

Bogdan Chornomaz

April 9, 2019

э

April 9, 2019

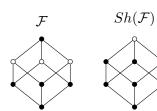
Reminder: Sauer-Shelah-Perles lemma

${\cal F}$	•00	•••	00•	Let us fix a base set X and a family \mathcal{F} . A set $Y \subseteq X$ is shattered by \mathcal{F} iff $\mathcal{F} _Y = 2^Y$. Stated otherwise:
		000		$\forall Z \subseteq Y \;\; \exists X \in \mathcal{F} \;\; \text{s.t.} \; Z = Y \cap X.$
				Lemma (Sauer-Shelah-Perles)
$Sh(\mathcal{F})$	●○●	●○●	○●●	Every family \mathcal{F} shatters at least as many elements as it has.
	•00	000	00●	Alternatively, we can say that F is a subset of
		000		a boolean lattice B_n , and an element $y \in B_n$ is shattered by F if

$$\forall z \leq y \;\; \exists X \in F \;\; \text{s.t.} \; z = y \wedge x.$$

æ

Lattices, satisfying SSP.



 \mathcal{F}

So, for original SSP lemma in the background we always have a boolean lattice B_n , which regulates how shattering is defined.

We can change B_N to arbitrary finite lattice to arbitrary lattice L, and say that $F \subseteq L$ **shatters** an element $y \in L$, iff

$$\forall z \leq y \;\; \exists x \in F \;\; \text{s.t.} \; z = y \wedge x.$$

- We say that L satisfies Sauer-Shelah-Perles lemma (is SSP), if for any $F \subseteq L$ holds: $|F| \leq |Sh(F)|$.
 - Thus, all B_n are SSP, but, for example, a chain of length at least two is not.

SSP, an attempt at characterization.

The problem was stated in a preprint Zeev Dvir, Yuval Filmus, Shay Moran. A Sauer-Shelah-Perles Lemma for Lattices. 2018. They also gave the following sufficient condition:

Theorem ((S) Dvir, Filmus, Moran)

If a lattice L has a non-vanishing Möbius function μ , then it is SSP.

On the other hand the following necessary condition hold:

Lemma (N)

For a lattice L, define $\varphi, \psi \colon L \to \mathbb{Z}$ as

$$\varphi(x) = |[x)| = \zeta^2(x, 1);$$

$$\psi(x) = \sum_{z \le x} \mu(0, z)\varphi(z).$$

Then L is SSP implies $\varphi \leq \psi$.

April 9, 2019

Reminder: incidence algebras.

For a finite lattice L (locally finite pose P), an **incidence algebra** of L is a set of functions $\{f : I \to \mathbb{Z}\}$, where $I = \{(x, y) \in L^2 \mid x \leq y\}$ with an associative **convolution**:

$$f \ast g(x,y) = \sum_{x \leq z \leq y} f(x,z)g(z,y).$$

Several special elements in incidence algebra are:

$$\delta(x,y) = \begin{cases} 1, x = y, \\ 0, x < y; \end{cases} \delta \text{ is a unit of the algebra;} \\ \zeta \equiv 1; \\ \mu \text{ - unique left and right inverse of } \zeta, \text{ i.e. } \mu * \zeta = \delta, \zeta * \mu = \delta; \\ \mu(x,y) = \begin{cases} 1 & x = y; \\ -\sum_{x \le z < y} \mu(x,z) & otherwise. \end{cases}$$

April 9, 2019

Reminder: Möbius inversion formula.

Given a lattice L, for a pair of functions $f, g: L \to \mathbb{R}$ it holds:

$$\begin{split} f(x) &\equiv \sum_{y \geq x} g(y) &\Leftrightarrow \quad g(x) \equiv \sum_{y \geq x} \mu(x,y) f(y); \\ f(y) &\equiv \sum_{x \leq y} g(x) &\Leftrightarrow \quad g(y) \equiv \sum_{x \leq y} \mu(x,y) f(x). \end{split}$$

One of the applications of Möbius inversion is inclusion-exclusion principle is the inclusion-exclusion formula:

$$\left| \bigcup_{i \in X} A_i \right| = \sum_{\emptyset \subsetneq Y \subseteq X} (-1)^{|Y|+1} \Big| \bigcap_{j \in Y} A_j \Big|.$$

This essentially comes from the fact that in a boolean lattice 2^S , for $X \subseteq Y \subseteq S$, $\mu(X, Y) = (-1)^{|Y| - |X|}$.

- For a given lattice L with nonvanishing μ let us consider an |F|-dimensional vector space V_F of functions $F \to \mathbb{R}$. We want to find a spanning set for V_F of size |Sh(F)|;
- For $X \subseteq L$ we denote by $\chi_X \colon L \to \mathbb{R}$ a characteristic function of X. A function χ_X^F is a restriction of χ_X to F;
- Trivially, a family $\chi_{[y)}^F$ for $y \in L$ spans V_F . We want to show that if $z \notin Sh(F)$, then $\chi_{[z)}^F$ is a linear combination of $\chi_{[w)}^F$, for w < z.

April 9, 2019

Proof of (S), magic

So, let $z \notin Sh(F)$, x_0 s.t. $x_0 \neq z \land p$, for all $p \in F$. Take arbitrary $p \in F$. We have:

$$\chi_{(p \wedge z]}(x) = \sum_{x \le y} \chi_{p \wedge z}(y), \text{ for all } x$$

$$\Leftrightarrow \text{ [Möbius inversion]}$$

$$\chi_{p \wedge z}(x) = \sum_{x \le y} \mu(x, y) \chi_{(p \wedge z]}(y) = \sum_{x \le y} \mu(x, y) \chi_{[y)}(p \wedge z)$$

$$= \sum_{x \le y \le z} \mu(x, y) \chi_{[y)}(p).$$

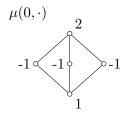
Take $x := x_0$, then:

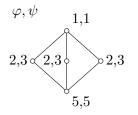
$$0 \equiv \chi_{p \wedge z}(x_0) = \sum_{x_0 \le y \le z} \mu(x_0, y) \chi_{[y)}(p), \text{ for all } p \in F.$$

$$0 \equiv \sum_{x_0 \le y < z} \mu(x_0, y) \chi^F_{[y)} + \mu(x_0, z) \chi^F_{[z)}.$$

And we are done.

Some examples: M_3

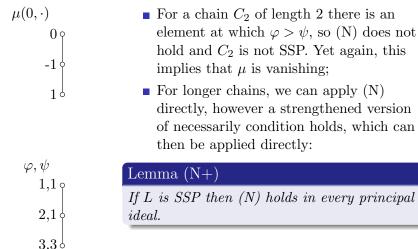




- As we see, for M_3 sufficient condition (S) holds, so M_3 is SSP. As a sanity check, we can see that $\varphi \leq \psi$, which means that necessary condition (N) also holds;
- The picture shows only μ(0, ·), while (S) states that μ has to be nonvanishing globally, that is, on all pairs. However, this is equivalent to μ(0, ·) to be nonvanishing on all principal filters of L, which are simple in this case.
- Same argument shows that M_n is SSP for all $n \ge 2$, including $M_2 = B_2$.

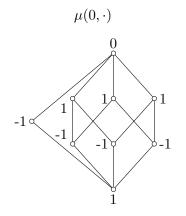
Title

Some examples: chains



• For longer chains, we can apply (N) directly, however a strengthened version of necessarily condition holds, which can

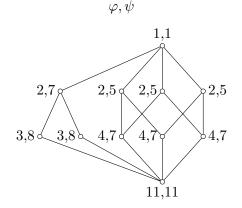
Some examples: (S) is not necessary



- For a lattice on the picture, μ is vanishes on the pair (0, 1), however the corresponding lattice is SSP. We do not have a good criterion to easily see this, however this can be checked directly;
- This example can be generalized by adjoining an element in the similar way to an SSP lattice with $\mu(0,1) = -1$.

April 9, 2019

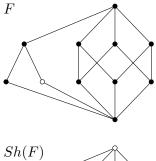
Some examples: (N+) is not sufficient



- For this lattice (N) holds. As all proper ideals here are boolean, and hence SSP, (N) holds for them as well. Thus, (N+) holds.
- Here we actually do have a good criterion to see that it is not SSP.

April 9, 2019

Very simple necessary condition



Sh(F)

Lemma

If L is SSP then it does not have a three-element chain as a subinterval.

Proof: If x < y < z is such a subinterval, then $F = (z] - \{x\}$ can shatter only elements in $(z] - \{x, y\}$.

A lattice is **relatively complemented** if every interval is complemented. We refer to Anders Björner, *On complements in lattices of finite length*, 1981, where it is proved that L is RC iff it has no 3-element interval.

Corollary (N2)

 $SSP \Rightarrow RC.$

Some final consideration

• We do not have an example, showing that RC is not strong enough to capture entire SSP. Hence, the conjecture:

Conjecture SSP = RC;

- RC is obviously closed under direct products. Moreover, in Dilworth, *The Structure of Relatively Complemented Lattices*, 1950, it is proven that every RC lattice is a direct product of simple RC lattices. SSP are also happened to be closed under direct products. The proof is easy, but not absolutely trivial;
- As SSP is closed under direct product, and as we have an example of SSP lattice with vanishing μ, we can construct an SSP lattice where μ will vanish almost everywhere;
- RC is also trivially closed under taking duals. We do not know whether it holds for RC.

April 9, 2019