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Basic Definitions
I Let {fi}i∈I be a set of operation symbols and let σ : I → ω be

a function that assigns a finite arity to each function symbol.
An algebra is a pair

A = 〈A; {f Ai }i∈I 〉
where

1. A is a nonempty set called the universe of A and
2. f Ai : Aσ(i) → A for each i ∈ I . These are called the basic

operations of A.

I A variety of algebras is a class V of similar algebras of the
form

V = MOD(Σ)

where Σ is a collection of identities, or universally quantified
equations.For example, the variety of groups is axiomatized by
the identities

1. x(yz) ≈ (xy)z ,
2. x(x−1) ≈ (x−1)x ≈ 1, and
3. 1x ≈ x1 ≈ x .

Varieties are exactly the HSP-closed classes (Birkhoff).



Basic Definitions
I Let {fi}i∈I be a set of operation symbols and let σ : I → ω be

a function that assigns a finite arity to each function symbol.
An algebra is a pair

A = 〈A; {f Ai }i∈I 〉
where

1. A is a nonempty set called the universe of A and
2. f Ai : Aσ(i) → A for each i ∈ I . These are called the basic

operations of A.
I A variety of algebras is a class V of similar algebras of the

form
V = MOD(Σ)

where Σ is a collection of identities, or universally quantified
equations.

For example, the variety of groups is axiomatized by
the identities

1. x(yz) ≈ (xy)z ,
2. x(x−1) ≈ (x−1)x ≈ 1, and
3. 1x ≈ x1 ≈ x .

Varieties are exactly the HSP-closed classes (Birkhoff).



Basic Definitions
I Let {fi}i∈I be a set of operation symbols and let σ : I → ω be

a function that assigns a finite arity to each function symbol.
An algebra is a pair

A = 〈A; {f Ai }i∈I 〉
where

1. A is a nonempty set called the universe of A and
2. f Ai : Aσ(i) → A for each i ∈ I . These are called the basic

operations of A.
I A variety of algebras is a class V of similar algebras of the

form
V = MOD(Σ)

where Σ is a collection of identities, or universally quantified
equations.For example, the variety of groups is axiomatized by
the identities

1. x(yz) ≈ (xy)z ,
2. x(x−1) ≈ (x−1)x ≈ 1, and
3. 1x ≈ x1 ≈ x .

Varieties are exactly the HSP-closed classes (Birkhoff).



Basic Definitions
I Let {fi}i∈I be a set of operation symbols and let σ : I → ω be

a function that assigns a finite arity to each function symbol.
An algebra is a pair

A = 〈A; {f Ai }i∈I 〉
where

1. A is a nonempty set called the universe of A and
2. f Ai : Aσ(i) → A for each i ∈ I . These are called the basic

operations of A.
I A variety of algebras is a class V of similar algebras of the

form
V = MOD(Σ)

where Σ is a collection of identities, or universally quantified
equations.For example, the variety of groups is axiomatized by
the identities

1. x(yz) ≈ (xy)z ,
2. x(x−1) ≈ (x−1)x ≈ 1, and
3. 1x ≈ x1 ≈ x .

Varieties are exactly the HSP-closed classes (Birkhoff).



Basic Definitions
I A function clone on a set A is a multi-sorted algebraic

structure

C = 〈C1,C2, . . . ,Cn, . . . ; ◦, {πni : n ≥ 1 and 0 ≤ i < n}〉
where

1. each Cn ⊆ AAn

,
2. C contains all projection operations: πn

i (x0, . . . , xn−1) = xi , and
3. C is closed under composition, e.g. for f ∈ Cn and

g0, . . . , gn−1 ∈ Cm

f ◦ [g0, . . . , gn−1] ∈ Cm.

I Let A be an algebra. The clone of term operations of A is
denoted by Clo(A) and is defined to be the smallest function
clone containing all of the basic operations of A. (If A has
null-ary operations we replace them by unary constant
operations.)

I Let A be an algebra. The clone of polynomial operations of
A is denoted by Pol(A) and is the smallest function clone
containing the basic operations of A and all constants.



Basic Definitions
I A function clone on a set A is a multi-sorted algebraic

structure

C = 〈C1,C2, . . . ,Cn, . . . ; ◦, {πni : n ≥ 1 and 0 ≤ i < n}〉
where

1. each Cn ⊆ AAn

,
2. C contains all projection operations: πn

i (x0, . . . , xn−1) = xi , and
3. C is closed under composition, e.g. for f ∈ Cn and

g0, . . . , gn−1 ∈ Cm

f ◦ [g0, . . . , gn−1] ∈ Cm.

I Let A be an algebra. The clone of term operations of A is
denoted by Clo(A) and is defined to be the smallest function
clone containing all of the basic operations of A. (If A has
null-ary operations we replace them by unary constant
operations.)

I Let A be an algebra. The clone of polynomial operations of
A is denoted by Pol(A) and is the smallest function clone
containing the basic operations of A and all constants.



Basic Definitions
I A function clone on a set A is a multi-sorted algebraic

structure

C = 〈C1,C2, . . . ,Cn, . . . ; ◦, {πni : n ≥ 1 and 0 ≤ i < n}〉
where

1. each Cn ⊆ AAn

,
2. C contains all projection operations: πn

i (x0, . . . , xn−1) = xi , and
3. C is closed under composition, e.g. for f ∈ Cn and

g0, . . . , gn−1 ∈ Cm

f ◦ [g0, . . . , gn−1] ∈ Cm.

I Let A be an algebra. The clone of term operations of A is
denoted by Clo(A) and is defined to be the smallest function
clone containing all of the basic operations of A. (If A has
null-ary operations we replace them by unary constant
operations.)

I Let A be an algebra. The clone of polynomial operations of
A is denoted by Pol(A) and is the smallest function clone
containing the basic operations of A and all constants.



Basic Definitions

I Let A be an algebra with universe A and n ≥ 1 a natural
number. A subset

R ⊆ An

is called an A-invariant relation if it is closed under the basic
operations of A, equivalently, if R is a subalgebra of An.

I The invariant equivalence relations of an algebra A are called
congruences. The collection of all congruences of an algebra
forms an algebraic lattice under inclusion and is denoted by
Con(A).
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Commutator Theory

I The classical commutator for a universal algebra A is a binary
operation

[·, ·] : Con(A)2 → Con(A)

that allows one to define abelianness and generalizations of
abelianness such as solvability and nilpotence.

I For example, an algebra A is said to be abelian if

[1, 1] = 0.

I The higher commutator is a higher arity operation that
generalizes the binary commutator, e.g.

[·, . . . , ·︸ ︷︷ ︸
n

] : Con(A)n → Con(A)
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Nilpotence and Supernilpotence

Definition
Let A be an algebra and let θ ∈ Con(A). Set [θ]0 = (θ]0 := θ and

[θ]i+1 := [[θ]i , [θ]i ] and (θ]i+1 = [(θ]i , θ]TC .

These produce two descending chains of congruences, called the
derived and lower central series, respectively.

1. If [θ]n = 0 then θ is said to be n-step solvable.

2. If (θ]n = 0, then θ is said to be n-step nilpotent.

3. If θ is such that [θ, . . . , θ]︸ ︷︷ ︸
n+1

= 0, then θ is said to be n-step

supernilpotent.
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Nilpotence and Supernilpotence

I Supernilpotence and nilpotence are the same for groups and
rings but in general they are different, even for expanded
groups.

I Supernilpotence has received attention lately, partly because
of theorems of the type ‘nice property of finite nilpotent
groups holds for finite supernilpotent algebras of finite type,’
for example:

1. A finite Mal’cev algebra of finite type is supernilpotent if and
only it is the product of prime power order nilpotent algebras.
(Freese & McKenzie, Kearnes, Aichinger & Mudrinski)

2. There is a polynomial time algorithm to solve the equation
satisfiability problem for a finite supernilpotent Mal’cev algebra
of finite type. (Kompatscher)
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Nilpotence and Supernilpotence

I The commutator is monotonic in each argument, so
nilpotence is stronger than solvability.

I The exact relationship between supernilpotence and
nilpotence has been unclear.

I Aichinger and Mudrinski have shown any supernilpotent
Mal’cev algebra is nilpotent.

I Kearnes and Szendrei have announced that any finite
supernilpotent algebra is nilpotent.

I It follows from results of Wires that any supernilpotent
algebra generating a modular variety is nilpotent.

I We can show any supernilpotent Taylor algebra is nilpotent.
(A Taylor algebra is an algebra that satisfies some nontrivial
idempotent Mal’cev condition.)

I Moore and M. have constructed a supernilpotent algebra that
is not solvable and hence not nilpotent. Note, this algebra is
necessarily infinite and not Taylor.
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Commutator Definition
I The modular commutator can be equivalently defined by

means of either

1. the term condition, or
2. properties of a special invariant relation, usually called ∆.

Definition (Term Condition)

Let A be an algebra and take α, β, δ ∈ Con(A). We say that α
centralizes β modulo δ when the following condition is met:

I For all t ∈ Pol(A) and a0 ≡α b0 and a1 ≡β b1 with
|a0|+ |a1| = σ(t),(

t(a0, a1) ≡δ t(a0,b1) =⇒ t(b0, a0) ≡δ t(b0,b1)

)
We write CTC (α, β; δ) whenever this is true.

I The term condition may be described as a condition that is
quantified over a certain invariant relation of A which is called
the algebra of (α, β)-matrices and is denoted M(α, β).
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Matrices

I A square is the graph 〈22;E 〉, where two functions f , g ∈ 22

are connected by an edge if and only if their outputs differ in
exactly one argument.

(0, 0) (1, 0)

(0, 1) (1, 1)

I We say that a relation R on a set A is 2-dimensional if
R ⊆ A22 (R is a set of squares whos vertices are labeled by
elements of A.)

I M(α, β) is the subalgebra of A22 with generators{[
x y
x y

]
: x ≡α y

}⋃{[
y y
x x

]
: x ≡β y

}
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Matrices

For δ ∈ Con(A) we have that α centralizes β modulo δ if the
implication
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β
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δ

holds for all (α, β)-matrices. This condition is abbreviated
CTC (α, β; δ).
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{δ : C (α, β; δ)}
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I The notions of matrices and centrality for three congruences
are defined similarly.

I A cube is the graph 〈23;E 〉, where two functions f , g ∈ 23 are
connected by an edge if and only if their outputs differ in
exactly one argument.
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R ⊆ A32 (R is a set of cubes whos vertices are labeled by
elements of A.)
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Matrices

I For congruences θ0, θ1, θ2 ∈ Con(A), set M(θ0, θ1, θ2) ≤ A23

to be the subalgebra generated by the following labeled cubes:
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x

y

y

y

y

y y

y y

x x
x x

x x
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y

y y

y

θ0

θ1

θ2

M(θ0, θ1, θ2) is called the algebra of (θ0, θ1, θ2)-matrices.



Centrality

I For δ ∈ Con(A), we say that θ0, θ1 centralize θ2 modulo δ
if the following implication holds for all (θ0, θ1, θ2)-matrices:

I This condition is abbreviated CTC (θ0, θ1, θ2; δ).
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Centrality

I Here is a picture of CTC (θ1, θ2, θ0; δ):
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Matrices

I For congruences θ0, θ1, θ2 we set

[θ0, θ1, θ2]TC =
∧
{δ : CTC (θ0, θ1, θ2; δ)}

I Higher centrality and the commutator for arity ≥ 4 are
similarly defined.
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Matrices

I An n-dimensional hypercube is the graph Hn = 〈2n;E 〉, where
two functions f , g ∈ 2n are connected by an edge if and only
if their outputs differ in exactly one argument.

I We say that a relation R on a set A is n-dimensional if
R ⊆ A2n

I Observation: The term condition definition of centrality
involving n-many congruences θ0, . . . , θn−1 is a condition that
is quantified over (θ0, . . . , θn−1)-matrices, which are certain
n-dimensional invariant relations

M(θ0, . . . , θn−1) ≤ A2n

that have generators of the form

x y

(n− 1)-dimensional cube

θif ∈ 2n such that f(i) = 0 f ∈ 2n such that f(i) = 1
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I Consider the n-dimensional hypercube Hn = 〈2n;E 〉. For any
coordinate i ∈ n, there are two (n− 1)-dimensional hyperfaces
that are ‘perpendicular’ to i :

1. (Hn)0i = 〈{f ∈ 2n : f (i) = 0};E 〉 and
2. (Hn)1i = 〈{f ∈ 2n : f (i) = 1};E 〉.

(0, 0, 0, 1) (1, 0, 0, 1)

(1, 1, 0, 1)
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(0, 1, 1, 1) (1, 1, 1, 1)
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I Take h ∈ A2n . We consider h as a vertex labeled
n-dimensional hypercube. For any coordinate i ∈ n, there are
two (n − 1)-dimensional vertex labeled hyperfaces that are
perpendicular to i , which we denote

1. h0i and
2. h1i .
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c d

e f

g s

i j

k l

m n

o p

h ∈ A2n
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I For R ⊆ A2n , set

Ri = {〈h0i , h1i 〉 : h ∈ R}.

I Fact: Suppose A is a member of a permutable variety, and
take (θ0, . . . , θn−1) ∈ Con(A)n. Then,

M(θ0, . . . , θn−1)i

is a congruence relation, for all i ∈ n.

I This leads to a nice characterization of the commutator for
permutable varieties.



I For R ⊆ A2n , set

Ri = {〈h0i , h1i 〉 : h ∈ R}.

I Fact: Suppose A is a member of a permutable variety, and
take (θ0, . . . , θn−1) ∈ Con(A)n. Then,

M(θ0, . . . , θn−1)i

is a congruence relation, for all i ∈ n.

I This leads to a nice characterization of the commutator for
permutable varieties.



I For R ⊆ A2n , set

Ri = {〈h0i , h1i 〉 : h ∈ R}.

I Fact: Suppose A is a member of a permutable variety, and
take (θ0, . . . , θn−1) ∈ Con(A)n. Then,

M(θ0, . . . , θn−1)i

is a congruence relation, for all i ∈ n.

I This leads to a nice characterization of the commutator for
permutable varieties.



Theorem (Binary Commutator)

Let V be a permutable variety and let A ∈ V. For α, β ∈ Con(A),
the following are equivalent:

1. 〈x , y〉 ∈ [α, β]TC

2.

[
x y
x x

]
∈ M(α, β)

3.

[
a y
a x

]
∈ M(α, β) for some a ∈ A

4.

[
x y
b b

]
∈ M(α, β) for some b ∈ A.
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I Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A),
define ∆α,β to be the transitive closure of M(α, β)0.
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∈ ∆α,β

I Fact: Both (∆α,β)0 and (∆α,β)1 are congruence relations.
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Theorem (Binary Commutator)

Let V be a modular variety and let A ∈ V. For α, β ∈ Con(A), the
following are equivalent:
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Theorem: Let V be a permutable variety. Take θ0, θ1, θ2 ∈ Con(A) for
A ∈ V. The following are equivalent:

〈x, y〉 ∈ [θ0, θ1, θ2]
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Higher Dimensional Congruence Relations

Definition
Let R ⊆ A2n be an n-dimensional relation on some set A. R is
called an n-dimensional equivalence relation if for all i ∈ n, each
Ri is an equivalence relation.

Definition
Let A be an algebra with underlying set A. Let R ∈ A2n be an
n-dimensional equivalence relation. R is called an n-dimensional
congruence if R is preserved by the basic operations of A.

I Fix n ≥ 1. The collection of all n-dimensional congruences of
an algebra A is an algebraic lattice, which we denote by
Conn(A).

I There are n distinct embeddings from Con1(A) into Conn(A).
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Higher Dimensional Congruence Relations

I Fix a dimension n and take i ∈ n. For a pair 〈x , y〉 ∈ A2, let
Cubei (〈x , y〉) ∈ A2n be such that

1.
(

Cubei (〈x , y〉)
)0
i

is the (n − 1)-dimensional cube with each
vertex labeled by x .

2.
(

Cubei (〈x , y〉)
)1
i

is the (n − 1)-dimensional cube with each
vertex labeled by y .

I Define φin : Con1(A)→ Conn(A) by

φin(α) = {Cubei (〈x , y〉) : 〈x , y〉 ∈ α}
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∨
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i
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Characterizing Joins

I Let A be an algebra and let θ be an equivalence relation on A.
Then, θ is an admissible relation if and only if θ is compatible
with the unary polynomials of A.

I This generalizes to:

Theorem
Let A be an algebra and let n ≥ 1. An n-dimensional equivalence
relation θ is admissible if and only if θ is compatible with the n-ary
polynomials of A.
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Characterizing Joins

I ∆θ0,...,θn−1 =
∨

i φ
i
n(θi ) is therefore obtained by

1. Closing
⋃
φin(θi ) under all n-ary polynomials and then

2. taking a sequence of transitive closures, cycling through all
possible directions possibly ω-many times.

I Notice: M(θ0, . . . , θn−1) ≤ ∆θ0,...,θn−1 . We use this larger
collection to define a stronger term condition.
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Hypercentrality

For δ ∈ Con(A) we have that α hypercentralizes β modulo δ if
the implication

α

→

β

a b

c d

a b

c d

δ

holds for all members of ∆α,β. This condition is abbreviated
CH(α, β; δ).



Hypercentrality

Similarly, we have that β hypercentralizes α modulo δ if the
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→
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a b

c d
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c d
δ

holds for all members of ∆α,β. This condition is abbreviated
CH(β, α; δ).



Hypercentrality

I For congruences θ0, θ1 we set

[θ0, θ1]H =
∧
{δ : CH(θ0, θ1; δ)}

I Higher arity hypercentrality and the higher arity
hypercommutator similarly defined.
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Theorem (Binary Hyper Commutator)

Let A be an algebra. For α, β ∈ Con(A), the following are
equivalent:

1. 〈x , y〉 ∈ [α, β]H

2.

[
x y
x x

]
∈ ∆α,β

3.

[
a y
a x

]
∈ ∆α,β for some a ∈ A

4.

[
x y
b b

]
∈ ∆α,β for some b ∈ A.

I A similar characterization of the higher arity hyper
commutator also holds.
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Supernilpotent Taylor Algebras Are Nilpotent

I Strategy:

1. From the definitions, it follows that

[θ0, . . . , θn−1]TC ≤ [θ0, . . . , θn−1]H

2. Demonstrate the commutator nesting property for the hyper
commutator:

[[θ0, . . . , θi−1]H , θi , . . . , θn−1]H ≤ [θ0, . . . , θn−1]H

3. Show that [θ, . . . , θ]S = [θ, . . . , θ]H in a Taylor variety.
4. (2) and (3) imply that

[[θ, . . . , θ]TC , θ, . . . , θ]TC = [[θ, . . . , θ]H , θ, . . . , θ]H

≤ [θ, . . . , θ]H = [θ, . . . , θ]TC
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Supernilpotent 6=⇒ Nilpotent (work with Moore)

Define A = O ∪ R ∪ G with G infinite, O = {o ji : i , j ∈ ω}, and

R = {r ji : i , j ∈ ω}. Let A = 〈A; t〉 be the algebra with underlying
set A and a binary operation t with the table

x r j4i r j4i+2

y

r j4i

r j4i+2

t(x , y)

o j
i r j+1

i

o j
i r j+1

i+1

where t an injection into G otherwise.



Supernilpotent 6=⇒ Nilpotent (work with Moore)
Define A = O ∪ R ∪ G with G infinite, O = {o ji : i , j ∈ ω}, and

R = {r ji : i , j ∈ ω}.

Let A = 〈A; t〉 be the algebra with underlying
set A and a binary operation t with the table

x r j4i r j4i+2

y

r j4i

r j4i+2

t(x , y)

o j
i r j+1

i

o j
i r j+1

i+1

where t an injection into G otherwise.



Supernilpotent 6=⇒ Nilpotent (work with Moore)
Define A = O ∪ R ∪ G with G infinite, O = {o ji : i , j ∈ ω}, and

R = {r ji : i , j ∈ ω}. Let A = 〈A; t〉 be the algebra with underlying
set A and a binary operation t with the table

x r j4i r j4i+2

y

r j4i

r j4i+2

t(x , y)

o j
i r j+1

i

o j
i r j+1

i+1

where t an injection into G otherwise.



Supernilpotent 6=⇒ Nilpotent (work with Moore)
Define A = O ∪ R ∪ G with G infinite, O = {o ji : i , j ∈ ω}, and

R = {r ji : i , j ∈ ω}. Let A = 〈A; t〉 be the algebra with underlying
set A and a binary operation t with the table

x r j4i r j4i+2

y

r j4i

r j4i+2

t(x , y)

o j
i r j+1

i

o j
i r j+1

i+1

where t an injection into G otherwise.



Supernilpotent 6=⇒ Nilpotent

I A is not solvable and hence not nilpotent.

I A is 2-step supernilpotent. To prove this it suffices to show
that

h =

a b

ba

c e

dc

∈ M(1, 1, 1)

implies e = d .
I This example generalizes to ‘higher dimensions.’ There exist

algebras An that
1. are not solvable in dimension n (no term in commutators up

to arity n evaluated at 1 produces 0)
2. but are n-step supernilpotent.

I Question: Let [V] be a chapter in the lattice of interpretability
of types that does not lie above Oľsák’s variety. Is there a
variety W ∈ [V] with a supernilpotent algebra that is not
nilpotent?
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