Chapter 10

Semi-linear Varieties of Lattice-Ordered
Algebras

Antonio Ledda, Francesco Paoli and Constantine Tsinakis

Abstract We consider varieties of pointed lattice-ordered algebras satisfying a re-
stricted distributivity condition and admitting a very weak implication. Examples of
these varieties are ubiquitous in algebraic logic: integral or distributive residuated
lattices; their {-}-free subreducts; their expansions (hence, in particular, Boolean
algebras with operators and modal algebras); and varieties arising from quantum
logic. Given any such variety ¥, we provide an explicit equational basis (relative
to ¥) for the semi-linear subvariety % of ¥. In particular, we show that if ¥ is
finitely based, then so is # . To attain this goal, we make extensive use of tools from
the theory of quasi-subtractive varieties.
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10.1 Introduction

A variety ¥ of lattice-ordered algebras is said to be semi-linear in case it is gen-
erated by its totally ordered members (in more traditional algebraic parlance, the
term ‘representable’ is often used in place of ‘semi-linear’.) Due to the congruence
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distributivity of ¥/, ¥ is semi-linear if and only if its subdirectly irreducible mem-
bers are totally ordered ([11], Theorem 6.8, p. 165). Needless to say, semi-linearity
is a welcome property insofar as it often makes a class of algebras very tractable
for computation and proof purposes. Many well-understood varieties in algebraic
logic are known to be semi-linear: examples include Abelian ¢-groups and varieties
arising from many-valued logic (such as MTL algebras and thus, in particular, BL
algebras, MV algebras or Godel algebras: [15]). Petr H4jek, besides giving fun-
damental contributions to the investigation of many such classes of algebras, has
repeatedly underscored the central role played by semilinearity in fuzzy logic:

Among the logics of residuated lattices, fuzzy logics [...] are distinguished by the property
of semilinearity, i.e., completeness w.r.t. a class of linearly ordered residuated lattices. The
main scope of mathematical fuzzy logic thus can be delimited as the study of intuitionistic
substructural semilinear logics [3, p. 58]

On the other hand, one can easily find just as many important varieties that fail
to be semi-linear. A prime example is given by the variety of (pointed) residuated
lattices [20, 17, 25] and by several of its subvarieties, most notably ¢-groups and
Heyting algebras; we also mention orthomodular lattices [10] and interior algebras
[4]. In these cases, it may be useful to be in a position to axiomatize the semi-linear
subvariety! % of the variety 7 of our interest, relative to a given basis for ¥ —
and, in fact, elegant axiomatizations have been devised in many individual cases,
for example residuated lattices [9], /-groups [1], or Heyting algebras [31]. Yet, it
is natural to ask the following question: given a variety ¥ for which an equational
basis is known, is it possible to provide a general criterion for axiomatizing its semi-
linear subvariety, without having to proceed on a piecemeal fashion?

We address this problem from a fairly general standpoint. In fact, we consider va-
rieties of pointed lattice-ordered algebras obeying a restricted distribution condition
and admitting a binary implication term that satisfies a minimal set of reasonable
properties. Examples of these varieties are ubiquitous in algebraic logic:

integral residuated lattices;

distributive residuated lattices;

the {-}-free subreducts of the algebras under (1) or (2);

expansions of the algebras under (1) or (2) by any additional signature — hence,
in particular, Boolean algebras with operators and modal algebras; and

5. some varieties arising from quantum logic, e.g. Chajda et al.’s basic algebras
[12].

-

Given any such variety 7, we provide an explicit equational basis (relative to 7#)
for the semi-linear subvariety % of #'. In particular, we show that if ¥ is finitely
based, then so is #. Our proof takes advantage of ideas developed in [9] for resid-
uated lattices and in [13] for basic algebras, generalizing them to a more abstract

! From now on, when we speak of the semilinear subvariety of a given variety ¥, we invariably
mean its largest semilinear subvariety. This is the variety generated by all totally ordered members
of ¥, equivalently, all totally ordered subdirectly irreducible members of ¥'.
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setting. This is in line with the approach taken by C. van Alten [29], who, using dif-
ferent techniques, provides a distinct axiomatization of the prelinear subquasivariety
of a given quasivariety of lattice-ordered algebras.

To attain this goal, we put to good use some tools from the theory of guasi-
subtractive varieties [21], a generalization of Gumm’s and Ursini’s subtractive va-
rieties [19], introduced to account for some known isomorphism theorems between
ideal and congruence lattices that are not corollaries of general theorems in the the-
ory of subtractive varieties. The required machinery is briefly illustrated in § 10.2.
The following section, § 10.3, is devoted to the introduction of the concept of an LI-
algebra and to the proof of our main result. A final section discusses some special
cases and applications of our criterion.

10.2 Preliminaries on quasi-subtractive varieties

All the results mentioned in this section are stated without a proof; all the relevant
proofs can be found in [21].

A variety 7, of signature v, such that there exists an essentially nullary term 1
that is equationally definable in ¥ over Vv, is 1-subtractive (or simply subtractive
when no ambiguity is possible) if there is a binary term of signature v, denoted by
— and written in infix notation, such that 7 satisfies the following equations:

S1 x—x=1
S2 1—x=~x

¥ is called 1-permutable if for any algebra A €% and for any congruences 6, ¢
of A, [18]gop = [14]gog, Where[14]g0, and [14] ¢ denote the equivalence classes
of 14 relative to the congruences 6 o ¢ and ¢ o 8, respectively. In their paper [19],
Gumm and Ursini essentially observe that a variety ¥ with 1 is 1-permutable iff it
is 1-subtractive.

In [21], the next generalization of the preceding concept was suggested:

Definition 10.1. A variety V', of signature v, such that there exists a nullary term
1 and a unary term O of the same signature, equationally definable in ¥, is called
quasi-subtractive with respect to 1 and U iff there exists a binary term — (hereafter
written in infix notation) of signature v such that 'V satisfies the following equations:

Ql x—x=1

Q2 1 —x~0lk

Q3 O@x—y)=x—y

Q4 O@x—y) - (Ox—-0y) =1

Observe that, given Q3, Q4 is equivalent to (x — y) — (Ox — Oy) = 1. Although
the latter equation is simpler, Q4 is more reminiscent of the K axiom for modal al-
gebras. On occasion, we will say that “— witnesses quasi-subtractivity with respect



212 Antonio Ledda, Francesco Paoli and Constantine Tsinakis

to 1 and [J for 7", possibly using some stylistical variants of this expression. Mem-
bers of quasi-subtractive varieties will be called, by extension, quasi-subtractive as
well.

In their article on assertionally equivalent quasivarieties [8], Blok and Raftery
introduce a notion of 7-class that relativizes the usual notion of congruence class to
a given translation, namely, to a finite set of equations in a single variable. If ¥ is
a variety of type v, A €7, 8 C A? and 7(x) = {§; (x) ~ & (x) : i < n} is a function
from the formula algebra Fm of type v to $(Fm x Fm), the 7-class of 6 in A — in
symbols [tA]g — is defined as

[tA]9 = {a e A: 8% (a) e (a) forevery i < n}

A variety ¥ is said to be t-regular if for any congruences 6,¢ on any A € ¥,
(4] = [t1], implies 6 = @; if T(x) = {x ~ 1}, we get as a special case the standard
notion of 1-regularity.

As shown in [7, Theorem 5.2], z-regularity is a Mal’cev property: a variety ¥
is 7-regular for 7(x) = {J; (x) & & (x) : i < m} iff there exist binary terms py, ..., py
such that:

Fy t(pj(x,x)), for j < n; and (10.1)
{t(pj(x,y)) 1 j<n}Fyx=y,
where {t; s; 1 i < n} Fy t ~ s means that for all A €7 and for all a € A, if t* (a) =
s (a) for every i < n, then t* (a) = s (a). In case m = 1 (and rewriting & as & and

€] as €), we are also guaranteed [2, Theorem 5.2] that there exist (2n+2)-ary terms
t1,...,t; such that ¥ satisfies the identities

X1 (x,y,5<p(x,y§) ,£(p(x,yj)) (10.2)
1 (x (p(63)) 8 (p(63)) ) =11 (x,3,8 (p (3] & () ).
(1<j<k)

I (x,y7€ (p(x,y ) ;0 (p(w )) Ay,

where & (p (x,y ) is an abbreviation for the sequence 6 (p; (x,y)),...,0 (pn (x,Y)),

and similarly for € ( p(x,y ) . A third equivalent characterization of T-regularity is as

follows: ¥ is 7-regular in case its T-assertional logic, whose consequence relation
-+ is defined by
I'kytiff {t(s):se '} Ey (1),

is strongly and finitely algebraizable with ¥ as equivalent variety semantics.

Blok and Raftery also consider a property of T-permutability appropriately gener-
alizing the notion of 1-permutability to varieties which need not be pointed: a variety
¥ is T-permutable iff for any congruences 0, ¢ on any A € 7, [TA]g0p = [TA] gop-
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Every quasi-subtractive variety is {{Jx /= 1}-permutable, while the converse state-
ment need not hold [21]. For the sake of brevity, the notation “{Clx ~ 1}” will be
streamlined to “(Cx, 1)” in every relevant context.

Every 1-subtractive variety with witness term — is automatically quasi-
subtractive with witness terms —, 1, and the identity term as box. The next table
lists some other examples of quasi-subtractive varieties. Observe that some of these
varieties are indeed subtractive but can be viewed as properly quasi-subtractive with
a different choice of witness terms.

Variety Ref. |x =y Cx 1-Subtr.?
Residuated lattices [17]](x\y) Al x A1 Yes
Quasi-MV algebras [23] |¥' Dy xd0 No

Var. with a comm. TD term |[6] |p(x, p(x,¥,x),1)|p(x,1,1)
Pseudointerior algebras [6] [(x—y x° No
Interior algebras 41 [O(—xVy) Clx Yes
Integral k-potent res. lattices|[17] (x\y)k Xk Yes

The next concept of open filter is as central for the investigation of quasi-
subtractive varieties as the Gumm-Ursini concept of ideal is for the investigation
of subtractive varieties:

Definition 10.2. Let V" be a variety whose signature Vv is as in Definition 10.1. A
¥ -open filter term in the variables Yisann +m-ary term p (?7 7) of signature v
such that:

{(Oxi~1:i<n}Ey Op(X,Y) ~ 1.

The wording “¥ -open filter term" will be simplified to “open filter term" when-
ever this replacement is unambiguous. The same applies to “#-open filter" below.

Definition 10.3. Let ¥ be as in Definition 10.2. A ¥ -open filter of A € V' is a subset
F C A with the following properties:

i) F is closed with respect to all ¥ -open filter terms p: whenever ay,...,a, €
%
Fby,..by €A, p (7, b) €F;
ii) foreverya € A, we have that a € F iff Ua € F.

Observe that 1 is a member of any open filter since the constant term 1 is an open
filter term.

In the theory of subtractive varieties, ideal generation can be nicely described.
A similar result holds for open filters. If A is any algebra in a variety ¥ of the
appropriate signature, and we define for X C A:

1X=XU{a:0acX};

— —
FX:{pA (7, b) :7€X7 b GA,panopenﬁlterterm},

we get:



214 Antonio Ledda, Francesco Paoli and Constantine Tsinakis

Lemma 10.1. Let ¥ be a quasi-subtractive variety, A € V and X C A. The V -open
filter [X) generated by X is precisely T I'X.

Among its consequences, the preceding theorem yields a characterization of joins
of open filters and the following interesting property:

Lemma 10.2. Let V' be a quasi-subtractive variety. Then the lattice of open filters
of any A € ¥ is modular.

If ¥ is a 1-subtractive variety, the ideals of any A € ¥ coincide with the deduc-
tive filters? on A of the 1-assertional logic of ¥ [27]; if, moreover, ¥ is 1-regular,
the congruence lattice of any A €7 is isomorphic to the lattice of such deductive
filters and, therefore, to its ideal lattice [16]. What happens, instead, if the variety
at issue is quasi-subtractive with respect to [J and 1 and (Clx, 1)-regular? The next
result is an analogue of Ursini’s result for subtractive varieties:

Lemma 10.3. [f ¥ is a quasi-subtractive variety and A €V, then the ¥ -open filters
of A coincide with the deductive filters on A of the (Ox, 1)-assertional logic of V.

With this, we are halfway through our task. For the remaining half, we make a
note of a result essentially due to Blok and Pigozzi [5], although they focus on the
more general scenario of an arbitrary translation 7:

Theorem 10.1. If ¥ is (Ox, 1)-regular, then the congruence lattice of any A € ¥ is

isomorphic to the lattice of deductive filters on A of the (Ox, 1)-assertional logic of
V.

By Lemma 10.3 and Theorem 10.1, we get:

Corollary 10.1. If ¥ is quasi-subtractive and (Cx, 1)-regular, then in any A € ¥
there is a lattice isomorphism between the congruence lattice of A and the lattice of
¥V -open filters on A.

Besides generalizing the correspondence theorem for ideal determined varieties,
Corollary 10.1 subsumes many lattice isomorphism results that do not follow from
the theorem itself, to be found e.g. in the theories of residuated lattices?, of pseu-
dointerior algebras, or of quasi-MV algebras.

2If F C A and A has the same signature as Fm, F is said to be a deductive filter on A of the logic
(Fm, I) just in case F is closed with respect to all the --entailments: if I" I # and s4 (@) €F for
alls eI, thent* (d) € F.

3 The variety of residuated lattices is actually 1-ideal determined and, in fact, in every residuated
lattice the lattice of congruences is isomorphic to the lattice of ideals in the sense of Gumm-Ursini,
which in turn coincide with convex normal subalgebras of such. There is a further isomorphism
theorem, however (namely, between congruences and deductive filters in the sense of [17]), which
does not instantiate the correspondence theorem for ideal determined varieties, but follows from
Corollary 10.1.
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10.3 Axiomatizing the semi-linear subvariety

As a first step towards our goal, we need an umbrella heading that encompasses
the varieties of lattice-ordered algebras of our interest. Therefore, we introduce the
concept of LI-algebra, a label whose ‘L should be suggestive of ‘lattice’ and whose
‘I” should remind of ‘implication’.

Definition 10.4. An LI-algebra is an algebra A that has a term reduct (A, \,V,~», 1)
of signature (2,2,2,0) such that:

o (A AV, 1) is a pointed lattice satisfying:

D): (xVy)Al=(xA1)V(yAT)

* The following conditions concerning ~» are satisfied:

(Al x~y~1iffx<y

(A2) 1~ x=~xA1
(A3)xVy~za (x~ ) Ay~ z)
(Ad) 2~ x Ay = (2~ x) Az~ y)

We assume that lattice operations bind more strongly that ~». Let us now exem-
plify the preceding definition.

Example 10.1. (Residuated lattices). Recall that a residuated lattice is an algebra
A=(A,-,AV,\,/,1) such that (i) (A,-,1) is a monoid, (ii) (A, A, V) is a lattice, and
(iii) forall x,y,z €A,xy < z <= x < z/y <= y <x\z. A pointed residuated lattice
is an algebra A = (A,-,A,V,\,/,1,0) such that (4,-,A,V,\,/,1) is a residuated
lattice and O is a nullary operation. Residuated lattices and hence pointed residuated
lattices form finitely based equational classes of algebras [9].

Not all residuated lattices can be viewed as instances of LI-algebras, because
they fail, in general, to satisfy (D). However, all distributive (pointed) residuated
lattices and all integral (pointed) residuated lattices are LI-algebras with x ~ y =
x\y A 1. Therefore the class of LI-algebras includes, in particular: ¢-groups; MTL
algebras (thus, BL algebras, MV algebras and product algebras); Heyting algebras;
and Sugihara algebras.

Example 10.2. (Subreducts of residuated lattices). Observe that nothing in Defi-
nition 10.4 hinges on the presence of a monoidal operation whose residual is ~».
Consequently, this definition equally applies to all the (A,V,\,/, 1)-subreducts of
the residuated lattices in Example 10.1 (see [30] for a detailed study of these and
other subreducts in the commutative case).

Example 10.3. (Expansions of residuated lattices). The property of being an LI-
algebra is obviously preserved upon arbitrary expansions of the signature. As a
result, any expansion of any residuated lattice in Example 10.1 continues to be a
LI-algebra. In particular, Boolean algebras with operators and modal algebras make
instances of our concept.
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Example 10.4. (Basic algebras). Basic algebras were introduced in [12] as algebras
arising from lattices with sectionally antitone involutions. The theory of basic alge-
bras presents connections with the theories of MV algebras (which can be viewed
as associative basic algebras), orthomodular lattices, and lattice-ordered effect alge-
bras. Basic algebras are LI-algebras with x~y = —x®y.

Throughout the rest of this paper, ¥* will refer to a generic variety of LI-algebras.
In the next lemmas, we list some arithmetical properties of ¥

Lemma 10.4. Let A €V, and let a,b € A. The following equalities hold:

(i)a~b=(a~b)N1

(ii) anl~b=aNl~bA1

(iii) a < 1 impliesa~b=a~bA1
(iv) (a~>b)AN1 <anl~bAL

Proof. (i) By (A1), (A3) and absorption, (a~>Db) A1 = (a~b)A(aNb~b) =
aV(anb)~b=a~b.

(i) By (Al), (A4) and (i), aAl~bAl=(aANl~D)A(aNl~1) =
(aNl~b)Al=aAl~b.

(iii) From (ii); (iv) By absorption and (A3),

a~b=aV(aNl)~b=(a~b)A(aNl1~b),
whence by (i) and (ii)

(a~b)ANl=a~b<aNl~b=aNl~bAL.

Lemma 10.5. ¥ satisfies the quasiequation xNy = 1 => x~» y & y.

Proof. Leta,be A€V . Thena~b=(a~b)Al=(a~b)A(b~b)=aVb~
b=1~b=bAl=b,forb<aVvb=1. |

The crucial observation that paves the way for an application of the results in §
10.2 is the fact that ¥ is quasi-subtractive and (Cx, 1)-regular:

Lemma 10.6. ¥ is quasi-subtractive with respect to 1 and Ox = x \ 1, as witnessed
by x =y =x~»y; moreover, ¥V is (Ox, 1)-regular with respect to the same constant
1 and the same unary term Ux.

Proof. To show that ¥ is quasi-subtractive, we need to check one by one the four
conditions under Definition 10.1. However, (Q1) follows from (A1); (Q2) is exactly
(A2); (Q3) amounts to Lemma 10.4.(i); finally, (Q4) follows from Lemma 10.4.(iv)
and (A1).

Now, let us consider Equation (10.1) with n =2,m = 1,8; (x) =xA1,& (x) =
L,pi(x,y) =x~y and ps(x,y) =y~ x. It is easy to check that this choice of
witness terms vouches for the (Clx, 1)-regularity of ¥/, given (Al) and Lemma
10.4.(1). O
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Corollary 10.2. If A € ¥, the congruence lattice of A is isomorphic to the lattice of
open filters of A.

Proof. By Lemma 10.6 and Corollary 10.1. g

In the following, we consider the equation
(S1) (1 (2~ X1,y 2~ X, YIADV (] ~ 2) VooV (g~ 2) & 1

which is actually a family of equations, one for each ¥ -open filter term ¢ (7, 7) in
the variables X . Unwieldy as it may seem, (S1) can however be broken down into
a conjunction of two more manageable conditions (cf. [29]).

Lemma 10.7. (S1) is equivalent to the conjunction of
(Prel) (x~y)V (y~x) =1

and
(Q)x1Vz21&. . &x,Vz21=1(%,Y)Vz> 1.

Proof. From left to right, observe that (Prel) is a special case of (S1), because x
is an open filter term and x ~» y = (x~»y) A 1. Moreover, let a; V¢ > 1 for all
i < n, whence (a;Vc)A1=1and, by (D), (a; A1)V (cA1)=1. Applying Lemma
10.4.(ii) and Lemma 10.5, cA 1~ a; =cA 1~ a; N1 =a; A 1. Since open filters
are generated by their open elements (Lemma 10.1), we are allowed to pick a; < 1
(recall that (la = a A 1), whence (S1) and Lemma 10.5 again give

ﬁ
I1=(t({cAl~aq,...cAN1~ay,, b)/\l)\/(almc/\l)\/...\/(an«»c/\l)

|
-

_>
ar N1, ..a, A1, b) /\1) V(ai~cAD)V..V(ag~cAl)
%
= (tat,...;an, b ) A1)V (cAT)
ﬁ
=(tlay,...,an, b | Vc| A1
Conversely, replacing in (Q) the variables x; by z ~ x;, and the variable z by
(x1 ~ z) V...V (x, ~ 7), its consequent is exactly (S1) by Lemma 10.4.(i) and (D);
its antecedent, however, follows from (Prel) for the same reasons. O
We can now state and prove the main result of this paper:
Theorem 10.2. The semi-linear subvariety W of V is axiomatized by (S1).

Proof. We first show that every totally ordered algebra in ¥ satisfies (S1). We dis-
tinguish two cases. If there is an 7 such that a; < ¢, then a; ~ ¢ = 1, whence our
result follows since, by absorption and Lemma 10.4.(i),

%
(t(c'\»al,...,c'wan, b)/\1)\/((11Mc)\/...\/l\/...\/(a,,'wc)

=(a1~c)V...VIV..V(ay~c)
={(a1~c)AD)V...VIV.LV (@~ )AT) =1
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On the other hand, if for all i, ¢ < a;, then, since ¢ is a #-open filter term in 7,
— — =
t(cvah...,cva,,, b)/\lzt(l,b)/\l:l,

whence our result, again, follows along similar lines.

It remains to prove that every subdirectly irreducible algebra in the subvariety
axiomatized by (S1) is totally ordered. Let therefore A be such an algebra, and
let a,b € A be such that a £ b and b £ a, thatis, a~ b # 1 and b~ a # 1. In
particular, by Lemma 10.4.(i), a ~ b,b ~» a < 1. Owing to Lemma 10.7, A satisfies
(Prel), whereby (a~ b)V (b~>a) =1.Fora< 1inA, let

at={b:avb>1}

We now show that {a~» b} and {b~» a}* are open filters that intersect to the
smallest open filter 1 1, and strictly include it. Sets of the form a™ are open filters:
by Lemma 10.7 they are closed with respect to open filter terms, while it is easy to
check, using (D), that if bA 1 € at, then also b € a*. Consequently, so is BL, for
any nonempty B, because B+ = (| {b* : b € B}. Also {a~ b} and {b~> a} "
are nonzero, because they respectively contain the elements a ~» b and b ~ a, both
outside the positive cone. Finally, let ¢ € {a~» b} and ¢ € {b~» a}™. Then for
every y, if yV (a~» b) > 1, it follows that ¢ Vy > 1. In particular, for y = b~ a, we
obtain that ¢ V (b~ a) > 1, and similarly, ¢V (a ~ b) > 1. Letting now y = ¢, we
obtain c =cVc¢ > 1. By Corollary 10.2, then, A has no monolith, a contradiction. O

Although Theorem 10.2 is not sufficient to ensure that % is finitely based in case
¥ is, we can take advantage of the following result, proved in [24], that implies the
existence of a finite axiomatization of # relative to ¥, at least if ¥ has a finite
signature. Recall from Section 10.2 that (Clx, 1)-regularity is a Mal’cev property,
witnessed by terms py, ..., p,. It also implies the existence of terms 1, ...,# abiding
by the conditions specified in, respectively, Equation (10.1) and Equation (10.2).

Theorem 10.3. Let JZ be a variety of signature v that is quasi-subtractive with
respect to 0 and 1, and (Ox, 1)-regular. Moreover, let the former property be wit-
nessed by the term x — y and the latter be witnessed by pi(x,y),..., pn(x,y). Let
t1,...,tx be as in Equation (10.2). Suppose, finally, that A € # and that F =T F CA
contains 1 and is closed with respect to the terms Ox,0p;(1,0x),...,0p,(1,0x).
Then F is closed with respect to all the open filters terms (and so is an open filter)
iff it closed with respect to the following terms:

e (Ox— (Oy—Uz) =z
o forany j,1€{0,..,n}, i€ {l,....k}, and any m-ary f € v:

Dpl (Dpj (f(?),f(ai,,o%)) aDpj (f(Y)af(ﬁllvaBrIn)))’ and
Op: (Op; (OF(X),0f (of, ... &), Op; (OF(F),0F (B, BL))).

where
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a]lc - ti(xkaylﬂ Dylfa LEEE) Dyﬁv Dp(~xk7yk;);
ﬁlé = ti+l (‘xkayka ) Dp(‘xkayk;a Dyllca sy Dyl:l)
Corollary 10.3. If ¥V is finitely based, so is its semi-linear subvariety W' .

Proof. By means of Theorem 10.2, we have exhibited a possibly infinite equational
basis for # relative to ¥, namely, the family of identities (S1). Now, ¥  is quasi-
subtractive with respect to x A 1 and 1, as well as (xA 1, 1)-regular. Its open filters
contain a whenever they contain a A 1, contain 1, and are closed with respect to the
terms

xA1=0x=0p;(1,0x) =1~ Ox;
Op2(1,0x) =0(0x~ 1)
= (AL~ AL
=1

Therefore Theorem 10.3 applies, and we can streamline this basis to a finite one.
O

10.4 Specializations and applications

We conclude this paper by pointing to the reader’s attention some special cases and
applications of the results in the preceding section.

If ¥ is such that, for every A € ¥, the pointed lattice term reduct (4, A,V, 1) has
1 as its top element, the situation drastically simplifies. In fact, while (D) is clearly
redundant in this case, (A1) and (A2) imply that ¥ is 1-ideal determined and its
open filters coincide with its ideals in the sense of Gumm and Ursini.

To demonstrate the strength and applicability of Theorem 10.2, we will first iden-
tify 7 with the variety of residuated lattices satisfying (D), and % with its semilin-
ear subvariety, deriving the characterization of % in [9]* as a consequence of this
theorem. To do so, we will use a known finite basis of open filter terms in order to
streamline (S2) to a finite equational basis for % relative to ¥". Subsequently, we
prove that the basis obtained in this way can be reduced to the one in [9]. The same
strategy will then be applied to the (A,V,\,/,1)-subreducts of residuated lattices
satisfying (D). The former application yields an alternative proof of a well-known
result, whereas the last one is, to the best of our knowledge, new.

4 1t should be noted that a more delicate analysis in [9] demonstrates that (D) can be omitted from
the hypothesis of the theorem. Such refinements of special instances of a general result are to be
expected.
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Theorem 10.4. Let V' be a variety of residuated lattices that satisfies (D). Then its
semi-linear subvariety W is axiomatized by the single equation

(52) 2 ((xVY)\xX) V oy ((x Vy) \y) = 1,

where Ay (x) =y\xy AL py(x) =yx/yAL

Proof. Since ¥ is quasi-subtractive with respect to 1 and x A 1, by Theorem 10.3
its open filters coincide with the deductive filters of its (x A 1,1)-assertional logic,
namely, the extension of the substructural logic FL by the axiom

((evB)AD\ (@A) V(BAT)).

By results in [18, § 4.2], these “deductive filters” (in the sense of abstract al-
gebraic logic) coincide with upsets of convex normal subalgebras, which are like-
wise called deductive filters by residuated lattice practicioners. It follows from the
same results that, in order to ensure that a ¥ "-open filter is closed under all open
filter terms, it suffices to check that it is closed under the following three: xy (in
the variables x,y), 4, (x),py (x) (in the variable x). By Theorem 10.2, therefore, an
equational basis for % is given by:

(S3) 1 < (2\x A1) (2\y A1) Vx\zVy\z
SH 1< AL Y\xAL)VX\y
(S5 1< p (Y\xAL)Vx\y

What remains to be proved, then, is that (S3)-(S5) are jointly equivalent to (S2).
To begin with, observe that (S3) follows from (S4) or (S5) by letting z = 1. Note,
next, that (S2) is equivalent to the quasi-identity

xVym 1= 2(x)Vpu(y) ~ 1

(see [9, Lemma 6.5]). This fact also implies that, in the presence of (D), (S2) is
equivalent to

(S2) A(\y A )V (\x A T) ~ 1.
Now (S4) and (S5) can be rewritten as
($4) A(X\y A D)V (Y\x A T) & 1,

and
(S5”) p(x\y A1)V (¥\xA1) = 1.
It is now clear that (S2’) is equivalent to the conjunction of (S4’) and (S5°). O

5 Compare [17, p. 426].
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We now turn to the (A,V,\,/,1)-subreducts of residuated lattices satisfying (D).
We observed in Example 10.2 that these algebras form a class %~ of LI-algebras.
As a consequence, ¥ = V(.£') is quasi-subtractive and (Cx, 1)-regular, with the
same witness term as for residuated lattices. It should be noted that the equations
below involve all the operation symbols. A purely implicational characterization of
the variety of semilinear integral residuated lattices, relative to the variety of integral
residuated lattices, was conjectured in [28] and proven in [22]. Theorem 10.5 below
presents a multiplication-free characterization of the semilinear subvariety of the
variety ¥ of residuated lattices.
Our first goal will be that of giving a manageable description of ¥ -open filters.

Lemma 10.8. Let A € ¥, and F C A. Then F is a 'V -open filter of A iff it is upward
closed, and it is closed under all interpretations of the following ¥ -open filter terms
(in the variables x,y): x A1, (x\z)\z, z/(z/x), and

H(r,3,2) = (O~ @y~ 7))~

Proof. By [18, Lemma 4.7], a subset F of the universe of a residuated lattice is a
deductive filter (hence an open filter) in case it is upward closed, it is closed under
modus ponens (if @, a\b € F, then b € F), and it is closed under all interpretations of
the open filter terms x A 1, (x\z)\z, z/(z/x). Observe that F C A is a ¥ -open filter iff
it obeys the same conditions. In fact, open filters are upward closures of congruence
classes of 1, and the monoidal operation does not occur in the previous conditions.
However, by Lemma 20 in [21], closure under all interpretations of the term #(x, y, z)
suffices to guarantee modus ponens in any quasi-subtractive algebra. O

Observe that the upward closure condition in Lemma 10.8 is equivalent to the pro-
vision that if a A1 € F, then a € F. Therefore, by Lemma 10.1, closure under all
interpretations of the open filter terms in Lemma 10.8 guarantees closure under all
interpretations of any open filter term.

Theorem 10.5. The semilinear subvariety of ¥V is axiomatized, relative to V', by the
equations:

(86) 1 < ((Z\x A D\((Z\yAD\VAD)\vVx\zVy\z
(ST 1< 2\xVx\z

(88) 1 < ((Z\x A1) \p)\yVa\z;

(89 1 <y/(v/(2\x A1) Vx\z.

Proof. By Lemma 10.8 and Theorem 10.2, the semilinear subvariety of ¥  is ax-
iomatized, relative to ¥, by the equations (S7), (S8), (S9) and

(S6) 1 < ((D\xAD\((E\YyAD\NWAD)AT)AT)\vVX\zVy\z

However,



222 Antonio Ledda, Francesco Paoli and Constantine Tsinakis

(EXADN(Z\YADNGATD) A AT \vVa\zVy\z
= (A DN(E\WAD WA Y ADNTAT))\vVx\zVy\z
= ((Z\xAD\(Z\YAD\WAD))\vVx\zVy\z

O
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