Money and nominal prices Long and short runs

Money and nominal prices

Long and short runs

- Conceptually, the long run is a time segment sufficiently long that all dynamic adjustments of the economy to an exogenous change are completed.
- In practice: years, maybe decades, not months or quarters.
- Physical analogy: spring

Money and nominal prices Demand for money

Money and nominal prices

Demand for money

- Basic rationale: bridge the gap between payments and receipts (on board, the seven-day week)
- Implications:

$$\frac{L^d}{P} = l(\frac{P_C}{P}, \frac{P_T}{P}; \overline{Y}),$$

- where

$$P \equiv \alpha P_C + (1 - \alpha)P_T, \ \overline{Y} \equiv \frac{P_C \overline{C} + P_T \overline{T}}{P}$$

• Why micro before macro?

$$\begin{split} P_C &= \theta P_T, \\ \frac{P_C}{P} &= \alpha + \frac{1-\alpha}{\theta}; \\ \frac{P_T}{P} &= \alpha \theta + 1 - \alpha. \end{split}$$

Money and nominal prices Demand for money

Money and nominal prices

Demand for money

Implications:

$$L^d = kP\overline{Y}$$
:

- where k is the number given by the function $l(\frac{P_C}{P}, \frac{P_T}{P}; \overline{Y})$ evaluated at equilibrium values of relative prices
- Determinants of k:
 - "pedestrian" features such as how often people get paid.
 - θ , α : These come from "real" part of economy, i.e., interplay of tastes and resources.
 - esempio: k = .5
- Nota bene: for the *individual*, P, \overline{Y} , and θ , α , (and k) exogenous.
- Similar logic implies for the foreign country:

$$L_F^d = k_F P_F \overline{Y}_F$$

Money and nominal prices Supply of money: flexible rates

Money and nominal prices

Supply of money: flexible rates

- Important distinction: fixed versus flexible exchange rates
- Flexible rates: assume exogenous money supplies (*L* for "liquidity"):

$$L_H^S = \overline{L}_H.$$

$$L_F^S = \overline{L}_F.$$

• Esempio:

$$\bar{L} = \bar{L}^* = 1.$$

Money and nominal prices Equilibrium and solution under flexible rates

Money and nominal prices
Equilibrium and solution under flexible rates

Demand equals supply

$$\begin{array}{c}
L_H^S = \overline{L_H} & L_H^d \\
\overline{L_H} = \overline{k_H} P_H \overline{Y}_H; \\
L_F^S = \overline{L_F} & L_F^d \\
\overline{L_F} = \overline{k_F} P_F \overline{Y}_F.
\end{array}$$

Solution for the price levels:

$$\hat{P}_{H} = \frac{\overline{L}_{H}}{k_{H}\overline{Y}_{H}};$$

$$\hat{P}_{F} = \frac{\overline{L}_{F}}{k_{F}\overline{Y}_{F}}$$

• Key feature: ceterus paribus, price level proportional to money supply

Money and nominal prices

Equilibrium and solution under flexible rates

Money and nominal prices

Equilibrium and solution under flexible rates

Determination of individual commodity nominal prices:

$$P_{T} = \frac{1}{(\alpha\theta + 1 - \alpha)} \times \frac{\overline{L}_{H}}{k_{H}\overline{Y}_{H}};$$

$$P_{C} = \frac{1}{(\alpha + \frac{1 - \alpha}{\theta})} \times \frac{\overline{L}_{H}}{k_{H}\overline{Y}_{H}};$$

$$P_{F,T} = \frac{1}{(\alpha_{F}\theta_{F} + 1 - \alpha_{F})} \times \frac{\overline{L}_{F}}{k_{F}\overline{Y}_{F}};$$

$$P_{F,C} = \frac{1}{(\alpha_{F} + \frac{1 - \alpha_{F}}{\alpha_{F}})} \times \frac{\overline{L}_{F}}{k_{F}\overline{Y}_{F}}.$$

• Again, ceterus paribus, proportional to money supply.

Money and nominal prices

Miller time! A theory of the nominal exchange rate

Money and nominal prices

Miller time! A theory of the nominal exchange rate

Assume zero transport costs: Things must cost the same in the same currency:

$$P_T = EP_{F,T};$$

 $P_C = EP_{F,C}.$

So,

$$E = \frac{P_T}{P_{F,T}}.$$

Hence,

$$E = \frac{(\alpha_F \theta_F + 1 - \alpha_F) \times k_F \times \overline{Y}_F \times \overline{L}_H}{(\alpha \theta + 1 - \alpha) \times k_H \times \overline{Y}_H \times \overline{L}_F}$$

- Ceterus paribus, nominal exchange rate proportional to relative money supplies.
- Known as PPP theory of exchange rate determination.

Money and nominal prices

Equilibrium and solution under fixed rates

Money and nominal prices

Equilibrium and solution under fixed exchange rates

- Fixed rates: authority stands ready to buy and sell at fixed rate \overline{E} .
 - Exchange rate now exogenous.
 - What becomes endogenous?
- Stare at PPP solution equation, but with L^S and L_F^S instead of \overline{L}^S and \overline{L}_F^S :

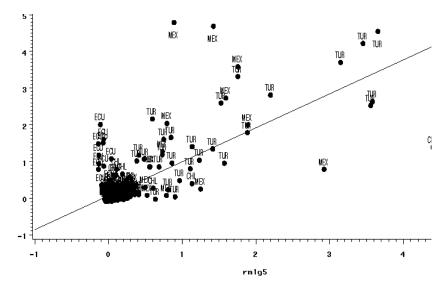
$$\overline{E} = \frac{(\alpha_F \theta_F + 1 - \alpha_F) \times k_F \times \overline{Y}_F \times L^S}{(\alpha \theta + 1 - \alpha) \times k_H \times \overline{Y}_H \times L_F^S}.$$

- Can solve for relative money supplies, and thus relative price levels, as endogenous variables.
- Using LOOP, can back out individual money supplies and price levels.
- Upshot: give up control of your own money supply and price level.

Money and nominal prices Evidence?

Money and nominal prices

Evidence? rel. money growth versus inflation



Regression Equation: nxrq5 = 0.063412 + 0.926649*rm1q5

Example

$$L^{d} = \frac{1}{2}P_{I}; L^{*d} = \frac{1}{2}P_{I^{*}}^{*}, \overline{Y}_{H} = \overline{Y}_{F} = 1$$

$$P_{I} = \frac{1}{3}P_{C} + \frac{2}{3}P_{T};$$

$$P_{I^{*}}^{*} = \frac{2}{3}P_{C}^{*} + \frac{1}{3}P_{T}^{*};$$

$$\overline{L} = \overline{L}^{*} = 1.$$

$$\frac{P_{C}}{P_{T}} = \frac{P_{C,F}}{P_{T,F}} = \frac{1}{2}.$$

Esempio

$$\begin{array}{c}
\stackrel{L}{1} = \frac{1}{2} \left(\frac{1}{3} P_C + \frac{2}{3} P_T \right); \\
\frac{P_C}{P_T} = \frac{1}{2} \to P_C = \frac{1}{2} P_T; \\
1 = \frac{1}{2} \left(\frac{1}{3} \frac{1}{2} P_T + \frac{2}{3} P_T \right); \\
2 = P_T \left(\frac{1}{6} + \frac{4}{6} \right); \\
P_T = \frac{6}{5} \cdot 2 = \frac{12}{5} = 2.4; \\
P_C = 1.2
\end{array}$$

Esempio

Can you do the foreign country, and solve for exchange rate?