Boundary Estimates for Quasilinear Parabolic Equations

Let E be an open set in \mathbb{R}^N , and for T > 0 let E_T denote the cylindrical domain $E \times (0,T]$. Consider quasi-linear, parabolic differential equations of the form

$$u_t - \operatorname{div} \mathbf{A}(x, t, u, Du) = 0$$
 weakly in E_T (1)

where the function $\mathbf{A}: E_T \times \mathbb{R}^{N+1} \to \mathbb{R}^N$ is only assumed to be measurable and subject to the structure conditions

$$\begin{cases}
\mathbf{A}(x,t,u,Du) \cdot Du \ge C_o |Du|^p \\
|\mathbf{A}(x,t,u,Du)| \le C_1 |Du|^{p-1}
\end{cases}$$
 a.e. $(x,t) \in E_T$ (2)

where C_o and C_1 are given positive constants, and $p > \frac{2N}{N+1}$. The prototype of such a class of parabolic equations is the well–known parabolic p–laplacian

$$u_t - \operatorname{div} |Du|^{p-2} Du = 0 \quad \text{weakly in } E_T. \tag{1}_o$$

If E is a Lipschitz domain and u=0 on a portion of the lateral boundary $\partial E \times (0,T)$, I will show that both in the degenerate p>2, and in the singular super-critical range $\frac{2N}{N+1} , solutions satisfy proper Carleson estimates on such a portion.$

This joint work with Benny Avelin (University of Umeå, Sweden) and Sandro Salsa (Polytechnics of Milan, Italy), extends well-known results for linear parabolic equations with bounded and measurable coefficients.