X1,...,Xk distinct

f (X1, . . . ,Xk) =
∫

(Sd)k

f (x1, . . . ,xk)ρk(x1, . . . ,xk)dHd(x1) . . .dHd(xk)

to hold for any bounded measurable symmetric function f on (Sd)k.
Determinantal point processes attract many attention; in particular, they arise in studies

of Coulomb gases [26], 1-componend plasma in 2D [4] and Monte-Carlo methods [3]. A
determinantal point process on S2 also arises from stereographic projection of eigenvalues
of certain random matrices, see [1] and [17].

It has been noticed in [1] and [5] that for an N-point determinantal process ωN =
{X1, . . . ,XN} with appropriate kernel K, the expected separation Eδ (ωN) has better or-
der than for independently distributed random points. In [1] is is also shown that for the
harmonic ensemble on S2 the order of covering radius is better than for independently
distributed random points. However, the proof strongly relies on the results about eigen-
values of random matrices.

Problem 1. I would like to compute the expected covering radius of an N-point determi-
nantal process on Sd .

I anticipate this problem to require careful study of orthogonal polynomials and their
asymptotic behavior.

1.3. Optimal configurations for energy and polarization. Electrons restricted to a sphere
S2 repel each other according to the Coulomb law (or Coulomb potential 1/r), and arrange
themselves in order to minimize energy. Atoms arrange themselves to minimize a Hamil-
tonian; at zero temperature, it reduces to a ground state of minimal energy. The potentials
that define corresponding energies often have singularities on the diagonal. The study of
“equilibrium states”, i.e., arrangements that minimize the energy, helps to explain many
observed phenomena; in particular, why atoms sometimes arrange themselves in periodic
order. For example, atoms in a snowflake are arranged in a hexagonal lattice.

Precisely, for a multiset ωN = {x1, . . . ,xN} ⊂ A, and a positive number s define the
Riesz s-energy of ωN by

(9) Es(ωN) := ∑
i 6= j

1
|xi− x j|s

,

and the s-polarization of ωN by

(10) Ps(A;ωN) := min
y

N

∑
j=1

1
|y− x j|s

.
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Further, define the optimal N-point s-energy of A by

(11) Es(A;N) := min
ωN⊂A

Es(ωN),

and the optimal N-point s-polarization (or Chebyshev) constant of A by

(12) Ps(A;N) := max
ωN⊂A

Ps(A;ωN).

One possible question to ask is the following: if many electrons on a sphere repel
each other according to some potential, how uniformly do they cover the sphere? It is
known, see [23] and [16], that if A is d-regular and s > d, then for any optimal N-point
configuration ωN for Es(A;N), both δ (ωN) and ρA(ωN) have the optimal order. Together
with E. Saff and A. Volberg, I proved the following theorem about optimal configurations
for Ps(A;N).

Theorem 1.2. Assume A is a convex compact set in Rd with non-empty interior, s > d,
and the boundary ∂A is C2-smooth with non-degenerate Gaussian curvature 2. Then there
exists a positive constant c, such that for any N > 1 and any optimal configuration ωN for
Ps(A;N) we have

(13) ρA(ωN)6 cN−1/d.

The same is true for the unit sphere Sd and for any spherical cap A ⊂ Sd . Moreover, the
same is true for the unit cube [0,1]d if s > 3d−4.

In the proof we utilize the fact that the function x 7→ |x− y|−s, s > d is subharmonic;
i.e., for every y ∈ Rd we have

∆x
(
|x− y|−s)> 0.

We use it to get rid of the second-order term in Taylor expansion of fy(x) = |x− y|−s;
however, the computation works if the point x ∈ A is away from the boundary ∂A and
therefore we can move it in any direction and stay inside A. We use our assumptions on
∂A to show that if x ∈ ωN , the optimal configuration for Ps(A;N), then x can not be too
close to ∂A. This approach does not work for the cube [0,1]d , where we can not prove
that points from ωN can not be exactly on the boundary ∂

(
[0,1]d

)
. A slight modification

of the argument works only under the assumption s > 3d−4, which should be omitted in
the future.

Problem 2. Relax conditions on the set A in Theorem 1.2; in particular, for A = [0,1]d

prove it for any s > d.

In the case d − 2 < s < d and A = Sd , it is known that optimal configurations for
Es(Sd;N) give the optimal order of separation, see [24] and [13]. Moreover, if s = d−1 it
is known that these configurations give the optimal order of covering [12]. The approach
in [12] requires careful study of Laplacian operator ∆ and it’s Green function GΩ in a
certain general domain Ω. It is often used that this operator is local; i.e., ∆u(x) can be
defined only by behavior of function u in a neighborhood of x. This allows to use the
integration by parts (or the Green) formula. Another key fact is that |x− y|1−d is the
fundamental solution for the Laplace equation; i.e., for some constant cd we have

∆x

(
1

|x− y|d−1

)
= cdδy, x,y ∈ Rd+1.

2Such conditions appear in many problems in harmonic analysis, see, e.g., [21]
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Problem 3. I want to follow Dahlberg’s approach [12] to show that optimal configura-
tions for Es(Sd;N) give the optimal order of covering for d−1 < s < d.

The difficulty in this problem is that one needs to consider the operator ∆α for some
power α . However, either we define it as a global operator (using Fourier transform) and
then the integration by parts formula in a domain will not work; or, if we define it with
respect to concrete domain (using the spectral theorem), its fundamental solution will be
the Green function for this domain, and not |x− y|−s.

2. DISCRETE ENERGY AND POLARIZATION ON COMPACT SETS FOR
NON-INTEGRABLE RIESZ KERNELS

Suppose A⊂Rp is an image of a compact subset of Rd via a Lipschitz map, d 6 p, and
s > d. Notice that the set A has zero s-Riesz capacity. Then the asymptotic behavior of
discrete N-point energy on A, defined in (11), is the following (see [8]):

lim
N→∞

Es(A;N)

N1+s/d
=

Cs,d

Hd(A)s/d
,

where Cs,d is a finite constant that depends only on s and d, and not on A. Moreover, if
ωN = {xN

1 , . . . ,x
N
N} is an optimal N-point configuration, then

1
N

N

∑
j=1

δxN
j

∗→ Hd(·∩A)
Hd(A)

, N→ ∞,

where the limit ∗→ is understood in the weak∗ sense; i.e., for any set B⊂A with Hd(∂AB)=
0 we have

#(ωN ∩N)

N
→ Hd(B)

Hd(A)
, as N→ ∞.

Notice that no assumptions on the boundary ∂A are necessary; in particular, the theorem
holds for a “fat” Cantor set C ⊂ [0,1] of positive 1-Lebesgue measure.

Together with S. Borodachov, D. Hardin and E. Saff, I proved the following weaker
statement for discrete polarization, defined in (12).

Theorem 2.1. If A⊂ Rp is a d-dimensional C1-smooth manifold with Hd(∂A) = 0, and
s > d, then

(14) lim
N→∞

Ps(A;N)

Ns/d
=

σs,d

Hd(A)s/d
,

where σs,d is a finite constant that depends only on s and d, and not on A. Moreover, if
ωN = {xN

1 , . . . ,x
N
N} is an optimal N-point configuration, then

1
N

N

∑
j=1

δxN
j

∗→ Hd(·∩A)
Hd(A)

, N→ ∞.

Problem 4. Get rid of the smoothness assumption, as well as of Hd(∂A) = 0.

Let us discuss some difficulties of this problem. If A ⊂ Rd has positive d-Lebesgue
measure, then proof of Theorem 2.1 goes through approximating A by small cubes from
inside. If Hd(∂A)> 0, in particular, if A is a “fat” Cantor set, then such an approximation
is not possible; for example, a “fat” Cantor set does not contain any cube.

For the energy, this difficulty results in careful approximation of the general set A by
more regular sets Aε . One particular thing used is monotonicity property; i.e., if A⊂ Aε ,
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then Es(A;N) > Es(Aε ;N) for any positive integer N. Thus, if we can derive an estimate
from below for Es(Aε ;N), then we immediately get an estimate from below for Es(A;N).
For polarization Ps such a monotonicity does not hold. Thus, some new ideas are re-
quired to tackle this problem. I propose to start with an explicit “fat” Cantor set C and
prove that

lim
N→∞

Ps(C ;N)

Ns → σs,1, s > 1.

The next problem deals with precise values for constants Cs,2 and σs,2.

Problem 5. Prove that for s > 2

(15) Cs,2 =

(√
3

2

)s/2

ζΛ(s),

where ζΛ(s) = ∑x∈Λ\{0} |x|−s, and Λ = {(n+m/2,m
√

3/2) : n,m ∈ Z} is the hexagonal
lattice in R2. Further, prove that

(16) σs,2 =

(√
3

2

)s/2

· 3
s/2−1

2
ζΛ(s).

Conjectured formula (15) is, in particular, confirmed by the known asymptotic behavior
of Cs,d as s→ ∞; namely, in [7] it is proved that

lim
s→∞

(Cs,d)
1/s =

1
limN→∞(N1/2δ[0,1]d(N))

,

where
δ[0,1]d(N) = max

ωN⊂[0,1]d
δ (ωN)

is the best-packing constant for [0,1]d . In dimensions d = 2,3,8,24 this constant is
known; in particular, for d = 2, in a microscopic sense, it is achieved by the hexagonal
lattice, and

(17) lim
s→∞

(Cs,2)
1/s =

4
√

12
2

.

Using Theorem 1.2, I was able to prove the analogous result on σs,d .

Theorem 2.2. If σs,d is the constant in the right-hand side of (14), then

(18) lim
s→∞

(σs,d)
1/s =

1
limN→∞ N1/dρ[0,1]d(N)

,

where
ρ[0,1]d(N) := inf

ωN⊂[0,1]d
ρ[0,1]d(ωN)

is the “best covering constant” for the unit cube [0,1]d . For d = 2 it is known [22] that
ρ[0,1]2(N) = 4

√
12/3; thus,

(19) lim
s→∞

(σs,2)
1/s =

3
4
√

12
.
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We also remark that the estimate

Cs,2 6

(√
3

2

)s/2

ζΛ(s),

is known [23].
We conlude this section with one more problem that should, in particular, have applica-

tions to methods of numerical integration. So far, the distributional properties (i.e., separa-
tion, covering and asymptotic behavior) are known for sets ωN that are global minimizers
for Es(·) on Sd; i.e., configurations ωN ⊂ Sd such that Es(ωN) = Es(Sd;N). However,
absolutely nothing is known about local minimizers.

Problem 6. For every N fix a local minimizer ωN ⊂ Sd for Es(·). Show that configurations
ωN are asymptotically optimal; i.e.,

lim
N→∞

Es(ωN)

Es(Sd;N)
= 1.

In particular, this will imply that

1
N ∑

x∈ωN

δx
∗→ Hd(·∩Sd)

Hd(Sd)
.

3. DISCRETE ENERGY AND POLARIZATION ON COMPACT SETS FOR INTEGRABLE
RIESZ KERNELS

Assume that A⊂Rp is a d-regular compact set with 0<Hd(A)<∞. Let K : A×A→R
be a lower semi-continuous symmetric function. Similarly to (11) and (12) we define

EK(A;N) := min
ωN

∑
xi,x j∈ωN ,i6= j

K(xi,x j)

and
PK(A;N) := max

ωN
min
y∈A

∑
xi∈ωN

K(xi,y).

It is known [9], [29] that there exist constants WK(A), the K-Wiener constant, and TK(A),
the K-Chebyshev constant, possibly infinite, such that

lim
N→∞

EK(A;N)

N2 =WK(A), lim
N→∞

PK(A;N)

N
= TK(A).

Moreover, we have

WK(A) = min
µ

∫
A

∫
A

K(x,y)dµ(x)dµ(y), TK(A) = max
µ

min
y

∫
A

K(x,y)dµ(x),

where both suprema are taken over probability measures µ supported on A.
The K-capacity of the set A is defined by CapK(A) := 1/WK(A). In particular, if

K(x,y) = |x−y|−s with s > d, then CapK(A) = 0; therefore, results of the previous section
do not fall in the potential theory framework. In this section we discuss the case when
CapK(A) > 0. Suppose µN is a normalized N-point probability measure that minimizes
EK(A;N). For a large class of kernels K it is known that µN

∗→ µ∗ and∫
A

K(x,y)dµ
∗(x)dµ

∗(y) =WK(A)

Thus, µ∗ minimizes the continuous energy on A. For a long time, limiting behavior of
discrete measures that attain PK(A;N) was unknown, except for the case K ∈C(A×A)
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which does not include Riesz potentials |x− y|−s, s > 0. It was proved by Simanek [37]
that if there exists a probability measure µeq with supp(µeq) = A and∫

A

K(x,y)dµeq(x) =C, ∀y ∈ A,

then µeq attains both WK(A) and TK(A), and µN
∗→ µ , where µN are normalized N-point

probability measures that attain PK(A;N). When A = Sd or A = Bd , the d-dimensional
unit ball, these conditions are satisfied for some Riesz potentials; however, when A = Bd ,
they are not satisfied for K(x,y) = |x− y|−s with 0 < s 6 d−2. In our recent paper with
E. Saff and O. Vlasiuk, the following is shown.

Theorem 3.1. Let K(x,y) = f (|x− y|), where f is a decreasing continuous function on
(0,∞) bounded from below. Assume further that for some ε with 0 < ε < d and a number
tε > 0 the function t 7→ td−ε f (t) is increasing on [0, tε ], where the value at 0 is defined by

lim
t→0+

td−ε f (t).

Assume A ⊂ Rp is a d-regular compact set, d 6 p. Let {µN} be a sequence of normal-
ized discrete probability N-point measures that attain PK(A;N), and assume for some
subsequence N we have µN

∗→ µ∗, N ∈N . Then µ∗ attains TK(A); i.e.,

inf
y∈A

∫
A

K(x,y)dµ
∗(x) = TK(A).

Notice that this result is valid for A = Bd and any Riesz kernel K(x,y) = |x− y|−s,
s > 0, as well as for K(x,y) = log(2/|x− y|). The following minimum principle is a key
ingredient of the proof.

Theorem 3.2. Let A and K satisfy the conditions of Theorem 3.1. If for a measure µ

supported on A and some constant C we have

(20)
∫
A

K(x,y)dµ(x)>C for Hd-a.e. x ∈ A,

then the inequality (20) holds for every x ∈ A.

We in particular see that we do not require any regularity properties of the measure µ .
However, Theorem 3.1 can hold in more generality if we manage to take into account
some structure of optimal measures µN .

Problem 7. Extend Theorem 3.1 to more general family of kernels K. In particular, prove
it (or give a counterexample) in the general case of lower semi-continuous kernel K and
a compact set A with CapK(A)> 0.

4. CRYSTALLIZATION PHENOMENA

Questions of crystallization are another versions of problem about arrangements of par-
ticles, that minimize certain energy. However, we now do not want to necessarily restrict
the particles to a fixed compact set. These questions can be summarized as follows: what
causes the atoms to arrange themselves in a periodic way? More specifically, why do
crystals consist of atoms arranged with respect to a certain lattice? These problems have
great significance as evidenced by the fact that 2014 was named the “International Year



RESEARCH STATEMENT, EXTENDED VERSION 9

of Crystallography” by UNESCO. However, it seems like no general theory has been de-
veloped to resolve these problems in dimensions p > 1. This is not only because these
problems are difficult, but they were somewhat overlooked by mathematicians: indeed,
most papers in this topic were published in physics journals.

For a potential K : R→ R with K(x,y) = f (|x− y|) and f (t)→ 0 as t → ∞, and an
N-point multiset ωN ⊂ Rp, we define the N-point energy of ωN and K by

(21) EK(ωN) = ∑
i6= j

f (|xi− x j|), ωN = {x1, . . . ,xN},

and

(22) EK(N) := inf
ωN

EK(ωN).

We assume that particles on small distances repel each other, but on large distances attract
each other. The most famous potential that describes this behavior is the Lennard-Jones
potential

KLR(x,y) = c6/|x− y|6− c12/|x− y|12.

On the other hand, if

K(x,y) =


+∞, |x− y|< 1
−1, |x− y|= 1
0, |x− y|> 1

then minimization of energy EK(N) := is equivalent to sphere packing problem. For this
potential, in R2 the minimization configurations in the limit form hexagonal lattice, which
arose in the previous problem. The general question of interest is: how are the minimizing
configurations ωN arranged as N tends to infinity? The known theorems are only for the
case p = 1; i.e., only the case of real line R, see [15], [38].

Problem 8. Obtain sufficient conditions on K that guarantee that the limit

eK := lim
N→∞

EK(N)

N
is a finite number. Further, set

µN := ∑
j

δxN
j
,

where ωN = {xN
1 , . . . ,x

N
N} minimize EK(N). Obtain conditions sufficient for the sequence

{µN} to converge in the weak∗ sense to a measure supported on a lattice.

We mention a particular case of this problem. Suppose we assume that µN
∗→ µ , where

µ is a locally finite measure supported on a lattice. Can we tell which lattice is it? Even
this question is not understood in R2.

5. WEIGHTED ESTIMATES FOR CALDERÓN–ZYGMUND OPERATORS

A Calderón–Zygmund operator is an integral operator whose kernel satisfies certain
growth and cancellation conditions. The most famous examples of such operators are the
Hilberg Transform

H f (x) := p.v.
∫
R

f (y)
x− y

dy, f ∈C∞
0 (R)
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and the Riesz transform in Rd

R f (x) := p.v.
∫
Rd

x− y
|x− y|d+1 f (y)dy, f ∈C∞

0 (Rd).

For a harmonic function u on R, the Hilbert transform is used to find it’s harmonic conju-
gate v, thus the operator H plays an important role in the theory of holomorphic functions
in the upper-half plane. Another important Calderón–Zygmund operator is the Ahlfors–
Beurling transform

B f (z) := p.v.
∫
C

f (w)
(z−w)2 dm2(w),

where m2 denotes the Lebesgue measure on the complex plane C; the Ahlfors–Beurling
transform plays a very important role in the theory of quasiconformal maps. For all these
operators, it is known that they are bounded from Lp to Lp when 1 < p < ∞. They fail to
be bounded from L1 to L1, however, they are bounded from L1 to L1,∞. For the Hilbert
transfor H it means that there exists a constant C > 0, such that for any f ∈ L1 and any
t > 0 we have

|{x ∈ R : |H f (x)|> t}|6C · ‖ f‖1

t
,

where for a set A we denote it’s 1-Lebesgue measure by |A|. We proceed with the follow-
ing definition.

Definition 2. We say that a positive function w : R→ R belongs to Ap with 1 < p < ∞ if

[w]p := sup
I

 1
|I|

∫
I

w(x)dx

 ·
 1
|I|

∫
I

w(x)−1/(p−1)dx

p−1

< ∞,

where the supremum is taken over all intervals I ⊂ R. We say that w belongs to A1 if

[w]1 := sup
I

 1
|I|

∫
I

w(x)dx

 ·(inf
I

w
)−1

< ∞.

Constant [w]p is called the Ap-characteristic of w.

It is known [18] that if w ∈ Ap with 1 < p < ∞, then H maps Lp(wdx) to Lp(wdx).
For operators B, R and H it was proved in [33], [31], [32], and [25] that their L2(wdx)
norms depend linearly on the A2-characteristic of w. Further, the same result was proved
in [20], [19], [27] for any Calderón–Zygmund operator. In my joint work with F. Nazarov
and A. Volberg, I extended this result to general metric spaces. Theorem below can be
applied, for example, to a Cauchy transform defined on a rectifiable curve.

Theorem 5.1. Assume (A,ρ,µ) is a metric measure space with a doubling Borel measure
µ; i.e., there exists a constant C, such that for any ball B(x,r) := {y ∈ A : ρ(x,y)6 r} we
have

µ(B(x,r))6Cµ(B(x,r/2)).
Let

[w]2,µ := sup
x∈A,r>0

 1
µ(B(x,r))

∫
B(x,r)

w(x)dµ(x)

 ·
 1

µ(B(x,r))

∫
B(x,r)

w(x)−1dµ(x)

< ∞.
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Then for any Calderón–Zygmund operator T there exists a constant c(T ), such that for
any function f∫

A

|T f (x)|2w(x)dµ(x)

1/2

6 c(T ) · [w]2,µ ·

∫
A

| f (x)|2w(x)dµ(x)

1/2

.

We turn our attention to the case p = 1. It was proved in [18] that H is bounded from
L1(wdx) to L1,∞(wdx) if and only if w belongs to A1. Moreover, in [30] the following
quantitative upper bound was obtained:

(23) w({x ∈ R : |H f (x)|> t})6C · [w]1 · log(e+[w]1) ·
‖ f‖L1(wdx)

t
,

where for a set A ⊂ R we define w(A) :=
∫

A w(x)dx. Since then it was conjectured that,
in fact, the log factor can be erased. In particular, it was proved for decreasing weights
w. A weaker conjectured was disproved in [35] and [36]. Together with F. Nazarov, V.
Vasyunin and A. Volberg, I obtained the following.

Theorem 5.2. For every large Q> 1 there exists a function w with A1-characteristic equal
to Q, a function f and a number t > 0, such that

(24) w({x ∈ R : |H f (x)|> t})>C ·Q · (log(e+Q))1/4 ·
‖ f‖L1(wdx)

t
.

Thus, the log factor is essential.

One can see that powers of log(e+Q) in upper and lower bounds are different. It will
be interesting to obtain the sharp bound.

Problem 9. Obtain a sharp estimate of the type (23), (24); moreover, construct the weight
w and function f that attain this sharp estimate.

6. TOEPLITZ OPERATORS ON THE BERGMAN SPACE

Let H := {z ∈C : Im(z)> 0} be the upper-half plane and m2 be the Lebesgue measure
on C. We associate the boundary ∂H= {z ∈ C : Im(z) = 0} with the set of real numbers
R. For an interval I ⊂ R denote it’s Carleson box by BI := I× [0, |I|]. Besides Carleson
boxes, it is convenient to consider their upper-halves UI := I× [|I|/2, |I|]. Let us give a
motivation. Fix a dyadic lattice D on R; i.e.,

D := {[2k`,2k(`+1)] : k, ` ∈ Z}.
Then we have ⋃

I∈D
UI =H,

and the sets UI have no common interior points. Therefore, for a function f on H we have

f (z) = ∑
I∈D

1UI(z) f (z), m2− a.e.

We further introduce the set L2
a(H,m2); i.e., the set of all holomorphic functions f on

H, such that ∫
H

| f (z)|2dm2(z)< ∞.
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For a function u : H→ C define

Tu f (z) :=
∫
H

f (ζ )u(ζ )
(z− ζ̄ )2

dm2(ζ ).

It is well known that if u ∈ L∞ then Tu is bounded from L2
a(H,m2) to itself. Moreover,

define

kζ (z) :=
1−|z|2

(1− ζ̄ z)2
;

in [2] it is proved that if u ∈ L∞ and the function

S(ζ ) :=
∫
H

Tukζ (z)kζ (z)dm2(z)

satisfies S(ζ )→ 0 as Im(ζ )→ 0, then Tu is a compact operator.

Problem 10. Obtain sufficient conditions on u, weaker than u ∈ L∞, for Tu to be bounded
from L2

a(H,m2) to itself.

So far, it is known that condition that S(ζ ) is a bounded function is not sufficient. I
have obtained the following partial result.

Theorem 6.1. Assume for every I ∈ D and every rectangle R⊂UI , such that left-bottom
corners of R and UI coincide, we have∣∣∣∣∣∣

∫
R

u(z)dm2(z)

∣∣∣∣∣∣6 |I|2.
Then the operator Tu is bounded.

Notice that in the above condition the absolute values are outside the integral; thus, we
are able to derive boundedness of Tu from some oscillation properties of u. However, we
still have too many conditions to verify. Ideally, I want to prove that Tu is bounded if for
every I ∈D we have ∣∣∣∣∣∣

∫
UI

u(z)dm2(z)

∣∣∣∣∣∣6 |I|2.
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