
Projectable `-groups and algebras of logic:

Categorical and algebraic connections
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Abstract

P.F. Conrad and other authors launched a general program for the investi-
gation of lattice-ordered groups, aimed at elucidating some order-theoretic
properties of these algebras by inquiring into the structure of their lattices
of convex `-subgroups. This approach can be naturally extended to residu-
ated lattices and their convex subalgebras. In this broader perspective, we
revisit the Galatos-Tsinakis categorical equivalence between integral gener-
alized MV algebras and negative cones of `-groups with a nucleus, showing
that it restricts to an equivalence of the full subcategories whose objects are
the projectable members of these classes. Upon recalling that projectable
integral generalized MV algebras and negative cones of projectable `-groups
can be endowed with a positive Gödel implication, and turned into varieties
by including this implication in their signature, we prove that there is an
adjunction between the categories whose objects are the members of these
varieties and whose morphisms are required to preserve implications.
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1. Introduction

In the 1960’s, P.F. Conrad launched a general program for the investiga-
tion of lattice-ordered groups ([10], [11], [12], [13]), aimed at capturing rele-
vant information about these algebras by inquiring into the structure of their
lattices of convex `-subgroups (as opposed to convex normal `-subgroups,
which had traditionally received greater attention in that they bijectively
correspond to congruences). The chief idea behind this program is a working
hypothesis to the effect that many significant properties of `-groups are, in
essence, either purely lattice-theoretical, or at least such that the underlying
group structure does not play a predominant role. A class of `-groups that is
known to be characterized purely in terms of its order structure is the class
of projectable `-groups — namely, `-groups in which every principal polar is
a cardinal summand (see definition on page 11). Projectable `-groups are
first-class citizens in the theory of lattice-ordered groups: recall, for exam-
ple, that every representable `-group can be embedded into a member of this
class [8] and that conditionally σ-complete `-groups are projectable. Further
examples arise in functional analysis, namely, vector lattices with the princi-
pal projection property [22]. One of the present authors has established that
an `-group is projectable iff each one of its intervals is a Stone lattice; as
a consequence, projectability is preserved under lattice isomorphisms. Also,
the negative cone of an `-group is projectable iff its lattice reduct can be
endowed with a positive Gödel implication ([24], [25], [26]).

While Conrad’s program led to remarkable outcomes in its original do-
main of application (for a survey, see [1]), a natural continuation of such
consists in extending it to residuated lattices ([15], [23]), generalizations of
`-groups that also include MV algebras, Heyting algebras, and several other
classes of algebras of prime importance for mathematical logic. Here, the
principal objects of research become the lattices of convex subalgebras (in
the integral case, the lattices of multiplicative filters). Some detailed investi-
gations along these lines have been carried out in recent years [7]; refer to [17]
for further extensions of the Conrad program. One of the results obtained
so far within this extended Conrad’s program [21] is a characterization of
projectability for integral and distributive residuated lattices satisfying the
quasiequation

x ∨ y ≈ 1→ xy ≈ x ∧ y,

which closely matches the aforementioned description of projectable `-groups.
The last three authors of the present article have indeed shown that a member
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of this class is projectable iff the order dual of each interval [a, 1] is a Stone
lattice.

In general, for integral and distributive residuated lattices, admitting a
positive Gödel implication is a stronger condition than being projectable [21,
Example 15], although it is equivalent in some especially well-behaved cases.
A case in point is given by integral GMV algebras (IGMV algebras) [16],
simultaneous generalizations of MV algebras to the unbounded and noncom-
mutative case. IGMV algebras, to within isomorphism, can be viewed as
nucleus retractions of negative cones of `-groups — actually, it was shown
in [16] that the categories of IGMV algebras and negative cones of `-groups
with a nucleus are equivalent. It is then natural to conjecture that such an
equivalence restricts to an equivalence of the subcategories whose objects are
the projectable members of these classes of algebras, and perhaps that we
can take advantage of the previously cited lattice-theoretical description of
projectable IGMV algebras to establish this result. The main aim of this
paper is to investigate the extent to which this conjecture is correct.

Our paper is structured as follows. Section 2, in which we go over some
preliminary notions needed in the sequel, exceeds in size the average prelim-
inaries section to be found in comparable papers, because the topics we ad-
dress are rather multi-faceted — including as they do relatively pseudo-com-
plemented lattices, residuated lattices and their structure theory, projectable
residuated lattices, and IGMV algebras. Although this may be to some ex-
tent unfortunate, we deem it appropriate to review all these different aspects
in some detail, to make the paper as self-contained as possible. In Section 3,
we show that an analogue of the Galatos-Tsinakis equivalence result can be
reproduced in our setting:

Theorem A (see Theorem 14). The categories of projectable IGMV algebras
and of negative cones of projectable `-groups with a nucleus are equivalent.

A crucial step in establishing Theorem A is showing that any projectable
IGMV algebra can be represented as a nucleus retract of the negative cone
of some projectable `-group. In the same section, we also introduce Gödel
GMV algebras as expansions of projectable IGMV algebras by a binary term
that realizes a positive Gödel implication in every such algebra; in light of
the above, Gödel GMV algebras and projectable IGMV algebras amount to
essentially the same thing. Similarly, Gödel negative cones are those Gödel
GMV algebras whose RL reducts are negative cones of `-groups. Includ-
ing the Gödel implication in the signature enables us to view the above-
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mentioned classes of algebras as varieties in the expanded type, with all the
familiar benefits that result in similar cases. In Section 4, we point out the
exact relationship between these notions:

Theorem B (see Theorem 28). There is an adjunction between the categories
whose objects are, respectively, Gödel GMV algebras and Gödel negative cones
with a retraction and a dense nucleus on the image of the retraction.

2. Preliminaries

2.1. Pseudo-complemented and relatively pseudo-complemented lattices

A pseudo-complemented lattice is an algebra L = (L,∧,∨,¬,>,⊥) of
signature (2, 2, 1, 0, 0) such that (L,∧,∨,>,⊥) is a bounded lattice and for all
a ∈ L, ¬a = max{x : a ∧ x = ⊥}. We refer to ¬a as the pseudo-complement
of a. Pseudo-complemented lattices need not be distributive, but we will
henceforth assume that all lattices under consideration are such. The map
¬ : L → L is a self-adjoint order-reversing map, while the map sending a
to its double pseudo-complement ¬¬a is a meet-preserving closure operator
on L. By a classic result due to Glivenko, the image of this closure operator
is a Boolean algebra BL with least element ⊥ and largest element >. Any
existing meets in BL coincide with those in L; the complement of a in BL is
precisely ¬a, whereas, for any pair of elements a, b of BL — also referred to
as closed elements of L,

a ∨BL b = ¬(¬a ∧ ¬b).

A pseudo-complemented lattice L is called a Stonean lattice if for all
a ∈ L, ¬a ∨ ¬¬a = >. It can be easily seen that L is a Stonean lattice if
and only if BL is a sublattice of L. Thus, in this case BL coincides with the
Boolean algebra of complemented elements of L.

A relatively pseudo-complemented lattice is an algebra A = (A,∧,∨,→
,>) of signature (2, 2, 2, 0) such that (A,∧,∨,>) is a distributive lattice
with top element > and for all a, b, c ∈ A, a ∧ b ≤ c iff b ≤ a → c. Given
a, b ∈ A, thus, a → b is the relative pseudo-complement of a with respect
to b, namely, the greatest x such that a ∧ x ≤ b. A Heyting algebra is an
algebra A = (A,∧,∨,→,>,⊥) of signature (2, 2, 2, 0, 0) such that (A,∧,∨,→
,>) is a relatively pseudo-complemented lattice and ⊥ is a bottom element
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with respect to the lattice ordering of A. Observe that the (∧,∨,¬,>,⊥)-
term reduct of a Heyting algebra, with ¬a = a → ⊥, is, in particular, a
pseudo-complemented lattice.

A (positive) Gödel algebra is a Heyting algebra (relatively pseudo-com-
plemented lattice) satisfying the equation (x → y) ∨ (y → x) ≈ >. It is
important to recall that each interval [b,>] in a positive Gödel algebra can
be made into a Stonean lattice by letting ¬bx = x→ b for all x ∈ [b,>].

Gödel algebras play a prominent role in algebraic logic because they are
the equivalent variety semantics of Gödel logic (also known as Dummett’s
logic, or Dummett’s LC), which is both an intermediate logic (i.e. an exten-
sion of intuitionistic logic) and a fuzzy logic. As an intermediate logic, it
stands out for its being sound and complete with respect to linearly ordered
Kripke models, and as such it received considerable attention. LC has been
widely investigated also within the community of mathematical fuzzy logic —
it was observed early on that the variety of Gödel algebras is generated by
the algebra

([0, 1],∧,∨,→, 1, 0),

where ∧ and ∨ are the minimum T-norm and the maximum T-conorm re-
spectively, while →, the residual1 of ∧, behaves as follows for all a, b ∈ [0, 1]:

a→ b =

{
1 if a ≤ b,

b otherwise.

In fact, every bounded chain admits a unique Gödel implication, given by
the above case-splitting definition.

In any algebraic distributive lattice L, for all a, b ∈ L, the relative pseu-
do-complement of a with respect to b exists and is given by

a→ b =
∨
{x ∈ L : a ∧ x ≤ b}.

As a matter of fact, L has a bottom element and so it is a Heyting algebra.
Moreover, we recall that

Lemma 1 ([3, Chapter IX, Theorem 8]). If L is a Heyting algebra, every
interval [b, a] in L, with b ≤ a, is pseudo-complemented and, for all c ∈

1For a definition of residual, see below.

5



[b, a], the pseudo-complement and the double pseudo-complement of c are
respectively given by:

¬c = (c→ b) ∧ a,
¬¬c = ((c→ b)→ b) ∧ a.

Thus, every interval in an algebraic distributive lattice is pseudo-comple-
mented. In particular, if a = >, ↑ b is itself an algebraic distributive lattice
and the compact elements in ↑ b are exactly those of the form b ∨ c, for c a
compact element of L. Hereafter, by K(L) we denote the set of all compact
elements of the lattice L.

An algebraic distributive lattice L is called compactly Stonean if it satisfies
¬c ∨ ¬¬c = >, for all c ∈ K(L). Observe that a compactly Stonean lattice
need not be Stonean. In view of Lemma 1, ↑ b is compactly Stonean iff, for all
c ∈ K(L), (c → b) ∨ ((c → b) → b) = >. It is shown in [21, Proposition 19]
that:

Lemma 2. Let L be an algebraic distributive lattice whose compact elements
form a sublattice K(L) of L. The conditions below are equivalent:

(1) for all b ∈ L, ↑ b is compactly Stonean,

(2) for all b ∈ L and for all c ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = >

and imply the mutually equivalent conditions

(3) for all c, b ∈ K(L), (c→ b) ∨ ((c→ b)→ b) = >,

(4) for all a, b ∈ K(L), with b ≤ a, [b, a] ∩K(L) is a Stonean lattice.

The next result is straightforward and in the folklore of the subject.

Proposition 3. Let L and M be isomorphic algebraic and distributive lat-
tices such that K(L) and K(M) are subuniverses of L and M, respectively.
Suppose ϕ : L→M is an isomorphism. Then:

(1) ϕ preserves pseudo-complements.

(2) L is compactly Stonean iff M is such.

(3) For a ∈ L, ¬a is complemented iff ϕ(¬a) = ¬ϕ(a) is complemented.
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2.2. Residuated lattices

We refer the reader to [4], [20], [23] or [15] for basic results in the theory
of residuated lattices. Here, we only review background material needed in
the remainder of the paper.

A binary operation · on a partially ordered set A = (A,≤) is said to be
residuated provided there exist binary operations \ and / on A such that for
all a, b, c ∈ A,

a · b ≤ c iff a ≤ c/b iff b ≤ a\c. (Res)

We refer to the operations \ and / as the left residual and right residual
of ·, respectively. As usual, we write xy for x · y, x2 for xx and adopt the
convention that, in the absence of parentheses, · is performed first, followed
by \ and /, and finally by ∨ and ∧, if present.

The residuals may be viewed as generalized division operations. We tend
to favor \ in calculations, but any statement about residuated structures has
a “mirror image” obtained by reading terms backwards (i.e., replacing x · y
by y · x and interchanging x/y with y\x).

We are primarily interested in the situation where · is a monoid operation
with unit element 1 and the partial order ≤ is a lattice order. In this case,
we add the monoid unit and the lattice operation symbols to the similarity
type and refer to the resulting structure A = (A,∧,∨, ·, \, /, 1) as a resid-
uated lattice. The class of residuated lattices forms a variety (see e.g. [23,
Proposition 4.5]) that we denote throughout this paper by RL. We adopt
the convention that when a class is denoted by a string of calligraphic letters,
then the members of that class will be referred to by the corresponding string
of Roman letters. Thus, for example, an RL is a residuated lattice.

A subvariety of RL of particular interest is the variety CRL of commu-
tative residuated lattices, which satisfies the equation xy ≈ yx, and hence
the equation x\y ≈ y/x. We always think of this variety as a subvariety of
RL, but we slightly abuse notation by listing only one occurrence of the op-
eration \ in describing their members. Given an RL A = (A,∧,∨, ·, \, /, 1),
an element a ∈ A is said to be integral if 1/a = 1 = a\1, and A itself is
said to be integral if every member of A is integral. We denote by IRL the
variety of all integral RLs. Relatively pseudo-complemented lattices are term
equivalent to the subvariety RPCL of IRL that is axiomatized relative to
IRL by the identity xy ≈ x∧y. Clearly, RPCL is also a subvariety of CRL.

An element a ∈ A is said to be invertible if (1/a)a = 1 = a(a\1). This
is of course true if and only if a has a (two-sided) inverse a−1, in which case
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1/a = a−1 = a\1. The RLs in which every element is invertible are precisely
the `-groups. Perhaps a word of caution is appropriate here. An `-group
is usually defined in the literature as an algebra G = (G,∧,∨, ·, −1, e) such
that (G,∧,∨) is a lattice, (G, ·, −1, e) is a group, and multiplication is order
preserving (or, equivalently, it distributes over the lattice operations). The
variety of `-groups is term equivalent to the subvariety LG of RL defined by
the equations (1/x)x ≈ 1 ≈ x(x\1); the term equivalence is given by x−1 =
1/x and x/y = xy−1, x\y = x−1y. Throughout this paper, the members of
this subvariety will be referred to as `-groups simpliciter. Negative cones of
`-groups are RLs as well. If G is an `-group, in fact, G− = {x ∈ G : x ≤ 1}
is the universe of an RL G− such that, for all a, b ∈ G−, a\G−

b = a\Gb ∧ 1,
and similarly for right residuals.

GMV algebras [16], to which we shall soon revert in much greater detail,
are simultaneous generalizations of MV algebras [9] to the noncommutative,
unbounded and nonintegral case. The variety GMV of GMV algebras is
axiomatized relative to RL by the equations

E1. x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x.

It is essential to note that GMV algebras have distributive lattice reducts [16,
Lemma 2.9]. Since this property is shared by all the RLs we deal with in the
following, hereafter we assume that any RL we consider is distributive as a
lattice. The variety IGMV of integral GMV algebras, of course, is axiom-
atized relative to IRL by the equation E1, which in this context simplifies
to

E2. x/(y\x) ≈ x ∨ y ≈ (x/y)\x.

The class LG− of negative cones of `-groups is a subvariety of IGMV ,
axiomatized relative to IGMV [2, Theorem 6.2] by the equations

E3. x\xy ≈ y ≈ yx/x.

2.3. Nuclei on residuated lattices

A nucleus on an RL A is a closure operator γ on A satisfying one of the
following equivalent conditions for all a, b ∈ A:

γ(a)γ(b) ≤ γ(ab),

γ(γ(a)γ(b)) = γ(ab).
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If A = (A,∧,∨, ·, \, /, 1) is an RL and γ is a nucleus on A, the image Aγ
of γ can be endowed with an RL structure as follows:

Aγ = (Aγ,∧,∨γ, ·γ, \, /, γ(1)),

where

γ(a) ∨γ γ(b) = γ(a ∨ b),
γ(a) ·γ γ(b) = γ(a · b).

Aγ is called a nucleus retract of A.
Nuclei on GMV algebras have a few special properties. In fact, if Aγ is a

nucleus retract of an (integral) GMV algebra, then ∨γ = ∨, γ(1) = 1 and

Aγ = (Aγ,∧,∨, ·γ, \, /, 1)

is an (integral) GMV algebra in its own right. In particular, it follows on the
one hand that nuclei on GMV algebras are lattice homomorphisms, and on
the other, that nucleus retracts of negative cones of `-groups (qua instances
of IGMV algebras) are themselves IGMV algebras.

2.4. Filters in integral residuated lattices

Let A be an RL. A multiplicative filter F of A is a filter of its lattice
reduct that is closed under multiplication. A subset X ⊆ A (not necessarily
a filter) is normal provided that for all b ∈ X and a ∈ A, ρa(b) = (ab/a) ∧ 1
and λa(b) = (a\ba)∧1 are in X. The map sending x to ρa(x) (respectively, to
λa(x)) is called a right (respectively, left) conjugation map, and ρa(x) (λa(x))
is said to be the right (left) conjugate of x by a.

Observe that RL is both congruence permutable (witness the term [z ∨
(z/y)x] ∧ [x ∨ (x/y)z]) and 1-regular (witness the terms x\y ∧ 1, y\x ∧ 1),
and recall that any variety which is congruence permutable and 1-regular
is, in particular, ideal determined : the lattice of congruence relations and
the lattice of ideals (in the sense of [18]) of any algebra in the variety are
isomorphic. It is proved in [4] (see also [15]) that for any RL A, ideals of
A coincide with convex normal subalgebras of A. If A is integral, these
coincide, in turn, with normal multiplicative filters of A.

Now, let A be an IRL. If X ⊆ A, we denote by ↑A(X) (respectively, 〈X〉A,
NA(X)) the lattice filter (resp. multiplicative filter, normal multiplicative
filter) generated in A by X. Subscripts will only be dropped when A is
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understood; on the other hand, braces will be invariably omitted if X = {a}
is a singleton. F(A), MF(A), NF(A) will respectively refer to the lattices of
lattice filters, multiplicative filters and normal multiplicative filters (hereafter
shortened to normal filters) of A. With a mild abuse of notation, the same
labels will sometimes be employed for the universes of such lattices. We set:

F ∨L G = ↑(F ∪G),

F ∨M G = 〈F ∪G〉,
F ∨N G = N(F ∪G).

However, since the focus of the present paper is on multiplicative filters,
we will often write F∨G for F∨MG. F(A), MF(A), and NF(A) are algebraic
and distributive (hence relatively pseudo-complemented) lattices; the result
for MF(A) is proved in [7]. We also recall:

Lemma 4. 〈X〉 = {a : (b1 · · · bk)n ≤ a, for some b1, . . . , bk ∈ X and n ∈
N}.

An iterated conjugation map is a composition γ = γ1 ◦ · · · ◦ γn, where
each γi is a right conjugate or a left conjugate by an element ai ∈ A. If
X ⊆ A, we denote by Γ the set of all iterated conjugation maps on A, and
by X̂ the submonoid of the corresponding reduct of A generated by the set
{γ(a) : a ∈ X, γ ∈ Γ}. With this notation at hand, we recall the following
result from [4] (see also [23, Proposition 4.24]):

Lemma 5. N(X) = {a : b ≤ a, for some b ∈ X̂}.

We now introduce a technique for defining multiplicative filters out of
arbitrary subsets of the universe of a given IRL. Given X ⊆ A, the polar X⊥

of X is the set
{y ∈ A : x ∨ y = 1 for every x ∈ X}.

Again, whenever X = {a} is a singleton, we will shorten {a}⊥ to a⊥

and call the latter set a principal polar. In case A is distributive, we have
that [21, Lemma 8 and Corollary 9]:

Lemma 6. For all X ⊆ A, X⊥ ∈ MF(A). Moreover, X⊥ is the pseu-
do-complement of ↑X in F(A) (respectively, the pseudo-complement of 〈X〉
in MF(A)).
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On the other hand, given an arbitrary X ⊆ A, X⊥ need not be a normal
filter of A; if it is, then it is the pseudo-complement of N(X) in NF(A).

Lemma 7. (↑ a)⊥ = 〈a〉⊥ = a⊥.

Proof. Use Lemmas 4 and 5 above.

2.5. Projectable residuated lattices

An `-group A is the internal cardinal product of its `-subgroups B and
C (in symbols, A = B � C) if every a ∈ A can be written uniquely as a
product bc, for some b ∈ B and some c ∈ C, and moreover, a1 = b1c1 ≤A

b2c2 = a2 iff b1 ≤B b2 and c1 ≤C c2. An `-group A is projectable whenever
for all a ∈ A, A = a∇ � a∇∇, where in the present context a∇ = {b ∈ A :
|a| ∧ |b| = 1} and |a| = a ∨ a−1. As proved in [24] and [25], projectable
`-groups coincide with `-groups in which all closed intervals form a Stonean
lattice, and hence they admit a Gödel implication. This result highlights that
projectability is a property of `-groups that is entirely determined by their
order structure. To get further insight into this, recall indeed that, given an `-
group A: (1) principal polars are convex `-subgroups of A; (2) projectability
is equivalent to the property that for all a ∈ A, A = a∇∨Ma∇∇; (3) the lattice
of convex `-subgroups of A is isomorphic to the lattice of convex submonoids
of its negative cone A−, and in particular a∇ ∩ A− = {b ∈ A : a ∨ b = 1};
(4) the crucial observation here is that for all a ∈ A, A = a∇∨a∇∇, where the
join is taken in the lattice of filters of the negative cone of A; this makes clear
that projectability is an order-theoretic property. (See [26] for a lengthier
discussion of these aspects.)

As already observed, negative cones of `-groups make instances of IRLs.
Moreover, negative cones satisfy the quasi-equation

x ∨ y ≈ 1→ xy ≈ x ∧ y. (1)

In [21], the above lattice-theoretic characterization of projectable `-groups
and their negative cones has been extended to the class A of IRLs satisfying
that quasi-equation. Throughout this subsection, unless otherwise specified,
we will assume that A is a member of A.

An IRL A is called projectable if for all a ∈ A, it can be written as
a cardinal product A = a⊥ � a⊥⊥. For members of A, projectability is a
lattice-theoretic property, in the sense that it can be “captured” by the filter
lattice of the underlying lattice-structure.
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Lemma 8. If A is projectable, then:

(1) a⊥ ∈ NF(A),

(2) A = a⊥ ∨L a⊥⊥ = a⊥ ∨M a⊥⊥.

Lemma 2 can be put to good use by applying it to the lattice F(A) of
lattice filters of our A ∈ A. In fact, if A is projectable, then the compact
elements of the lattice F(A) of the lattice filters of A are its principal filters,
whereby F(A) is compactly Stonean. This implies that each interval [{1}, ↑ a]
in the sublattice of principal lattice filters of A is a Stonean lattice. In light
of the order reversing isomorphism between the lattice reduct of A and the
sublattice of principal filters in F(A), then, for all a ∈ H the order dual of
each interval [a, 1] is a Stonean lattice. In sum:

Theorem 9 ([21, Theorem 20]). A is projectable iff the order dual of each
interval [a, 1], for a ∈ A, is a Stonean lattice.

In particular, if A is an IGMV algebra, we get something more. Every
member x of any such interval is a fixpoint of the mapping fa(x) = a/(x\a),
whence the interval is self-dual in the order-theoretic sense. It follows that
every interval [a, 1], and therefore any arbitrary interval [a, b] is a Stonean
lattice (see [3, § 8.7, Theorem 13]). Thus, following [3, Theorem 10, p. 176],
(A,∧,∨) is a relative Stonean lattice and, as such, it can be expanded to
a relatively pseudo-complemented lattice, actually a positive Gödel algebra.
In conclusion, we have:

Lemma 10. For an IGMV algebra A, the following are equivalent:

(1) A is projectable.

(2) The lattice (A,∧,∨) can be expanded to a relatively pseudo-comple-
mented lattice, actually a positive Gödel algebra.

2.6. Integral GMV algebras

We recalled in Section 2.3 that nucleus retracts of negative cones of
`-groups are IGMV algebras. In this section, we sketch the construction
in [16, § 3] by means of which Galatos and Tsinakis establish the converse,
namely that every IGMV algebra is a nucleus retract of the negative cone of
an `-group. This representation theorem is subsequently lifted [16, § 4] to a
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full-fledged categorical equivalence between the categories of IGMV algebras
and of negative cones of `-groups endowed with a nucleus. This result will
be briefly summarized as well.

The first part of the construction relies on an idea by Bosbach, aimed at
identifying the purely implicational subreducts of negative cones of `-groups
([5], [6]). A cone algebra is an algebra C = (C, \, /, 1), of type (2, 2, 0), that
satisfies the identities:

C1. (x\y)\(x\z) ≈ (y\x)\(y\z)

C2. 1\x ≈ x

C3. x\(y/z) ≈ (x\y)/z

C4. x\x ≈ 1

as well as their mirror images (in the RL sense). The variety of cone algebras
will be sometimes referred to as CA. It is easily seen that the (2, 2, 0)-reducts
of IGMV algebras are cone algebras. Bosbach shows that the converse holds
true too. More precisely:

Proposition 11 ([6]). Every cone algebra can be embedded into the (2, 2, 0)-
reduct of an appropriate member of LG−.

Sketch of the proof. The target negative cone is obtained as a union of an
ascending chain {Cn : n < ω} of cone algebras, each of which is a subalgebra
of its successor. Products in the target algebra are constructed stepwise, in
such a way that each Cn+1 contains products of members of Cn, until all
products are finally available in the directed union of the Ci’s.

In greater detail, we proceed as follows. Given a cone algebra C and
elements (a, b), (c, d) in C2, le

(a, b)\\(c, d) = (b\(a\c), ((a\c)\b)\((c\a)\d)),

(d, c)//(b, a) = ((d/(a/c))/(b/(c/a)), (c/a)/b).

The rationale for this definition is given by the fact that LG− satisfies the
identity

E5. xy\zw ≈ (y\(x\z)) · (((x\z)\y)\((z\x)\w))

13



and its mirror image, whence the Cartesian product operation, so to speak,
acts as an ersatz for the RL product and \\, // can be viewed as residuals of
sorts. Now, the relation

Θ =
{

((a, b), (c, d)) : (a, b)\\(c, d) = (1, 1) = (c, d)//(a, b)
}

is a congruence on C2, and

s(C) = C2/Θ

is a cone algebra containing C as a subalgebra, via the embedding ϕ(a) =
[(a, 1)]Θ. To attain our target negative cone, we run this construction over
and over again, letting C0 = C and Cn+1 = s(Cn). In this way, in each
Ci E4 is satisfied by the elements of Cj, j ≤ i − 1. The directed union
C =

⋃
{Cn : n < ω} is a cone algebra that still contains C as a subalgebra.

Moreover, it is the (2, 2, 0)-reduct of the negative cone

Ĉ =
(
C,∧,∨, ·, \C, /C, 1C

)
,

where ab = [(a, b)]Θ, a ∨ b = a/C(b\Ca) and a ∧ b = (a/Cb)b.

We make a note of the fundamental fact that every element of C can be
written as a product of members of C, and proceed to outline the proof of the
representation theorem for IGMV algebras. Hereafter, we find convenient to
use the term dense nucleus for a nucleus on the negative cone G− whose
image G−γ generates G− as a monoid. In what follows, we use the expression∏A

j≤n

xj for the product x1 ·A · · · ·A xn.

Theorem 12 ([16, Theorem 3.12]). An IRL is a GMV algebra if and only if
it is the retract of a dense nucleus on the negative cone of some `-group.

Sketch of the proof. We are going to prove only the forward direction. For
the converse, we refer the reader to [16, Theorem 3.4]. Consider an IGMV al-
gebra A = (A,∧A,∨A, ·A, \A, /A, 1A). The crucial observation, here, is that
its implicative reduct (A, \A, /A, 1A) is a cone algebra, whence by Proposi-
tion 11 it can be embedded into the corresponding reduct of a RL G− ∈ LG−
which is generated by A as a monoid. All we need for our claim to hold true
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is some nucleus γ that makes the nucleus retract G−γ isomorphic to A. To

this effect, let a =
∏G−

j≤n

aj ∈ G−, where each aj ∈ A, and define

γ(a) = γ

(∏G−

j≤n

aj

)
=
∏A

j≤n

aj.

This map is well-defined and is actually a nucleus on G−. Clearly, the
universe of the nucleus retract G−γ coincides with A, and it can be seen that
the operations in both structures coincide with one another. In particular,
a ·G−

γ b = γ(a ·G−
b) = a ·A b.

The preceding representation theorem can be actually viewed as just part
of a more general categorical equivalence. The categories in point are IGMV,
the category whose objects are IGMV algebras and whose morphisms are
RL homomorphisms, and LG−∗ , the category whose objects are expansions of
negative cones by a dense nucleus γ, and whose morphisms are RL homo-
morphisms that preserve γ.

Theorem 13. The categories IGMV and LG−∗ are equivalent.

Sketch of the proof. Let K be an object in LG−∗ ; we let Γ(K) = KγK . More-
over, if f : K → L is a morphism in LG−∗ , we define Γ(f) as the restriction
of f to KγK . We prove in turn each of the following items:

• Γ is a well-defined functor. Γ(K) is an object in IGMV because nucleus
retracts of negative cones of `-groups are IGMV algebras (Theorem 12).
It can be easily checked that Γ(f) is a morphism in IGMV, essentially
because f commutes with the nuclei γK, γL. It is immediate that Γ
preserves composition of arrows and the identity morphism.

• Γ is full. Every object in IGMV is the Γ-image of an object in LG−∗
by Theorem 12. It takes a lot more work to show that Γ is surjective
on morphisms; however, by using a variation on Cignoli and Mundici’s
technique of good sequences [9, Chapter 2], it is possible to prove that
whenever we are given objects K,L in LG−∗ and a homomorphism f
from KγK to LγL , there exist a unique RL homomorphism f : K→ L
such that

f ◦ γK = γL ◦ f,
whence the claim follows.
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• Γ is faithful. Since γ is assumed to be dense, K = L whenever KγK =
LγL and, for f, g : K→ L, f = g in case f�KγK = g�KγK .

• Γ is essentially surjective. This is actually the content of Theorem 12.

This much suffices for our main claim.

3. Projectable IGMV algebras and projectable lattice-ordered groups

The results in §§ 2.5 and 2.6 suggest a very natural conjecture to the
effect that suitable analogues of Theorems 12 and 13 continue to hold for
projectable IGMV algebras. More precisely, it seems plausible to surmise
that such algebras — which, by virtue of Lemma 10, coincide with IGMV al-
gebras that admit a positive Gödel implication — are nucleus retracts of neg-
ative cones of projectable `-groups, and that the corresponding categories are
equivalent to each other. In this section, we will see that both statements
actually hold, if appropriately qualified. Namely, the equivalence between
the categories of IGMV algebras and of negative cones of `-groups restricts
to an equivalence of the respective full subcategories whose objects are the
projectable members, and whose morphisms are γ-preserving RL homomor-
phisms.

In greater detail, let PLG−∗ be the category whose objects are negative
cones of projectable `-groups equipped with a dense nucleus γ, and whose
arrows are their γ-preserving RL homomorphisms; analogously, let PGMV
will be the category whose objects are projectable IGMV algebras and whose
arrows are their RL homomorphisms. We will prove in this section that:

Theorem 14. PLG−∗ and PGMV are equivalent.

If we want the signature of our algebras to include the Gödel implication,
and our category morphisms to preserve it — turning projectable IGMV alge-
bras and negative cones of projectable `-groups into varieties, so as to profit
from the well-known advantages yielded by this move — the exact relation-
ship between the resulting categories is not as simple as that, although we
will defer to the next section a detailed investigation of the problem.

Let M = (M,∧,∨, ·, \, /, 1) be a projectable IGMV algebra. The con-
struction of Theorem 12 vouches for the existence of an `-group G, and of a
dense nucleus γ on its negative cone G−, such that M is isomorphic to G−γ .
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Lemma 15. Let a be a member of G− such that a < 1. Then, there exists
b ∈ G−γ such that a ≤ b < 1.

Proof. Since γ is dense, we know that for some x1, . . . , xn we have that

a =
∏G−

j≤n

γ(xj). For some k, γ(xk) < 1 (otherwise a =
∏G−

j≤n

γ(xj) = 1, a

contradiction). Pick such a k. Then,

a =
∏G−

j≤n

γ(xj) ≤ γ(xk) < 1.

Lemma 16. Let G− be the negative cone of an `-group, and let γ be a
dense nucleus on G− with image G−γ . The lattices MF(G−) and MF(G−γ )
of multiplicative filters of G− and G−γ , respectively, are isomorphic. The
isomorphism is given by the mutually inverse maps ϕ(F ) = 〈F 〉G− and
ψ(H) = γ[H] = H ∩G−γ .

Proof. Let F,H ∈ MF(G−γ ). Now, if 〈F 〉G− = 〈H〉G− and a ∈ F , then a ∈

〈F 〉G− = 〈H〉G− , whence there exist h1, . . . , hn ∈ H such that
∏G−

j≤n

hj ≤ a.

So ∏G−
γ

j≤n

hj = γ

(∏
j≤n

hj

)
≤ γ(a) = a,

and thus a ∈ H.
For surjectivity, it suffices to show that an arbitrary multiplicative filter

J of G− is such that J = 〈γ[J ]〉G− . For the nontrivial direction, let a ∈ J .

Since γ is dense, a =
∏G−

i≤m

hi, for some h1, . . . , hm ∈ G−γ ; so, in particular,∏G−

i≤m

hi ≤ a and a ∈ 〈γ[J ]〉G− . Order preservation is clear.

In the next Lemma we make a note of some interesting properties of
generated filters and of the mappings ϕ and ψ in Lemma 16. In the interests

of readability, we write F⊥γ in place of F
⊥

G−
γ , and F⊥ in place of F⊥G− .

Also, we let 〈X〉γ stand for 〈X〉G−
γ

and 〈X〉 for 〈X〉G− .

Lemma 17. Let G− be the negative cone of a projectable `-group, and let
G−γ be a nucleus retract of it, with γ a dense nucleus.
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(1) For any a ∈ G−, ψ(〈a〉) = 〈γ(a)〉γ.

(2) For any a ∈ G−γ , ϕ(〈a〉γ) = 〈a〉.

(3) For any a ∈ G−γ , ϕ(a⊥γ ) = a⊥.

(4) For any a ∈ G−, ψ(a⊥) = γ(a)⊥γ .

(5) If a ∈ G−γ , ϕ(a⊥γ ) is a complemented element in MF(G−), its comple-
ment being (a⊥γ )⊥.

Proof.
(1) For the nontrivial direction, let x ∈ ψ(〈a〉) = 〈a〉 ∩G−γ . Thus x ≥ an,

for some n ∈ N . It follows that x = γ(x) ≥ γ(an) = γ(a) ·G−
γ · · · ·G−

γ γ(a),
whence our claim follows.

(2) From (1), by applying the isomorphism ϕ on both sides.
(3) By Proposition 3.(1) and item (2),

ϕ(a⊥γ ) = ϕ(〈a〉⊥γγ ) = ϕ(〈a〉γ)⊥ = 〈a〉⊥ = a⊥.

(4) By Proposition 3.(1) and item (1),

ψ(a⊥) = ψ(〈a〉⊥) = (ψ(〈a〉))⊥γ = (〈γ(a)〉γ)⊥γ = γ(a)⊥γ .

(5) From Proposition 3.(1)–(3).

Lemma 18. An IRL M is a projectable IGMV algebra if and only if it is
a retract of a dense nucleus on the negative cone G− of some projectable
`-group.

Proof. In view of the previous Lemma and in virtue of Theorem 12 we confine
ourselves to proving the left to right direction. Let M be a projectable IGMV
algebra. We use the construction in Theorem 12 to obtain an `-group G,
and a nucleus γ on its negative cone G−, such that M is isomorphic to
G−γ . It remains to show that G is projectable. Now, by Lemma 10, G−γ
is projectable, and this property is witnessed by its lattice of multiplicative
filters; namely, for all a ∈ G−γ ,

a⊥γ ∨ a⊥γ⊥γ = G−γ .
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Now, recall that for our claim to hold, it suffices to show that G− is
projectable, namely that for all a ∈ G−,

a⊥ ∨ a⊥⊥ = G−.

This much will suffice, because the map that sends convex subalgebras
of an `-group to convex subalgebras of its negative cone is an isomorphism.
Let a ∈ G−. Then

ψ(a⊥ ∨ a⊥⊥) = ψ(a⊥) ∨ ψ(a⊥⊥) ψ preserves joins

= ψ(a⊥) ∨ ψ(a⊥)⊥γ Proposition 3.(1)

= γ(a)⊥γ ∨ γ(a)⊥γ⊥γ = G−γ , Lemma 17.(4)

whence our conclusion follows given that ψ is an isomorphism.

We now proceed to the proof of Theorem 14.

Proof of Theorem 14. Lemma 10 and Lemma 18 imply that PLG−∗ and PGMV
are full subcategories of the categories LG−∗ and IGMV, respectively. So, the
functor Γ in Theorem 13 restricts to a full and faithful functor from PLG−∗
to PGMV, whence our claim follows.

Corollary 19. The categories of projectable MV algebras and projectable
unital Abelian `-groups are equivalent.

Let us remark that the object part of this equivalence was already ob-
served in [19].

4. Introducing the categories GLG− and GGMV

As already observed, it is natural to give an equational characterization
of projectability by including in the signature the operation symbol for the
Gödel implication. If so, our category morphisms should obviously preserve
the additional operation, but the morphisms in both PLG−∗ and PGMV fall
short of this desideratum. As a counterexample, consider the negative cone of
the lexicographic product of Z by Z, and let p be the natural projection onto
Z−. It can be seen that p((−1,−1)→ (−1,−2)) = p((−1,−2)) = −1, while
p((−1,−1))→ p((−1,−2)) = −1→ −1 = 0. As we shall see in this section,
however, imposing this further constraint upon our arrows will downgrade
the previous equivalence to an adjunction.
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One might hope that the restriction of the functor Γ to the subcategories
of PLG−∗ and PGMV, consisting of the same objects and morphisms that
also respect the Gödel arrows, might lead to an adjunction between these
two categories. However, it is an open problem at this time whether the
restriction of Γ is well defined, namely, that the image Γ(f) of a morphism
f in GLG− respecting the Gödel arrow respects the Gödel arrow. In fact, we
conjecture that this is not the case, and the treatment below is necessary for
establishing the aforementioned adjunction.

Thus, in what follows, we will deal with projectable IGMV algebras in
the signature expanded by an additional binary operation symbol →, which
denotes the relative pseudo-complement whose existence is guaranteed by
Lemma 10. To distinguish these algebras from their →-free counterparts we
need a special label, provided via the next definition.

Definition 20. A Gödel GMV algebra is an algebra M = (M,∧,∨, ·, \, /,→
, 1) of type (2, 2, 2, 2, 2, 2, 0) such that:

(1) (M,∧,∨, ·, \, /, 1) is an IGMV algebra,

(2) (M,∧,∨,→, 1) is a positive Gödel algebra.

The labels GGMV and GLG− will henceforth stand for the varieties of
Gödel GMV algebras and of Gödel negative cones (Gödel GMV algebras
whose RL reducts are negative cones of `-groups), respectively.

Theorem 21. Any Gödel GMV algebra M = (M,∧,∨, ·, \, /,→, 1) is the
retract of a dense nucleus2 of some Gödel negative cone.

Proof. Using the notation of Lemma 18, the claim will follow if we can show
that →M coincides with the relative pseudo-complement in G−γ , whose exis-
tence is guaranteed by the fact that G− is projectable. However, if a, b ∈ G−γ ,
a→M b is a closed element in that γ(b) = b ≤ a→M b, and closed elements
form a lattice filter of M. Since it is the largest x such that a ∧ x ≤ b, in
particular it is the largest closed element with that property. In sum,

a→M b = max{γ(x) : a ∧ γ(x) ≤ b} = a→G−
γ b.

2Notice that by nucleus, here, we mean a nucleus on the RL reduct of A; it should be
pointed out that, by [16, Corollary 3.7], such nuclei also preserve meets.
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The preceding proof also yields:

Corollary 22. The {\, /,→, 1}-reduct of any Gödel GMV algebra is a sub-
reduct of a Gödel negative cone.

For our purposes, the following generalization (for which see e.g. [27]) of
the usual concept of free algebra over a set of free generators will come in
handy.

Definition 23. Let K and K′ be classes of algebras of respective signatures
ν and ν ′, with ν ′ ⊂ ν. The algebra K ∈ K is a K-free extension over A ∈ K′
in case:

(1) A is a ν ′-subreduct of K.

(2) The subalgebra of K generated by A is K.

(3) Every homomorphism of A to the ν ′-reduct of any C ∈ K can be
extended to a unique homomorphism of K to C.

A K

C

i

f
∃!f

To make terminology less cumbersome, we will refer to the K-free ex-
tension over A as “the free K over A.” Thus, for example, the LG−-free
extension over A ∈ CA will be described as the free negative cone over A.

Lemma 24. Let M be a Gödel GMV algebra, and let A and B be its {\, /,→
, 1}-reduct3 and its {\, /, 1}-reduct, respectively. Then:

(1) The free Gödel negative cone K over A exists.

(2) The RL subreduct L generated by B in the {→}-free reduct of K is the
free negative cone over B.

3The {\, /,→, 1}-subreducts of Gödel negative cones are easily seen to be axiomatized
by the axioms of cone algebras together with the axioms for Hilbert algebras; see, for
example, [14].

21



Proof.
(1) This is a consequence of two facts: (i) the Gödel negative cones form

a variety, and therefore the left adjoint of the forgetful functor into any of
its reducts always exists; and (ii) the {\, /,→, 1}-reduct of a GGMV is a
subreduct of a Gödel negative cone, by Corollary 22.

(2) It is a consequence of the following result of [28, Corollary 3.15]: If a
cone algebra C is a subreduct of a negative cone H−, then the subalgebra of
H− generated by C is the free extension of C.

Remark 25. Retaining the notation of the preceding lemma, A is a sub-
reduct of K. Note that the negative cone G− associated with the RL reduct
of M in Theorem 12 is generated as negative cone by M = B, and therefore,
by [28, Corollary 3.15], G− = L. Moreover, by [16, Theorem 3.4.(5)], the RL
reduct of M is contained in L as a lattice filter — actually, it is the image
of a dense nucleus γ on L. Note that L is a projectable IGMV algebra by
Theorem 21; hence, it can be equipped with a Gödel implication → (Theo-
rem 21), which extends→A but is not necessarily the restriction to L of→K.
Therefore, A is included in the Gödel negative cone L that expands L by→.
Namely, we are in the situation depicted in the figure below. Since K is the
free Gödel negative cone over A, there exists a unique GLG− homomorphism
β making the diagram commutative.

A K

L

i

i
∃!β

Actually, β is idempotent, whence L is an RL retract of K in the usual,
universal algebraic sense. Therefore, any Gödel GMV algebra M uniquely
determines a triple (K, β, γ), where K is the free Gödel negative cone over
A, with β and γ as in the preceding sentences.

We now define the categories we wish to investigate:

• GGMV is the category whose objects are Gödel GMV algebras and
whose arrows are their algebra homomorphisms.

• GLG− is the category whose objects are the triples (K, β, γ) such that
K is a Gödel negative cone, β is an idempotent endomorphism on K
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and γ is a dense nucleus on its image;4 and its morphisms are mappings
f : (K1, β1, γ1)→ (K2, β2, γ2) such that f is a GLG−-homomorphisms
that satisfies fγ1β1 = γ2fβ1, as shown in the next diagram:

K1 K2

L1 L2

M1 M2

f

β1 β2

γ1

f�L1

γ2

f� im γ1

It is implicit in the previous definition that f [L1] ⊆ L2, although there is
no assumption in the diagram above that f preserves the Gödel implication
in L1, because, as already noted, L1 need not be a subalgebra of K1. The
condition fγ1β1 = γ2fβ1 expresses the commutativity of the diagram below:

L1 L2

M1 M2

γ1

f�L1

γ2

f� im γ1

Let f : M1 →M2 be a homomorphism of Gödel GMV algebras, and let
K1 and K2 be the free Gödel negative cones over the {\, /,→, 1}-reducts A1

and A2 of M1 and M2, respectively. Observe that f , as such, restricts to a
homomorphism between these reducts. By Lemma 24, A1,A2 respectively
embed into the appropriate reducts of the free Gödel negative cones K1 and
K2:

A1 K1

A2 K2

i

f
i◦f

∃!f

i

4It should be noted here that in the definition of GLG− we do not assume that K is
the free Gödel negative cone over a Gödel GMV algebra, and β, γ need not be the special
mappings discussed in Remark 25.
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Since K1 is the free Gödel negative cone over A1, f extends to a unique
homomorphism f : K1 → K2. We call f the free extension of f .

Equipped with this notion, we introduce two assignments F : GGMV →
GLG− and G : GLG− → GGMV, with an eye to showing that they are well-
defined functors and that they form an adjoint pair between the categories
GLG− and GGMV.

• Given an object M in GGMV, F(M) is the triple (K, β, γ) determined
as in Remark 25, and given a morphism f : M1 →M2 in GGMV, F(f)
is the free extension f of f .

• Given an object (K, β, γ) in GLG−, G(K, β, γ) is the algebra γ[β[K]],
and given a morphism f : (K1, β1, γ1) → (K2, β2, γ2) in GLG−, G(f) is
f� im(γ1).

Lemma 26. F is a functor between the categories GGMV and GLG−.

Proof. We already noticed that F(M) is an object in GLG−. Next, take any
morphism f : M1 → M2, and let Ai,Bi (i ∈ {1, 2}) be, respectively, the
(\, /,→, 1)-reducts and (\, /, 1)-reducts of Mi. Observe that f restricts to a
homomorphism between B1 and B2, which in turn extends to a homomor-
phism f ∗ : L1 → L2, where Li (i ∈ {1, 2}) is the free negative cone over Bi.
We claim that f�L1

coincides with f ∗. By [16, Theorem 11], L1 is generated

by B1 as a monoid. Therefore, for any a ∈ L1, a =
∏L1

i≤m

ai, with ai ∈ B1,

for any i ≤ m. Thus,

f ∗(a) = f ∗
(∏L1

i≤m

ai

)
=
∏L2

i≤m

f ∗(ai) =
∏L2

i≤m

f(ai) =
∏K2

i≤m

f(ai),

since L2 is an RL subalgebra of K2. Moreover, since f extends f ,

f(a) = f

(∏K1

i≤m

ai

)
=
∏K2

i≤m

f(ai) =
∏K2

i≤m

f(ai),

whence our claim follows. Now, since β1 is onto, all we have to show is that
the diagram below is commutative.
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L1 L2

M1 M2

γ1

f�L1

γ2

f� im γ1

Let a ∈ L1. There exist a1, . . . , am ∈ A1 such that a =
∏L1

i≤m

ai. So

fγ1(a) = fγ1

(∏L1

i≤m

ai

)
= f

(∏M1

i≤m

ai

)
=
∏M2

i≤m

f(ai)

= γ2

(∏L2

i≤m

f(ai)

)
= γ2f

(∏L1

i≤m

ai

)
= γ2f(a).

Thus indeed f� im γ1 ◦ γ1 equals γ2 ◦ f�L1. Finally, it is also easy to
check that F preserves compositions. Therefore F is a functor between the
categories GGMV and GLG−.

Lemma 27. G is a functor from GLG− to GGMV.

Proof. By Theorem 21, G(K, β, γ) is an object in GGMV. Moreover, by the
commutativity requirement fγ1β1 = γ2fβ1, f� im γ is a GGMV-morphism
and, in particular, it preserves the Gödel implication.

Theorem 28. F and G are adjoint functors.

Proof. Let M, K̃ be objects in the categories GGMV and GLG−, respec-
tively. We want to show that there is a bijective correspondence between
GLG−(F(M), K̃) and GGMV(M,G(K̃)), that is natural in both coordinates.

As regards injectivity, let g, h be distinct morphisms in GGMV(M,G(K̃)).
If g is the free extension of g, as observed in the proof of Lemma 26,
F(g)�M = g�M = g and F(h) = h�M = h. Since g, h are assumed to

be distinct, F(g) 6= F(h). Now, let g ∈ GLG−(F(M), K̃). Let F(M) = K.
Notice that, since K is free over the {\, /,→, 1}-reduct of M, both β and
γ are uniquely determined up to isomorphism. By the results in [16], there
exists a uniquely determined GLG−-homomorphism g between the negative
cone L associated with M and L̃ associated with M̃ that makes the diagram

K K̃

M M̃

γ◦β

g

γ̃◦β̃

g
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commutative. Arguing as in Lemma 26, it is easy to see that g is a morphism
from K to K̃, whence F is onto.

A routine verification shows that the bijection between GLG−(F(M), K̃)

and GGMV(M,G(K̃)) is natural in both M and K̃. Namely, the following

diagram commutes for g ∈ GGMV(M1,M2) and f ∈ GLG−(K̃1, K̃2):

GLG−(F(M2), K̃1) GGMV(M2,G(K̃1))

GLG−(F(M1), K̃1) GGMV(M1,G(K̃2))

Φ
M2,K̃1

F(g)◦( )◦f g◦( )◦G(f)

Φ
M1,K̃2

Acknowledgements

The authors acknowledge the support of the Horizon 2020 program of the
European Commission: SYSMICS project, Proposal Number: 689176, MSCA-
RISE-2015. The second author gratefully acknowledges the support of the Italian
Ministry of Scientific Research within the FIRB project “Structures and dynamics
of knowledge and cognition,” Cagliari-F21J12000140001. Finally, we express our
appreciation to the anonymous referee for many valuable suggestions.

Bibliography

[1] Anderson M., Conrad P., Martinez J., The lattice of convex `-subgroups of
a lattice-ordered group, in A.M.W. Glass and W.C. Holland (Eds.), Lattice-
Ordered Groups, Reidel, Dordrecht, 1989, 105–127.

[2] Bahls P., Cole J., Galatos N., Jipsen P., Tsinakis C., Cancellative residuated
lattices, Algebra Universalis, 50, 1, 2003, 83–106.

[3] Balbes R., Dwinger P., Distributive Lattices, University of Missouri Press,
1974.

[4] Blount K., Tsinakis C., The structure of residuated lattices, International
Journal of Algebra and Computation, 13, 4, 2002, 437–461.

[5] Bosbach B., Residuation groupoids, Result. Math. 5, 1982, 107–122.

[6] Bosbach B., Concerning cone algebras, Algebra Universalis, 15, 1982, 58–66.

26
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