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Department of Mathematics, Vanderbilt University, Nashville - TN, USA

Antonio Ledda
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Abstract

There has been compelling evidence during the past decade that lattice-
ordered groups (`-groups) play a far more significant role in the study of
algebras of logic than it had been previously anticipated. Their key role has
emerged on two fronts: First, a number of research articles have established
that some of the most prominent classes of algebras of logic may be viewed as
`-groups with a modal operator. Second, and perhaps more importantly, re-
cent research has demonstrated that the foundations of the Conrad Program
for `-groups can be profitably extended to a much wider class of algebras,
namely the variety of e-cyclic residuated lattices – that is, residuated lattices
that satisfy the identity x\e ≈ e/x. Here, the term Conrad Program refers to
Paul Conrad’s approach to the study of `-groups that analyzes the structure
of individual or classes of `-groups by primarily focusing on their lattices of
convex `-subgroups.

The present article, building on the aforementioned works, studies ex-
istence and uniqueness of the laterally complete, projectable and strongly
projectable hulls of of e-cyclic residuated lattices. While these hulls first
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made their appearance in the context of functional analysis, and in particu-
lar the theory of Riesz spaces, their introduction into the study of algebras
of logic adds new tools and techniques in the area and opens up possibilities
for a deep exploration of their logical counterparts.

Keywords:
2010 MSC: Primary: 06F05; Secondary: 06D35, 06F15, 03G10, 03B47,
08B15

There has been compelling evidence during the past decade that lattice-
ordered groups (`-groups) are of fundamental importance in the study of
algebras of logic1 – and that their role is likely to become even more crucual in
the future. For example, a key result [40] in the theory of MV algebras is the
categorical equivalence between the category of MV algebras and the category
of unital Abelian `-groups. Likewise, the non-commutative generalization of
this result in [26] establishes a categorical equivalence between the category
of pseudo-MV algebras and the category of unital `-groups. Further, the
generalization of these two results in [38] shows that one can view GMV
algebras as `-groups with a suitable modal operator. Likewise, the work in
[38] offers a new paradigm for the study of various classes of cancellative
residuated lattices by viewing these structures as `-groups with a suitable
modal operator (a conucleus).

In a different direction, articles [14] and [35] have demonstrated that
large parts of the Conrad Program can be profitably extended to the much
wider class of e-cyclic residuated lattices, that is, those satisfying the identity
x\e ≈ e/x. The term Conrad Program traditionally refers to Paul Conrad’s
approach to the study of `-groups, which analyzes the structure of individ-
ual `-groups, or classes of `-groups, by means of an overriding inquiry into
the lattice-theoretic properties of their lattices of convex `-subgroups. Con-
rad’s papers [16–20,22] in the 1960s pioneered this approach and extensively
vouched for its usefulness. A survey of the most important consequences of

1We use the term algebra of logic to refer to residuated lattices – algebraic counterparts
of propositional substructural logics – and their reducts. Substructural logics are non-
classical logics that are weaker than classical logic, in the sense that they may lack one or
more of the structural rules of contraction, weakening and exchange in their Genzen-style
axiomatization. These logics encompass a large number of non-classical logics related to
computer science (linear logic), linguistics (Lambek Calculus), philosophy (relevant logics),
and many-valued reasoning.
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this approach to `-groups can be found in [3], while complete proofs for most
of the surveyed results can be found in Conrad’s “Blue Notes” [21], as well
as in [4] and [24].

The present article studies existence and uniqueness of the laterally com-
plete, projectable and strongly projectable hulls of e-cyclic semilinear resid-
uated lattices. The study of these concepts has a rich history that can be
traced back to the theory of Riesz spaces, also referred to in the literature as
vector lattices. For example, lateral completions of Riesz spaces were con-
sidered in [46], where it is shown that an Archimedean Riesz space can be
embedded in the laterally complete Riesz space of almost finite continuous
functions on a Stone space. The main result of [41] states that any condi-
tionally complete Riesz space has a unique extension in which every disjoint
subset has a supremum (in modern terminology, a lateral completion). An
elegant proof of this result was obtained in [44, 49], and an extension to
arbitrary Riesz spaces was established in [2]. In another particularly rele-
vant article [45], it is proved that any conditionally complete Riesz space is
strongly projectable (in the terminology of Riesz spaces, it satisfies the strong
projection property). In regards to this property, we also mention [48].

The transfer of the preceding ideas and results to the theory of `-groups,
and in particular their development in the non-Archimedean and non-commutative
contexts, was by no means straightforward, since many of the original proofs
made extensive use of scalar multiplication and required the previously men-
tioned representation of Archimedean Riesz spaces as Riesz spaces of almost
finite continuous functions on a Stone space. Among the many noteworthy
contributions in this topic, we mention [1, 6–8,11,12,20,22,23,36].

It may be worthwhile to add a few general comments regarding the ne-
cessity and importance of the extensions we consider in this article. Given
two classes L,K of algebras of the same signature, with L ⊆ K, let us say
that K has a “sufficient supply” of algebras in L, if each member of K can be
embedded into a member of L. For example, it is particularly desirable for a
class of ordered algebras to have a sufficient supply of order-complete alge-
bras. Indeed, not only such objects support computations involving arbitrary
joins and meets, but they often possess special properties that the original
algebras may lack. The correspondence between an algebra and its extension
provides a vehicle for transferring properties back and forth, provided that
the two algebras are not “too far apart” from each other. A typical desider-
atum in this respect would be that the latter be an essential extension of the

3



former, but in this article we use the slightly stronger condition of density.2

There is usually little to gain, in this context, from lattice-theoretic com-
pletions, such as the Dedekind-MacNeille completion or the ideal completion.
For example, it is shown in [9] that the only proper subvarieties of Heyting
algebras that are closed under the Dedekind-MacNeille completion are the
trivial subvariety and the variety of Boolean algebras. Even worse, the vari-
eties of Abelian `-groups and Riesz spaces are examples of ordered algebras
that possess no non-trivial order-complete members. In fact, even restricted
versions of completeness – such as conditional (bounded) completeness – im-
pose severe restrictions on the structure of an `-group (or Riesz space). In-
deed, it is well known that such a structure admits a conditionally complete
extension of the same type if and only if it is Archimedean [10, XIII, §2]. On
the other hand, the Archimedean property is not necessary for the embed-
ding of an Abelian `-group into a laterally complete Abelian `-group, but one
may ask whether a “minimal” laterally complete extension an Archimedean
`-group is Archimedean.

Thus, in a search for interesting extensions in varieties of ordered algebras
we should deflect our attention from order-complete ones and focus on ones
that satisfy restricted forms of order completeness or share interesting prop-
erties with order-complete ones. This is precisely what we do in this article.
Our work, which owes great debt to P. Conrad’s articles [20] and [22], ex-
pands the Conrad Program to the vastly more general framework of e-cyclic
residuated lattices. This variety encompasses most varieties of notable sig-
nificance in algebraic logic, including `-groups, MV algebras, pseudo-MV
algebras, GMV algebras, semilinear GBL algebras, BL algebras, Heyting al-
gebras, commutative residuated lattices, and integral residuated lattices. A
byproduct of our work is the introduction of new tools and techniques into
the study of algebras of logic.

A featured result of this work is the construction, for any given e-cyclic
and semilinear residuated lattice, of an orthocomplete (strongly projectable
and laterally complete) extension in which the original algebra is dense. More
specifically, we have:

Theorem A (Theorem 49). Any algebra L in a variety V of e-cyclic semilin-
ear residuated lattices is densely embeddable in a laterally complete member

2See Definition 38.
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of V.

The strategy for establishing this result is the following: In Section 5 we
study the partitions of the Boolean algebra of polars (introduced in Section 3)
of an e-cyclic residuated lattice L – which we simply call partitions of L, by
mild abuse of terminology. We show that they form a directed poset and,
in fact, a join-semilattice. The partitions of L are used to define a directed
system of algebras in Section 7, whenever L is semilinear (see Section 4).
We discuss in Section 6 a general method for obtaining the direct limit of a
directed system of algebras. We make use of this description to construct the
direct limit of the directed system of algebras induced by the directed poset
of partitions of L. We prove that this limit, denoted O(L), enjoys many
interesting properties. In particular, L is densely embeddable in O(L) (see
Definition 38 and Theorem 39), and furthermore it is laterally complete (see
Definition 40 and Theorem 48). This immediately yields Theorem A.

In Section 8 we advance our study of O(L) by proving that O(L) is also
strongly projectable (see Definition 51). In fact, we prove more:

Theorem B (Theorem 55). Let L be an e-cyclic semilinear residuated lattice.
Then O(L) is strongly projectable.

Hence, Theorems 39, 48, and 55 have the following consequence:

Theorem C (Corollary 57). If L is any algebra in a variety V of e-cyclic
semilinear residuated lattices, then O(L) is an orthocomplete dense extension
of L that belongs to V.

We also introduce in this section the algebra O<ω(L), which is a sub-
algebra of O(L), but generally smaller. While O(L) is laterally complete,
O<ω(L) may fail this property. Nonetheless, L is also densely embeddable in
O<ω(L), which is strongly projectable (Theorem 58).

Lastly, in Section 9, we investigate the existence and uniqueness of mini-
mal extensions of a GMV algebra, which are laterally complete, projectable,
strongly projectable, or orthocomplete. We refer to these extensions as hulls.
In this direction we prove the following results:

Theorem D (Theorem 65). Any algebra L in a variety V of semilinear GMV
algebras has a unique, up to isomorphism, laterally complete hull that belongs
to V.
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In order to achieve this result, we explore the relationship between the
lattices of convex subalgebras of an e-cyclic residuated lattice and a dense
extension of it. This discussion concludes with Proposition 53, which asserts
that the Boolean algebras of their polars are isomorphic. We also make use
of the fact, proved in Section 2, that any GMV algebra satisfies the Riesz
interpolation property (Proposition 15, see also Definition 14). Using similar
techniques we also obtain:

Theorem E (Theorem 74). Any algebra L in a variety V of semilinear
GMV algebras has a unique, up to isomorphism, projectable hull, strongly
projectable hull, and orthocomplete hull that belongs to V.

Moreover, we generalize in the context of GMV algebras a well-known re-
sult for `-groups, namely lateral completeness and projectability imply strong
projectability, and therefore we obtain:

Theorem F (Proposition 70). If a GMV algebra is laterally complete and
projectable, then it is orthocomplete.

We end this paper proving that O<ω(L) is actually the unique, up to
isomorphims, strongly projectable hull of L:

Theorem G (Theorem 76). If L is an algebra in a variety V of semilinear
GMV algebras, then O<ω(L) is the strongly projectable hull of L in V.

1. Background

In this section we recall basic facts about residuated lattices. Varieties of
residuated lattices provide algebraic semantics for substructural logics and
encompass important classes of algebras, such as `-groups. We refer the
reader to [13,27,31,37] for further details.

A residuated lattice is an algebra L = (L,∧,∨, ·, \, /, e) satisfying:

(a) (L, ·, e) is a monoid;

(b) (L,∨,∧) is a lattice; and

(c) \ and / are binary operations satisfying:

x · y 6 z ⇔ y 6 x\z ⇔ x 6 z/y.
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We refer to the operation · as multiplication and the operations \ and /
as the left residual and right residual of the multiplication, respectively. As
usual, we write xy for x · y and adopt the convention that, in the absence of
parentheses, the multiplication is performed first, followed by the residuals,
and finally by the lattice operations. The class of residuated lattices is a
finitely based variety (see e.g. [5, 13, 37]), which we denote throughout this
paper by RL.

The existence of residuals has the following basic consequences, which
will be used throughout this paper without explicit reference.

Lemma 1. Let L be a residuated lattice.

(1) The multiplication preserves all existing joins in each argument. That
is, if

∨
X and

∨
Y exist for X, Y ⊆ L, then∨

x∈X, y∈Y

xy exists and
(∨

X
)(∨

Y
)

=
∨

x∈X, y∈Y

xy.

(2) The residuals preserve all existing meets in the numerator and convert
existing joins to meets in the denominator, i.e., if

∨
X and

∧
Y exist

for X, Y ⊆ L, then for any z ∈ L,
∧
x∈X x\z,

∧
y∈Y z\y exist and(∨

X
)∖
z =

∧
x∈X

x\z, z
∖(∧

Y
)

=
∧
y∈Y

z\y.

The right residual / satisfies the corresponding properties.

(3) The following identities3 (and the corresponding identities for /) hold in
L:

(a) y(y\x) 6 x;

(b) (x\y)z 6 x\yz;

(c) x\y 6 zx\zy;

(d) (x\y)(y\z) 6 x\z;

(e) xy\z = y\(x\z);

(f) x\(y/z) =
(x\y)/z;

(g) e\x = x;

(h) e 6 x\x;

(i) x(x\x) = x; and

(j) (x\x)2 = x\x.

We will have the occasion to consider pointed residuated lattices. A
pointed residuated lattice is an algebra L = (L,∧,∨, ·, \, /, e, 0) of signature

3Some of them are expressed as inequalities, but are clearly equivalent to identities.
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(2, 2, 2, 2, 2, 0, 0) such that (L,∧,∨, ·, \, /, e) is a residuated lattice. In other
words, a pointed residuated lattice is simply a residuated lattice with an
extra constant 0. Pointed residuated lattices are also referred to in the liter-
ature as FL-algebras, as they provide algebraic semantics for the Full Lambek
calculus, and its subvarieties correspond to substructural logics. Residuated
lattices may be identified with pointed residuated lattices satisfying the iden-
tity e ≈ 0. The statements of the general results will be expressed in terms
of residuated lattices, rather than pointed residuated lattices. However, they
hold for the latter as well, since their proofs use congruences (normal con-
vex subalgebras) and convex subalgebras of the residuated lattice reducts of
these algebras.

A subvariety of RL of particular interest is the variety CRL of commu-
tative residuated lattices, which satisfies the equation xy ≈ yx, and hence
the equation x\y ≈ y/x. We always think of this variety as a subvariety of
RL, but we abuse notation by suppressing the operations \ and / into one,
often denoted by →, in describing their members.

Given a residuated lattice A = (A,∧,∨, ·, \, /, e), an element a ∈ A is
said to be integral if e/a = e = a\e, and A itself is said to be integral if
every member of A is integral; this is equivalent to e being its top element.
We denote by IRL the variety of all integral residuated lattices. If F is
a non-empty subset of a residuated lattice L, we write F− for the set of
negative elements of F , that is, F− = {x ∈ F | x 6 e}. The negative cone of
L is the integral residuated lattice L− with domain L−, monoid and lattice
operations the restrictions to L− of the corresponding operations in L, and
residuals \

−
and /

−
defined by

x\
−
y = (x\y) ∧ e and y/

−
x = (y/x) ∧ e,

where \ and / denote the residuals in L.
We call a residuated lattice e-cyclic if it satisfies the identity e/x ≈ x\e.

Three important subvarieties of e-cyclic residuated lattices are the variety
CRL of commutative residuated lattices, the variety IRL of integral resid-
uated lattices, and the variety of `-groups, which occupies a very special
place among the varieties of residuated lattices. An element a of a residu-
ated lattice L is said to be invertible provided (e/a)a = e = a(a\e). This is
of course true if and only if a has a (two-sided) inverse a−1, in which case
e/a = a−1 = a\e. The residuated lattices in which every element is invertible
are precisely the `-groups. Perhaps a word of caution is appropriate here. An
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`-group is usually defined in the literature as an algebra L = (L,∧,∨, ·, −1, e)
such that (L,∧,∨) is a lattice, (L, ·, −1, e) is a group, and multiplication is
order preserving (or, equivalently, it distributes over the lattice operations,
see [4, 29]). The variety of `-groups is term equivalent to the subvariety LG
of RL defined by the equation (e/x)x ≈ e; the term equivalence is given
by x−1 = e/x, x/y = xy−1, and x\y = x−1y. Throughout this paper, the
members of this subvariety will be referred to as `-groups.

The variety GMV of GMV algebras will be featured prominently in the
discussion of Section 9 related to the existence of various hulls.

Definition 2. A GMV algebra is a residuated lattice that satisfies the equa-
tions

x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x, (GMV)

or, equivalently, the equations

x/(y\x ∧ e) ≈ x ∨ y ≈ (x/y ∧ e)\x. (GMV’)

It is straightforward to verify that the variety LG of `-groups is a subvari-
ety of GMV . Subvarieties of pointed GMV algebras include the variety of MV
algebras (axiomatized by 0∧x ≈ 0, xy = yx, and (x\y)\y ≈ x∨y), as well as
that of pseudo-MV algebras (axiomatized by 0∧x ≈ 0 and (x\y)\y ≈ x∨y).
We refer the reader to [50] for an extensive discussion of these topics.

We note that the variety IGMV of integral GMV algebras is axiomatized,
relative to IRL, by the equations:

(y/x)\y ≈ x ∨ y ≈ y/(x\y), (IGMV)

while the variety LG− of negative cones of `-groups is axiomatized relative
to the latter variety (see [5, Theorem 6.2]) by the equations:

x\xy ≈ y ≈ yx/x. (LG−)

Extending the results in [26, 40], the main result of [28] establishes a
categorical equivalence between the class of GMV algebras and the class
of `-groups endowed with a suitable unary operator. Further, it is shown
that this equivalence restricts to one involving integral GMV algebras and
negative cones of `-groups endowed with a nucleus whose image generates
the negative cone as a semigroup. For the purposes of this paper, we only
need a few, but crucial, pieces from the chain of lemmas leading to the proof
of these results. We start with a definition:
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Definition 3. [32] A residuated lattice L is said to be the inner direct product
of its subalgebras B and C – in symbols, L = B⊗C – if B ∨C = L, where
the join is taken in the lattice of subalgebras of L and the map (b, c) 7→ bc
is an isomorphism from B × C to L. In other words: (i) every a ∈ L can
be written uniquely as a product bc, for some b ∈ B and c ∈ C; (ii) each
element in B commutes with every element in C; and (iii) b1c1 6 b2c2 – with
b1, b2 ∈ B and c1, c2 ∈ C – if and only if b1 6 b2 and c1 6 c2.

Theorem 4. [28, Theorem 5.2] In a GMV algebra L the following hold:

(1) The invertible elements of L form a subalgebra G(L) of L, which is an
`-group.

(2) The integral elements of L form a subalgebra I(L) of L, which is an
integral GMV algebra.

(3) L has an inner product decomposition L = G(L)⊗ I(L).4

In view of the preceding theorem, every element a of a GMV algebra L
can be written uniquely as a = gaia, where ga ∈ G(L) and ia ∈ I(L). We use
the term inner factorization of a to refer to the expression a = gaia.

We also state the following lemma for future reference. The statement of
the lemma refers to the following two identities, the so called left prelinearity
law LP and the right prelinearity law RP:

((x\y) ∧ e) ∨ ((y\x) ∧ e) ≈ e, (LP)

((y/x) ∧ e) ∨ ((x/y) ∧ e) ≈ e. (RP)

The importance of the prelinearity laws will emerge in Section 4. Note inci-
dentally that the identities of Lemma 5 are easy consequences of Theorem 4,
Theorem 6 below, and the fact that these identities hold in `-groups.

Lemma 5. [28, Lemmas 2.7 and 2.9] Any GMV algebra satisfies the follow-
ing identities:

(1) x/x ≈ e ≈ x\x

4Theorem 4 was independently proved in the setting of DR`-monoids by T. Kovář in
his unpublished thesis “A general theory of dually residuated lattice ordered monoids”
(Palacký University, Olomouc, 1996).
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(2) x\e ≈ e/x (that is, L is e-cyclic)

(3) xy\e ≈ (x\e)(y\e)

(4) x ∧ (e/x) 6 e

(5) x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)

(6) x ≈ (x ∧ e)(x ∨ e)

(7) L satisfies both prelinearity laws (LP) and (RP).

We close this section by recalling that if L is a GMV algebra, then its
integral part I(L) is of the form H−γ where H− is the negative cone of an
`-group and γ is a nucleus on it. That is, γ is a closure operator satis-
fying γ(x)γ(y) 6 γ(xy) for all x, y ∈ H−. The domain of H−γ is the set
H−γ = γ(H−) and the operations of H−γ are the restrictions to H−γ of the
corresponding operations of H−, except that multiplication on H−γ is defined
by x ◦γ y = γ(xy). Moreover, H−γ is a lattice filter in H−, and the `-group
H can be constructed in such a way that H−γ generates H− as a monoid.

Summarizing, we have:

Theorem 6. [28, Theorem 3.12] Given an integral GMV algebra L, there
exists a negative cone H− of an `-group H and a nucleus γ on H− such
that H−γ = L. Moreover, H−γ is a lattice filter of H− that generates it as a
semigroup.

2. Convex subalgebras

In this section, we start with a brief review of relevant properties of the
lattice of convex subalgebras of an e-cyclic residuated lattice (see definition
below), and then proceed with the study of its special properties in the setting
of GMV algebras. An extensive study of related topics can be found in [14].

A subset C of a poset P = (P,6) is order-convex (or simply convex ) in
P if for every a, b, c ∈ P , whenever a, c ∈ C with a 6 b 6 c, then b ∈ C. For
a residuated lattice L, we write C(L) for the set of all convex subalgebras of
L, partially ordered by set-inclusion. In fact, refer to the discussion below,
it can be shown that C(L) is an algebraic lattice (see Theorem 11).

For any S ⊆ L, we let C[S] denote the smallest convex subalgebra of L
containing S. As is customary, we call C[S] the convex subalgebra generated
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by S and let C[a] = C[{a}]. We refer to C[a] as the principal convex subal-
gebra of L generated by the element a. The principal convex subalgebras of
C(L) are the compact members of C(L), since by Lemma 10.(3) below, every
finitely generated convex subalgebra of L is principal.

An important concept in the theory of `-groups is the notion of an abso-
lute value. This idea can be fruitfully generalized in the context of residuated
lattices [14, 42].

Definition 7.

(1) The absolute value of an element x in a residuated lattice L is the element

|x| = x ∧ (e/x) ∧ e.

(2) If X ⊆ L, we set |X| = {|x| | x ∈ X}.

The proof of the following lemma is routine:

Lemma 8. Let L be a residuated lattice, x ∈ L, and a ∈ L−. The following
conditions hold:

(1) x 6 e if and only if |x| = x;

(2) |x| 6 x 6 |x|\e;

(3) |x| = e if and only if x = e;

(4) a 6 x 6 a\e if and only if a 6 |x|; and

(5) if H ∈ C(L), then x ∈ H if and only if |x| ∈ H.

Recall that, in view of Theorem 4, every element a of a GMV algebra L
has a unique inner factorization a = gaia, where ga ∈ G(L) and ia ∈ I(L).

Lemma 9. Let L be a GMV algebra and a ∈ L.

(1) |a| = a ∧ (e/a).

(2) If a = gaia is the inner factorization of a, then |a| = |ga| · ia is the inner
factorization of |a|.
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Proof. Condition (1) follows from Lemma 5.(4). Using Conditions (2) and
(3) of the same lemma, we have |a| = |gaia| = (gaia) ∧ (gaia\e) = (gaia) ∧
(ga\e)(ia\e) = (ga ∧ (ga\e))(ia ∧ (ia\e)) = |ga|(ia ∧ e) = |ga| · ia.

In what follows, given a subset S of a residuated lattice L, we write 〈S〉
for the submonoid of L generated by S. Thus, x ∈ 〈S〉 if and only if there
exist elements s1, . . . , sn ∈ S such that x = s1 · · · sn.

The next lemma provides an intrinsic description of the convex subalgebra
generated by a subset of an e-cyclic residuated lattice. We notice that the
assumption of e-cyclicity is needed to prove that the sets defined by the
righthand expressions of (1) and (2) are closed under the residual operations.

Lemma 10. [14] Let L be an e-cyclic residuated lattice.

(1) For S ⊆ L,
C[S] = C[|S|] = {x ∈ L | h 6 x 6 h\e, for some h ∈ 〈|S|〉}

= {x ∈ L | h 6 |x|, for some h ∈ 〈|S|〉}.

(2) For a ∈ L,
C[a] = C[|a|] = {x ∈ L | |a|n 6 x 6 |a|n\e, for some n ∈ N}

= {x ∈ L | |a|n 6 |x|, for some n ∈ N}.

(3) For a, b ∈ L, C[a] ∩ C[b] = C[|a| ∨ |b|] and C[a] ∨ C[b] = C[|a| ∧ |b|]
= C[|a||b|].

(4) If H is a convex subalgebra of L, then H = C[H−].

Lemma 10 yields the following results.

Theorem 11. [14] If L is an e-cyclic residuated lattice, then:

(1) C(L) is a distributive algebraic complete lattice.

(2) The poset K(C(L)) of compact elements of C(L) – consisting of the prin-
cipal convex subalgebras of L – is a sublattice of C(L).

The next lemma connects the lattice C(L) of convex subalgebras of a
GMV algebra L with those of G(L) and I(L).

Lemma 12. Let L be a GMV algebra.
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1. If H ∈ C(L), then H = (H ∩G(L))⊗ (H ∩ I(L)).

2. If H1 ∈ C(G(L)) and H2 ∈ C(I(L)), then H1 ∨C(L) H2 = H1 ⊗H2.

Proof. (1) Clearly, if H ∈ C(L) then H is a GMV algebra, and therefore
H = G(H) ⊗ I(H), in view of Theorem 4.(3). The statements follows from
the fact that G(H) = H ∩G(L) and I(H) = H ∩ I(L).

(2) Let H1 ∈ C(G(L)), H2 ∈ C(I(L)) and H = H1 ∨C(L) H2. Consider an
element h ∈ H, and let h = ghih be the inner decomposition of h. Lemma 9
implies that |h| = |gh|ih. Further, in view of Lemma 10, there exist h1 ∈ H−1
and h2 ∈ H−2 such that h1h2 6 |h| = |gh|ih 6 e. Thus h1 6 |gh| and h2 6 ih,
which implies that |gh| and hence gh is in H1 by Lemma 8.(5), and also ih is
in H2. It follows that h ∈ H = H1⊗H2 and hence H ⊆ H1⊗H2. The other
inclusion trivially holds.

Corollary 13. For any GMV algebra L, C(L) ∼= C(G(L))× C(I(L)).

We close this section with two results that will be useful for the consid-
erations of Section 9. We note that a special case of Proposition 15 appears
in [43].

Definition 14. A residuated lattice L is said to satisfy the Riesz interpola-
tion property if, for all b1, . . . , bn, a ∈ L− satisfying b1 · · · bn 6 a, there exist
a1, . . . , an ∈ L− such that a = a1 · · · an and bi ≤ ai ≤ e, for 1 ≤ i ≤ n.

Proposition 15. Any GMV algebra satisfies the Riesz interpolation prop-
erty.

Proof. Let L be a GMV algebra. In view of Theorem 4, every element a ∈ L
has an inner factorization a = gaia, with ga ∈ G(L) and ia ∈ I(L). Thus
it will suffice to show that `-groups and integral GMV algebras satisfy the
Riesz interpolation property.

It is well known and easy to prove that `-groups satisfy this property. For
example, consider the case n = 2: if b1, b2, a 6 e are elements of an `-group
G such that b1b2 6 a, then a1a2 = a, where a1 = b1 ∨ a and a2 = (b1 ∨ a)−1a.
An easy induction proves the property for arbitrary n.

Let now M be an integral GMV algebra. By Theorem 16, there exists
a negative cone H− of an `-group H and a nucleus γ on H− such that
H−γ = M. Let b1, . . . , bn, a be elements of M such that b1 ·γ · · · ·γ bn 6 a.
Then b1b2 · · · bn 6 a in H−, and so there exist elements a1, . . . , an ∈ H−
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such that a1 · · · an = a and bi ≤ ai ≤ e, for 1 ≤ i ≤ n. It follows that
a = γ(a) = γ(a1 · · · an) = γ(a1) ·γ · · · ·γ γ(an) and bi 6 γ(ai) ≤ e, for
1 ≤ i ≤ n.

Proposition 16. Let L be a GMV algebra and let H,K be convex subalgebras
of L. Then the join H∨C(L)K of H and K in C(L) is the submonoid 〈H∪K〉
of L generated by H ∪K.

Proof. Let us first observe that the theorem, or equivalently the inclusion
H ∨C(L) K ⊆ 〈H ∪ K〉, holds under the additional assumption that L is
integral. Indeed, let a ∈ H∨C(L)K. In view of Lemma 10, there exist elements
x1, . . . , xn ∈ H and y1, . . . , yn ∈ K such that x1y1 · · ·xnyn 6 a. Now L
satisfies the Riesz interpolation property by Proposition 15. It follows that
there exist elements z1, . . . , zn and w1, . . . , wn in L such that, z1w1 · · · znwn =
a, and moreover, for 1 6 i 6 n, xi 6 zi and yi 6 wi. Since H,K are convex
subalgebras of L, the last two inequalities imply that each zi is in H, and
each wi is in K. Hence, H ∨C(L) K ⊆ 〈H ∪K〉, as was to be shown.

Removing the assumption of integrality for L, we have shown that the
theorem holds for I(L). In view of Lemma 12, it will suffice to note that
the result holds for G(L), and more precisely that (H ∩G(L))∨C(G(L)) (K ∩
G(L)) ⊆ 〈(H∩G(L))∪(K∩G(L))〉. Let a ∈ (H∩G(L))∨C(G(L)) (K∩G(L)).
Then, invoking Lemma 10 and the case of integral GMV algebras, we have
that a ∧ e and a−1 ∧ e are in 〈(H ∩ G(L)) ∪ (K ∩ G(L))〉. But then, so is
(a−1 ∧ e)−1 and a = (a ∧ e)(a−1 ∧ e)−1.

Lemma 17. [28, Lemma 2.10] Any GMV algebra satisfies the quasi-identity

x ∨ y = e =⇒ xy = x ∧ y. (1)

Proof. In view of Theorem 4, it will suffice to prove that `-groups and inte-
gral GMV algebras satisfy the quasi-identity. This is a well-known fact for
`-groups and follows directly from the `-group identity x(y ∨ z)−1y ≈ x ∧ y.

Suppose next that L in an integral GMV algebra. By Theorem 6, L
is the image of a nucleus γ on the negative cone H− of an `-group H. If
x ∨ y = e in L, then x ∨ y = e in H−, and so xy = x ∧ y in H−. But then
x ◦γ y = γ(xy) = γ(x ∧ y) = x ∧ y.

Proposition 18. Let L be a GMV algebra and let H,K be convex subalgebras
of L. If H ∩K = {e}, then H ∨C(L) K = H ⊗K.
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Proof. In view of Theorem 4 and Lemma 12, it will suffice to prove that the
conclusion of the proposition holds for integral GMV algebras and `-groups.

Let us first assume that L is an integral GMV algebra. In view of Propo-
sition 16, J = H∨C(L)K is the submonoid 〈H∪K〉 of L generated by H∪K.
Note that if x ∈ K and y ∈ H then x, y 6 x ∨ y 6 e, and so by convexity
x ∨ y ∈ H ∩K = {e}, therefore x ∨ y = e. It follows from Lemma 17 that
every element of H commutes with every element of K and therefore, by
quasi-identity (1), every element of J is of the form x ∧ y with x ∈ H and
y ∈ K. We next show that if x∧y 6 z∧w, with x, z ∈ H and y, w ∈ K, then
x 6 z and y 6 w. We have that x ∧ y = (x ∧ y) ∧ (z ∧ w) = (x ∧ z) ∧ y, and
using the distributivity of 〈L,∧,∨〉 (see Lemma 5), x ∨ y = e = (x ∧ z) ∨ y.
Thus, x ∧ z = x, or x 6 z. Likewise, y 6 w. In particular, x ∧ y = z ∧ w,
with x, z ∈ H and y, w ∈ K, if and only if x = z and y = w. We have shown
that J = H ⊗K whenever L is an integral GMV algebra.

The case for `-groups is already known and can be distilled by results of
Chapter 1 in [21]. Since these notes are not easily accessible, we provide a
direct proof of this case. Suppose L is an `-group. By the analysis of the
previous paragraph, every element of H− commutes with every element of
K−, and hence every element of H− ∪H+ commutes with every element of
K− ∪K+. Since every element of x ∈ L can be written as x = (x∧ e)(x−1 ∧
e)−1, it follows that every element of H commutes with every element of K.
We have shown so far that J = HK = {xy | x ∈ H, y ∈ K}.

It remains to prove that this product is an inner direct decomposition of
J. Let z = xy ∈ J , with x ∈ H and y ∈ K, and set w = (x−1 ∧ e)(y−1 ∧ e) =
(x−1∧e)∧(y−1∧e). We have zw = xy(x−1∧e)(y−1∧e) = x(x−1∧e)y(y−1∧e) =
(x∧e)(y∧e), and so (z∧e)w = zw∧w = (x∧e)(y∧e)(x−1∧e)(y−1∧e) = |x||y|,
that is, (z ∧ e)w = |x||y|.

Suppose now that z 6 e. Then the last equality gives zw = |x||y|,
and so z = |x||y|w−1 = (x ∧ e)(y ∧ e). If x 66 e, then x ∧ e < x, and so
z = (x ∧ e)(y ∧ e) < xy = z, which is a contradiction. We have shown that
z = xy 6 e if and only if x 6 e and y 6 e. In particular, z = xy = e if
and only if x = e and y = e. This proves that J = H ⊗K whenever L is an
`-group.

As it is proved in [13] (see also [27]), for any residuated lattice L, the con-
gruences of L are completely determined5 by its convex normal subalgebras,

5Actually, their corresponding lattices are isomorphic.
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which we define in what follows.
Let L be a residuated lattice. Given an element u ∈ L, we define

λu(x) = (u\xu) ∧ e and ρu(x) = (ux/u) ∧ e,

for all x ∈ L. We refer to λu and ρu as left conjugation and right conjugation
by u. A set X ⊆ L is said to be normal if it is closed under conjugates. In
other words, for all x ∈ X and u ∈ L, λu(x), ρu(x) ∈ X.

Lemma 19 ([13,31]; see also [50] or [27]). Given a normal convex subalgebra
H of L, ΘH = {〈x, y〉 ∈ L2 | (x\y) ∧ (y\x) ∧ e ∈ H} is a congruence
relation of L. Conversely, given a congruence relation Θ, the equivalence
class [e]Θ is a normal convex subalgebra. This correspondence establishes an
isomorphism between the congruence lattice of L and the lattice of its normal
convex subalgebras.

In what follows, if H is a normal convex subalgebra of L, we write L/H for
the quotient algebra L/ΘH, and denote the equivalence class of an element
x ∈ L by [x]H .

3. Polars

As we have mentioned in Section 2, the lattice C(L) of convex subalgebras
of an e-cyclic residuated lattice L is an algebraic distributive lattice. In
particular, it is relatively pseudo-complemented and satisfies the join-infinite
distributive law. Thus, for all X, Y ∈ C(L), the relative pseudocomplement
X → Y of X relative to Y is given by:

X → Y = max{Z ∈ C(L) | X ∩ Z ⊆ Y }.

The next lemma provides an element-wise description of X → Y in terms
of the absolute value, and in particular one for the pseudocomplement X⊥ =
X → {e} of X.

Lemma 20. If L is an e-cyclic residuated lattice, then C(L) is a relatively
pseudo-complemented lattice. Specifically, given X, Y ∈ C(L),

X → Y = {a ∈ L | |a| ∨ |x| ∈ Y, for all x ∈ X}, (2)

and in particular,

X⊥ = {a ∈ L | |a| ∨ |x| = e, for all x ∈ X}. (3)
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For any subset X ⊆ L, we define the set X⊥ as in Equation (3). It can
be easily seen that X⊥ = C[X]⊥, so X⊥ is always a convex subalgebra. We
refer to X⊥ as the polar of X; in case X = {x}, we write x⊥ instead of {x}⊥
(or C[x]⊥) and refer to it as the principal polar of x. Furthermore, notice
that for every X ⊆ L, X⊥ = |X|⊥, by virtue of Lemma 10.(1).

We state the following lemma for future reference:

Lemma 21. If L is an e-cyclic residuated lattice, then for every x, y ∈ L,

(|x| ∨ |y|)⊥⊥ = x⊥⊥ ∩ y⊥⊥.

Proof. By virtue of Lemma 10:

(|x| ∨ |y|)⊥⊥ = C[|x| ∨ |y|]⊥⊥ = (C[x] ∩ C[y|)⊥⊥ = C[x]⊥⊥ ∩ C[y]⊥⊥

= x⊥⊥ ∩ y⊥⊥.

The map ⊥ : C(L)→ C(L) is a self-adjoint inclusion-reversing map, while
the map sending H ∈ C(L) to its double polar H⊥⊥ is an intersection-
preserving closure operator on C(L). Therefore, a set H is a polar if and
only if H = H⊥⊥. By Glivenko’s classical result, the image of this op-
erator is a (complete) Boolean algebra Pol(L) with least element {e} and
largest element L. The complement of H in Pol(L) is H⊥ and for any family
{Hi | i ∈ I} in Pol(L)∨Pol(L)

i∈I
Hi =

(∨C(L)

i∈I
Hi

)⊥⊥
=
(⋃

i∈I
Hi

)⊥⊥
.

We refer to Pol(L) as the algebra of polars of L. Thus, Pol(L) is a complete
Boolean algebra whose top and bottom elements are L and {e}, respectively.

Lemma 22. Let L be a GMV algebra, H1 ∈ C(G(L)), H2 ∈ C(I(L)) and
H = H1 ⊗H2. Then

H⊥L = H
⊥G(L)

1 ⊗H⊥I(L)

2 = H
⊥G(L)

1 ∨C(L) H
⊥I(L)

2 .

Proof. We prove the first equality. The second equality follows from Lemma 12.2.
Let x be an arbitrary element of L with inner decomposition x = gx · ix. By
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Lemma 9, |x| = |gx| · ix and hence,

x ∈ H⊥L ⇔ |x| ∨ |a| = e, for every a ∈ H = H1 ⊗H2

⇔ (|gx|ix) ∨ (|a1|a2) = e, for every a1 ∈ H1, and a2 ∈ H2

⇔ (|gx| ∨ |a1|)(ix ∨ a2) = e, for every a1 ∈ H1, and a2 ∈ H2

⇔ (|gx| ∨ |a1|) = e = (ix ∨ a2), for every a1 ∈ H1, and a2 ∈ H2

⇔ gx ∈ H⊥G
1 and ix ∈ H⊥I

2

⇔ x ∈ H⊥G
1 ⊗H⊥I

2

The next two results are of interest, since they connect the polars of L
with those of G(L) and I(L).

Proposition 23. Let L be a GMV algebra and A ∈ C(L). Then A ∈ Pol(L)
if and only if there exist B ∈ Pol(G(L)) and C ∈ Pol(I(L)) such that A =
B ⊗ C.

Proof. In light of Lemma 12, there exist A1 ∈ C(G(L)) and A2 ∈ C(I(L))
such that A = A1 ⊗ A2. Hence Lemma 22 yields

A⊥⊥L = A
⊥⊥G(L)

1 ⊗ A⊥⊥I(L)

2 ,

which immediately implies the claim.

Proposition 24. Let L be a GMV algebra and let a ∈ L have inner decom-
position a = gaia. Then

a⊥L = g
⊥G(L)
a ⊗ i⊥I(L)

a .

Proof. Notice that CL[a] = CG(L)[ga] ⊗ CI(L)[ia]. The inclusion from left to
right follows from the equality a = ga · ia, while the reverse inclusion follows
from the fact that ga, ia ∈ CL[a]. Thus,

a⊥L = CL[a]⊥L = (CG(L)[ga]⊗ CI(L)[ia])
⊥L = CG(L)[ga]

⊥G(L) ⊗ CI(L)[ia]
⊥I(L)

= g
⊥G(L)
a ⊗ i⊥I(L)

a .

4. Semilinearity

Some prominent varieties of residuated lattices and pointed residuated
lattices – including Abelian `-groups and MV algebras – are generated by
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their linearly ordered members. We refer to such varieties as semilinear,6

and denote the variety of all semilinear residuated lattices by SemRL. Thus,
a residuated lattice is semilinear if and only if it is a subdirect product of
totally ordered residuated lattices.

It is well known (see [4]) that the class RepLG of representable `-groups
form a variety and, in fact, it can be axiomatized relative to LG by the
equation:

(x−1yx ∨ y−1) ∧ e ≈ e.

An analogous result was shown in [13,31]: the class SemRL is a variety, and
it can be axiomatized, relative to RL, by either of the equations below:

λu((x ∨ y)\x) ∨ ρv((x ∨ y)\y) ≈ e, (SL1)

λu(x/(x ∨ y)) ∨ ρv(y/(x ∨ y)) ≈ e. (SL2)

The next theorem generalizes the well-known results on semilinear `-groups
as well as all analogous results characterizing semilinear members of some
classes of residuated lattices – see [25] for pseudo-MV algebras, [34] for pseu-
do-BL algebras, [33] for GBL algebras (DR`-monoids), and [47] for integral
residuated lattices.

Theorem 25. [14] For a variety V of residuated lattices, the following state-
ments are equivalent:

(1) V is semilinear.

(2) V satisfies either of the equations (SL1) and (SL2).

(3) V satisfies either of the prelinearity laws and the quasi-identity

x ∨ y ≈ e ⇒ λu(x) ∨ ρv(y) ≈ e. (4)

If in addition V is a variety of e-cyclic residuated lattices, the preceding con-
ditions are equivalent to the condition:

6The more traditional, but less descriptive, name for these varieties is representable,
specially for `-groups, for which we will keep the name for traditional reasons.
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(4) V satisfies either of the prelinearity laws and for every L ∈ V, all (prin-
cipal) polars in L are normal.

It is well known, and easy to prove, that representable `-groups satisfy
both prelinearity laws. Thus, in view of the preceding result, a variety of
`-groups is semilinear if and only if all polars of every algebra in the variety
are normal. Normality of polars alone is not sufficient to imply semilinear-
ity in general. For example, the variety of Heyting algebras satisfies the
normality condition on polars, since it is a variety of commutative pointed
residuated lattices, but it is not semilinear. For example, the Heyting algebra
below is subdirectly irreducible but not totally ordered.

e

a

b c

0

5. Partitions

In this section, we introduce the notion of partition of a complete Boolean
algebra and study the particular case of the Boolean algebras of polars of a
residuated lattice. Recall that a partition of a set X is a nonempty set
C ⊆ P(X) such that ∅ /∈ C, for every pair of different elements A,B ∈ C,
A ∩ B = ∅, and

⋃
C = X. Our notion of partition generalizes this one to

arbitrary complete Boolean algebras. Indeed, a partition of a set X is just a
partition of the Boolean algebra P(X).

We say that two elements a, b 6= ⊥ of a Boolean algebra are disjoint
provided a∧b = ⊥. A word of caution is in order. According to Definition 40,
we say that two (negative) elements x, y of an e-cyclic residuated lattices are
disjoint if x∨y = e, which in the particular case of integral residuated lattices,
is exactly the dual notion of the one that we have just defined. This should
not lead to any confusion, as the Boolean algebras under consideration are
the algebras of polars of residuated lattices. The two notions of disjointness
will be clearly separated by the context, and Lemma 47 will elucidate the
connection between these homonymous concepts.
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Definition 26. Let B = 〈B,∧,∨,¬,⊥,>〉 be a non-trivial complete Boolean
algebra. A partition of B is a maximal set of disjoint elements of B \ {⊥},
that is to say, it is a set C ⊆ B such that

(1) ⊥ /∈ C,

(2) for every c, d ∈ C, if c 6= d then c ∧ d = ⊥, and

(3) if a ∈ B is such that a 6= ⊥, then there exists c ∈ C such that a∧ c 6= ⊥.

The following result, which is an immediate consequence of the preceding
definition, provides an alternative characterization of partitions:

Lemma 27. A subset C ⊆ B is a partition of B if and only if it satisfies the
following conditions:

(1) ⊥ /∈ C,

(2) for every c, d ∈ C, if c 6= d then c ∧ d = ⊥, and

(3)
∨
C = >.

Further, any subset C of B that satisfies conditions (1) and (2) can be ex-
tended to a partition, for instance C ∪ {¬(

∨
C)}.

The set D of partitions of B can be ordered in the following manner:
given two partitions C and A, we say that A is a refinement of C, and write
C 4 A, if for every a ∈ A there exists a (necessarily unique) c ∈ C such that
a 6 c. It is easily checked that 4 is a partial order on D. We in fact prove
that 〈D,4〉 is a join semilattice, and hence any two partitions have a least
common refinement. Indeed let C,D be partitions. We claim that

A =
{
c ∧ d 6= ⊥ | c ∈ C, d ∈ D

}
(5)

is their join in 〈D,4〉. Let us first verify that A is actually a partition.
Observe that ⊥ /∈ A by definition. If a = c∧ d and a′ = c′∧ d′ are in A, with
c, c′ ∈ C and d, d′ ∈ D, and a 6= a′, then c 6= c′ or d 6= d′, and in either case
a∧ a′ = (c∧ c′)∧ (d∧ d′) = ⊥. And finally, if a ∈ B is such that a 6= ⊥, then
there exists c ∈ C such that a∧ c 6= ⊥, by the maximality of C, and therefore
there exists d ∈ D such that (a∧ c)∧ d 6= ⊥, by the maximality of D. Thus,
we have found c ∈ C and d ∈ D such that c∧d 6= ⊥, and therefore c∧d ∈ A,
and a ∧ (c ∧ d) 6= ⊥, which proves the maximality of A. Lastly, A is clearly
a refinement of C and D, and any other refinement of C and D must also be
a refinement of A.
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Lemma 28. Let B be a complete Boolean algebra and C,A be partitions of
B, and let Ac = {a ∈ A | a 6 c}. Then the following are equivalent:

1. C 4 A;

2. for every c ∈ C, Ac is a partition of the Boolean algebra [⊥, c];

3. for every c ∈ C, c =
∨
Ac; and

4. for every c ∈ C, ¬c =
∧
{¬a | a ∈ Ac}.

Proof. (1⇒ 2): Let c ∈ C and let Ac = {a ∈ A | a 6 c}. Obviously ⊥ /∈ Ac
and if a, b ∈ Ac and a 6= b, then a ∧ b = ⊥, since A is a partition. Now, by
Lemma 27 all we need to show is that c =

∨
Ac, which is true by virtue of the

distributivity law, and the facts that C is a refinement of A and
∨
A = >,

by hypothesis.
(2⇒ 1): Consider b ∈ A. Then b 6= ⊥, and therefore b∧ c 6= ⊥, for some

c ∈ C. Obviously b ∧ c ∈ [⊥, c], and since Ac is a partition of [⊥, c], there
exists a ∈ A such that a 6 c and a ∧ b ∧ c 6= ⊥. Thus, a ∧ b 6= ⊥, and since
A is a partition, b = a 6 c. We have established that C 4 A.

(2⇔ 3): This equivalence is an immediate consequence of Lemma 27.
(3⇔ 4): This equivalence follows from two facts: (i) complementation in

a Boolean algebra is a dual order-automorphism; and (ii) arbitrary joins and
meets in [⊥, c] coincide with those in B.

Given an e-cyclic residuated lattice L, we denote by D(L) the join-
semilattice of partitions of the Boolean algebra Pol(L) of polars of L.7 Recall
that if L is semilinear then each polar of L is a convex normal subalgebra,
by Theorem 25. Thus the following corollary is an immediate consequence
of Lemma 28.

Corollary 29. Let L be an e-cyclic residuated lattice and C,A be partitions of
Pol(L), and let AC = {A ∈ A | A ⊆ C}. Then the following are equivalent:

1. C 4 A;

2. for every C ∈ C, AC is a partition of the Boolean algebra [{e}, C];

3. for every C ∈ C, C =
∨Pol(L)AC; and

7See Section 3.
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4. for every C ∈ C, C⊥ =
⋂
{A⊥ | A ∈ AC}.

If moreover L is semilinear, then the previous conditions are equivalent to

5. The homomorphism f : L/C⊥ →
∏
{L/A⊥ | A ∈ AC}, defined by

f([a]C⊥) = ([a]A⊥ | A ∈ AC) provides a subdirect representation of
L/C⊥ in terms of the algebras {L/A⊥ | A ∈ AC}.

Proof. The equivalence of the first four conditions follows from Lemma 28.
Further, in view of Theorem 25, all polars of L are normal. Hence, 4 and 5
are equivalent.

Let L be an e-cyclic semilinear residuated lattice. As we mentioned al-
ready, in view of Theorem 25, all polars of L are normal, and hence for every
C⊥ ∈ Pol(L) one can form the quotient algebra L/C⊥. For every partition
C of Pol(L), we define the product LC =

∏
C∈C L/C⊥. We will see that if C

and A are two partitions such that C 4 A then we can define an injective
homomorphism φCA : LC → LA. The family of homomorphisms of residuated
lattices {φCA : LC → LA | C 4 A} satisfies a compatibility property, namely,
given three partitions A 4 B 4 C, we have

φC = idC and φBC ◦ φAB = φAC.

Recall that D(L) is an join-semilattice, and in particular a directed set.
Thus, we can form the direct limit of this family and obtain a residuate lattice
O(L) that will contain all the algebras LC in a minimal way. Next section
is devoted to the construction of the direct limit of any family of compatible
homomorphisms and its basic properties.

6. Direct Limits

The direct limit of a directed family of algebras of the same signature
is usually obtained as a suitable homomorphic image of the coproduct of
this family. In this section, we describe an explicit construction of the direct
limit of a family of algebras (see Theorem 31) that will facilitate the proofs of
the results in Sections 7 and 8 on (lateral) completions of e-cyclic semilinear
residuated lattices and GMV algebras, respectively. We note that the afore-
mentioned construction is briefly mentioned in [15, (p. 114)] and [30, (Exer-
cises 32 and 33, pp. 155-156)], and somewhat implicitly in [20]. In the sequel
we consider exclusively direct limits of algebras and algebra homomorphisms.
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Recall that a partially ordered set (I,6) is said to be directed if for any
i, j ∈ I there is a k ∈ I such that i, j 6 k. Let K be a category of algebras
and algebra homomorphisms, (I,6) a directed set, and {Ai | i ∈ I} a family
of objects of K. A family {fij : Ai → Aj | i, j ∈ I, i 6 j} of homomorphisms
in K is a directed system for {Ai | i ∈ I} if for every i ∈ I, fii = idAi

, and for
i 6 j 6 k, fjk ◦ fij = fik. That is to say, for any i, j, k such that i 6 j 6 k,
the diagram

Ai Ak

Aj

fik

fij fjk

commutes.8 Given a directed system {fij : Ai → Aj | i, j ∈ I, i 6 j}
in K, a family of homomorphisms {φi : Ai → A | i ∈ I} is said to be
compatible with the system provided the equation φj ◦ fij = φi holds, for
all i ∈ I. Such a family is called a direct limit of the directed system if
it is “minimal” among the families of homomorphisms compatible with it,
in the sense that it satisfies the following universal property: for any family
{ψi : Ai → B | i ∈ I} compatible with {fij : Ai → Aj | i, j ∈ I, i 6 j}, there
exists a unique ψ : A → B rendering the following diagram commutative,
for all i ∈ I:

A B

Ai

∃!ψ

φi
ψi

(6)

It can be seen that direct limits are unique up to isomorphism: whenever
{φi : Ai → A | i ∈ I} and {ψi : Ai → B | i ∈ I} are direct limits
of the same system, then there exists a unique isomorphism ψ : A → B
rendering commutative the diagram (6). Very often, the common target of
the homomorphisms of the direct limit of a system is also called the direct
limit of the system.

Intuitively, the elements of the direct limit are determined by “approxi-
mations”, which are elements in the algebras of the system. Thanks to the
compatibility of the morphisms of the system and directedness, these approx-
imations can be chosen in algebras with arbitrarily large indices. As we will

8More formally, one can think of a directed system in a category K as a functor F :
I → K, where the directed set I = (I,6) is regarded as a category.
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see, the elements of the limit can be represented by sequences of elements
in the algebras such that, from one index on, they respect the compatibility
law of the system. The behavior of the sequences for indices preceding this
index is irrelevant. Thus, two sequences such that from one index on are
identical should be considered the same element in the limit. Formally, let
{fij : Ai → Aj | i, j ∈ I, i 6 j} be a directed system in a class K of algebras
of the same signature, and consider the set T of threads in

∏
i∈I Ai:

T =
{
a ∈

∏
i∈I Ai | ∃k∀j > k, aj = fkj(ak)

}
. (7)

In the definition of T , and in the sequel, we write ai instead of a(i), for
a ∈

∏
i∈I Ai and i ∈ I. We define the following binary relation ∼ on T , for

all a, b ∈ T :
a ∼ b ⇔ ∃k∀j > k, aj = bj. (8)

The following result can be easily proved.

Lemma 30. The set T is the universe of a subalgebra T of
∏

i∈I Ai, and

moreover ∼ is a congruence of T.

Given a directed system {fij : Ai → Aj | i, j ∈ I, i 6 j} and the set T of
threads defined in (7), we call i ∈ I a witness of a ∈ T , or just a witness for
a, if for every k > i, ak = fik(ai). By the very definition of T , every thread
has a witness and the set of witnesses of a thread is closed upwards.

Now we fix an arbitrary element u ∈
∏

i∈I Ai, and define the map φi :
Ai → T as follows for all a ∈ Ai:

φi(a)j =

{
fij(a) if i 6 j;

uj otherwise.
(9)

One can easily verify that for each a ∈ T , and each witness i for a,
a ∼ φi(ai). The map φi defined in (9) induces a map φi : Ai → T/∼ defined,
for all a ∈ Ai, by:

φi(a) = [φi(a)]∼. (10)

In what follows, we denote by A the quotient T/∼. The next result
shows that {φi : Ai → A | i ∈ I} is the direct limit of the directed system
{fij : Ai → Aj | i, j ∈ I, i 6 j}. We sketch its proof for the reader’s
convenience.
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Theorem 31. Given a directed system {fij : Ai → Aj | i, j ∈ I, i 6 j},
the family of homomorphisms {φi : Ai → A | i ∈ I} in Equation (10) is the
direct limit of {fij : Ai → Aj | i, j ∈ I, i 6 j}. That is, A has the universal
property:

Ai Aj

A

B

fij

φi

ψi

φj

ψj∃!ψ

for any family {ψi : Ai → B | i ∈ I} of homomorphisms compatible with
{fij : Ai → Aj | i, j ∈ I, i 6 j}, there is a unique ψ : A→ B such that, for
every i ∈ I, ψ ◦ φi = ψi.

Proof. We leave to the reader to verify that the system {φi : Ai → T/∼ |
i ∈ I} is indeed a family of homomorphisms compatible with the directed
system {fij : Ai → Aj | i, j ∈ I, i 6 j}

Suppose that a, b ∈ T are such that a ∼ b, and let i, j be witnesses for
a, b, respectively, and k such that a and b agree from k on. Let us consider
any r > i, j, k, which exists since I is a directed set. Thus, a and b agree on
r and therefore

ψi(ai) = ψr(fir(ai)) = ψr(ar) = ψr(br) = ψr(fjr(bj)) = ψj(bj).

Therefore, we can define the map ψ : A→ B in the following way: for every
[a]∼ ∈ A,

ψ([a]∼) = ψi(ai),

where i is any witness for a.
Let σ be an n-ary operation symbol in the signature and a1, . . . , an ∈ T

with common witness k. Then, it can be easily seen that k is also a witness
for σT(a1, . . . , an), and hence:

ψ(σA([a1]∼, . . . , [a
n]∼)) = ψ([σT(a1, . . . , an)]∼) = ψk(σ

T(a1, . . . , an)k)

= ψk(σ
Ak(a1

k, . . . , a
n
k)) = σB(ψk(a

1
k), . . . , ψk(a

n
k))

= σB(ψ([a1]∼), . . . , ψ([an]∼)).

That ψ renders the diagram commutative is a direct consequence of the
fact that, for every i ∈ I, and every a ∈ Ai, i is a witness for φi(a). As
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regards the uniqueness, note that if i is a witness of a ∈ T , then a ∼ φi(ai),
and therefore if ψ′ : A → B is a map rendering commutative the diagram,
then

ψ′([a]∼) = ψ′([φi(ai)]∼) = ψ′(φi(ai)) = ψi(ai) = ψ([a]∼).

We introduce the concept of proxy that will facilitate the discussion in
the sequel.

Definition 32. If {fij : Ai → Aj | i, j ∈ I, i 6 j} is a directed system,
i ∈ I, and x ∈ Ai, we call x a proxy of φi(x) at i.

Note that if [a]∼ ∈ A, and i is a witness for a, then ai is a proxy of [a]∼ at
i. Consequently, every element of the limit has a proxy at some index i, and
the set of indices where a particular element has a proxy is closed upwards.
Moreover, if i 6 j, x ∈ Ai and y = fij(x), then x is a proxy of an element
s ∈ A at i if and only if y is a proxy of s at j.

We note the following result for future reference:

Lemma 33. If all the homomorphisms of a directed system of algebras are
embeddings, then the homomorphisms of the direct limit are also embeddings.

Under the assumptions of the preceding lemma, whenever an element of
the direct limit A has a proxy in i ∈ I, this proxy is unique. Note also that,
as a consequence of Theorem 31, the direct limit of a directed system is the
quotient of a subalgebra of the product of the algebras of the system. Thus,
varieties are closed under direct limits. In fact, it can be shown that the
same result holds for quasivarieties.9

7. O(L) is laterally complete

We devote this section to the construction of a laterally complete10 ex-
tension, O(L), of an arbitrary semilinear e-cyclic residuated lattice L. The
fundamental property connecting L and O(L) is the fact that L is a dense11

9Actually, a stronger result can be proved. Namely, given a set of quasi-equations Σ
and a directed system of algebras indexed on I, if the set F ⊆ I of indices of the algebras
satisfying Σ is cofinal in I, that is, for every index i ∈ I there is another index j ∈ F such
that i 6 j and Σ valid in the algebra indexed by j, then the direct limit also satisfies Σ.

10Refer to Definition 40 below.
11Refer to Definition 38 below.
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subalgebra of O(L). Using the direct limit construction of O(L), we obtain
the main result of this section, Theorem 49, which asserts that any algebra in
a variety V of semilinear e-cyclic residuated lattices can be densely embedded
into a laterally complete algebra in V . Most of the effort in proving these
results goes into verifying that O(L) is laterally complete (Theorem 48). It
is worth mentioning that it is a trivial matter to embed a semilinear residu-
ated lattice L into a laterally complete one. Indeed, L can be embedded into
a product of chains, which is clearly laterally complete. The dense embed-
dability of L into O(L) guarantees that the latter is not “too large,” in fact
it is an essential extension of the former.

Let L be an e-cyclic semilinear residuated lattice. In view of Theorem 25,
all polars of L are normal, and hence for every C ∈ Pol(L) one can form
the quotient algebra L/C⊥. For every partition C of Pol(L), we define the
product LC =

∏
C∈C L/C⊥.

If C and A are two partitions with C 4 A, we define a homomorphism
φCA : LC → LA as follows (see Diagram (11)): for every A ∈ A, there is
a unique C ∈ C such that A ⊆ C. Then, C⊥ ⊆ A⊥, whence there exists
a homomorphism fCA : L/C⊥ → L/A⊥. Composing with the canonical
projection πC : LC → L/C⊥, we obtain a homomorphism fCAπC : LC →
L/A⊥. Then, by the couniversal property of the product LA, there exists a
unique homomorphism φCA : LC → LA such that for all A ∈ A, πAφCA =
fCAπC , where πA : LA → L/A⊥ is the canonical projection.

LC LA

L/C⊥ L/A⊥

fCA◦πC

φCA

πC πA

fCA

(11)

We can describe φCA as follows: every element x ∈ LC is of the form
x = ([xC ]C⊥ | C ∈ C), with xC ∈ L. Then, φCA(x) = ([yA]A⊥ | A ∈ A), where
for every A ∈ A, yA = xC , for the unique C ∈ C such that A ⊆ C. Recall that
the ordered set D(L) of all partitions is a join-semilattice. Hence any two
partitions have a least common refinement. Using the previous description
one can easily show that {φCA : LC → LA | C 4 A} is a directed system. We
denote the direct limit of this system by O(L). Our objective in this section
is to prove that O(L) is laterally complete and has L as a dense subalgebra
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(see Definitions 38 and 40 below).
Let us specialize the discussion of Section 6 to the system {φCA : LC →

LA | C 4 A}. We start with the subalgebra T of
∏
C∈D(L) LC whose universe

is the set of threads defined in Equation (7):

T =

{
l ∈

∏
B∈D(L)

LB | ∃C ∀A < C, lA = φCA(lC)

}
.

Then we obtain O(L) as the quotient of T by the congruence ∼ in Equation
(8), which in this case reads as follows: l ∼ k if there exists a partition C
such that for any refinement A of it, lA = kA. Therefore, the elements of
O(L) will be the equivalence classes of the elements l = (lC | C ∈ D(L)) ∈ T .
As we have noted in the previous section, for every partition C, there exists
a homomorphism φC : LC → O(L). More specifically, we first fix an element
of
∏
B∈D(L) LB, in this case we can conveniently choose the identity element

e. We then define, for every x ∈ LC, φC(x) = [φC(x)]∼, where φC(x) ∈∏
C∈D(L) LC is such that

φC(x)A =

{
φCA(x) if C 4 A
eC otherwise.

(12)

Furthermore, since all the homomorphisms φCA are embeddings (see Lemma 37),
the same is true for the homomorphisms φC by Lemma 33.

It is important, for any element x = ([xC ]C⊥ | C ∈ C) ∈ LC, to distinguish
all polars C such that [xC ]C⊥ 6= [e]C⊥ . A criterion is provided by the next
lemma, whose easy proof is left to the reader.

Lemma 34. If L is an e-cyclic residuated lattice and H ∈ Pol(L) is normal,
then the following statements are equivalent:

(i) [a]H = [e]H ,

(ii) a ∈ H,

(iii) C[a] ⊆ H,

(iv) C[a] ∩H⊥ = {e},

(v) a⊥⊥ ∩H⊥ = {e}.

In what follows, some concepts relative to an element x = ([xC ]C⊥ | C ∈
C) ∈ LC will be defined in terms of the representatives xC of the equivalent
classes [xC ]C⊥ . The following lemma shows that these notions are indepen-
dent of the choice of representatives.
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Lemma 35. Let L be an e-cyclic residuated lattice, H ∈ Pol(L) be a normal
convex subalgebra, and a, b ∈ L. If [a]H⊥ = [b]H⊥ then a⊥⊥ ∩H = b⊥⊥ ∩H.

Proof. Suppose that [a]H⊥ = [b]H⊥ . Then, [|a|]H⊥ = [|b|]H⊥ , and therefore
by Lemma 19, (|a|\|b|) ∧ (|b|\|a|) ∧ e ∈ H⊥. This means that there exists
c ∈ H⊥ such that |a|c 6 b and |b|c 6 a, and hence, for any d ∈ b⊥:

|c| = e · |c| = (|d| ∨ |b|)|c| = |d||c| ∨ |b||c| 6 |d| ∨ |b|c 6 |d| ∨ |a|.

Therefore, for any h ∈ H, e = |c| ∨ |h| 6 |d| ∨ |a| ∨ |h|, whence, |h| ∨ |d| ∈ a⊥.
If moreover h ∈ a⊥⊥, then |h|∨|d| ∈ a⊥⊥, and then |h|∨|d| ∈ a⊥⊥∩a⊥ = {e}.
Therefore |h| ∨ |d| = e. Thus, for any h ∈ a⊥⊥ ∩H and d ∈ b⊥, |h| ∨ |d| = e;
whence h ∈ b⊥⊥, as we wanted.

The converse of Lemma 35 is not true in general. For example, consider
the three element Gödel chain and let H =

{
0, 1

2
, 1
}

, a = 0 and b = 1
2
. It

can be seen that 0⊥⊥ ∩H = 1
2

⊥⊥ ∩H, but [0]H⊥ = [0]{e} 6=
[

1
2

]
{e} =

[
1
2

]
H⊥

.

Definition 36. Let L be an e-cyclic semilinear residuated lattice, and let
O(L) be the direct limit of {φCA : LC → LA | C 4 A}. Given a partition C
of Pol(L) and an element x = ([xC ]C⊥ | C ∈ C) ∈ LC, we define the support
of x at C to be the set

Supp(x) = {C ∈ C | [xC ]C⊥ 6= [e]C⊥}.

It is clear from the definition that, for any x ∈ LC, x is equal to the
identity element eC of LC if and only if Supp(x) = ∅.

Lemma 37. Let L be an e-cyclic semilinear residuated lattice and let C,A
two partitions such that C 4 A. For every C ∈ C let AC = {A ∈ A | A ⊆ C}.
Then:

1. For all x ∈ LC, C ∈ Supp(x) if and only if A ∈ Supp(φCA(x)), for
some A ∈ AC; and

2. φCA is injective.

Proof. Both (1) and (2) follow directly from Corollary 29.(5). Let x =
([xC ]C⊥ | C ∈ C) ∈ LC and let y = ([yA]A⊥ | A ∈ A) = φCA(x) ∈ LA.
As we noted above, if C ∈ C and A ∈ AC , then we can choose yA = xC .
Thus, for any C ∈ C, since L/C⊥ is a subdirect product of the algebras in
{L/A⊥ | A ∈ AC}, [xC ]C⊥ 6= [e]C⊥ if and only if [yA]A⊥ 6= [e]A⊥ for some
A ∈ AC .

31



As noted in Lemma 37, φCA is injective whenever C 4 A. Whence, for the
particular case of the trivial partition {L}, we have L{L} = L/L⊥ = L/{e} ∼=
L. Therefore, there exists an embedding of L into O(L), more specifically
the composition of the isomorphism L ∼= L/{e} with the embedding φ{L}.
In Theorem 39 below, we prove that this embedding is dense in the sense of
the next definition.

Definition 38. An embedding φ : L → L′ between residuated lattices is
dense if for every p ∈ L′, p < e, there exists a ∈ L such that p 6 φ(a) < e.

Recall that every element of O(L) has a proxy at some partition C. That
is, given an element p ∈ O(L) there exists a partition C and an element
x ∈ LC such that φC(x) = p. Let us note that, for any partition C, if an
element p has a proxy x at C, then x is unique, since φC is an embedding.
Clearly, an element of O(L) is different from the identity if and only if all its
proxies, at the different partitions in which they exist, are different from the
identity.

Theorem 39. Any e-cyclic semilinear residuated lattice L can be densely
embedded into O(L).

Proof. As noted above, the map φ : L
∼=−→ L{L}

φ{L}−−→ O(L) is an embedding

of L into O(L). For every a ∈ L, φ(a) = [a]∼, where a = (aC | C ∈ D(L)),
and for every partition C, aC = ([a]C⊥ | C ∈ C).

In order to establish the density of φ, consider p ∈ O(L) such that p <
eO(L). Let x = ([xC ]C⊥ | C ∈ C) be a proxy of p at some partition C. Then,
for every C ∈ C, [xC ]C⊥ 6 [e]C⊥ , and hence without loss of generality we
can assume that all the representatives xC are negative. Since p 6= eO(L),
there exists a C ∈ C such that [xC ]C⊥ 6= [e]C⊥ . Therefore, by Lemma 34.(v),
x⊥⊥C ∩ C 6= {e} and we can choose an element b ∈ x⊥⊥C ∩ C, such that b < e.
By the convexity of the polars, a = xC ∨ b ∈ x⊥⊥C ∩ C. If a = e, then,
since b ∈ x⊥⊥C , b ∈ x⊥C ∩ x⊥⊥C = {e}, and therefore b = e, contradicting the
hypothesis that b < e. Hence, xC 6 a < e. Since a ∈ C, a⊥⊥ ⊆ C⊥⊥ = C,
and hence, since polars in C are pairwise disjoint, for every D ∈ C, C 6= D
implies a⊥⊥ ∩ D = {e}, and therefore [a]D⊥ = [e]D⊥ . Thus, aC = ([a]C⊥ |
C ∈ C) has only one component different from the identity, which is [a]C⊥ .
Moreover xC 6 a implies [xC ]C⊥ 6 [a]C⊥ . Hence x 6 aC < e, and then
p = φC(x) 6 φC(aC) = φ(a) < eO(L).
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Definition 40. Two elements a, b < e of a residuated lattice L are said to be
disjoint if a∨ b = e. An non-empty subset X ⊆ L is called disjoint provided
any two distinct elements of it are disjoint. A residuated lattice is said to be
laterally complete if all its disjoint subsets have an infimum.

Remark 41. Let {xλ | λ ∈ Λ} be a nonempty family of elements of L−C ,
for some partition C, which have pairwise disjoint supports: Supp(xλ) ∩
Supp(xµ) = ∅ if λ 6= µ. Then the meet

∧LC
Λ xλ exists. Actually,

∧LC
Λ xλ =

z = ([zC ]C⊥ | C ∈ C), where

zC =

{
(xλ)C if C ∈ Supp(xλ), for some (unique) λ ∈ Λ;

e otherwise.

In the remainder of the section we prove that, given a family of disjoint
elements S ⊆ O(L), there exists a partition E such that (i) every element of
the disjoint family has a proxy at E , (ii) the proxies at E of the elements in
S have disjoint support, and (iii) their meet is a proxy of the meet of S.

Remark 42. Given a proxy x ∈ LC of an element p ∈ O(L), exactly one of
the following situations occurs for every C ∈ C:

(i) x⊥⊥C ∩ C = {e},

(ii) C ⊆ x⊥⊥C , or

(iii) x⊥⊥C ∩ C 6= {e} and C * x⊥⊥C .

By virtue of Lemma 34, (i) is equivalent to [xC ]C⊥ = [e]C⊥, that is, C /∈
Supp(x), while (ii) implies that C ∈ Supp(x).

Definition 43. Let L be an e-cyclic semilinear residuated lattice and C a
partition of the Boolean algebra of polars of L. An element x ∈ LC is said
to be canonical if for every C ∈ Supp(x), C ⊆ x⊥⊥C .

Notice that canonicity is a well-defined notion, since it does not depend on
the representatives: if [a]C⊥ = [b]C⊥ then, by virtue of Lemma 35, a⊥⊥∩C =
b⊥⊥ ∩C, and therefore C ⊆ a⊥⊥ if and only if C ⊆ b⊥⊥. It is also important
to note, and easy to prove, that canonicity is preserved by refinements: if
x ∈ LC is canonical and C 4 A, then φCA(x) is also canonical.

We now prove two fairly technical lemmas that will be useful in subse-
quent proofs. Note that Lemma 45 shows that Condition (iii) in Remark 42
is avoidable: proxies can be chosen so that their coordinates satisfy either
(i) or (ii).
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Lemma 44. Let L be an e-cyclic semilinear residuated lattice and let C,A
be two partitions such that C 4 A. Then, whenever y ∈ LA and Supp(y) ⊆
C, then there is a (unique) x ∈ LC such that φCA(x) = y. Furthermore,
Supp(x) = Supp(y).

Proof. Let y = ([yA]A⊥ | A ∈ A) ∈ LA such that Supp(y) ⊆ C. For every
C ∈ C, we define xC = yC if C ∈ Supp(y), and xC = e otherwise, and set
x = ([xC ]C⊥ | C ∈ C) ∈ LC. Then obviously Supp(x) = Supp(y).

We claim that φCA(x) = y, which will establish the statement of the
lemma. Let φCA(x) = ([tA]A⊥ | A ∈ A). Recall that for each A ∈ A, we
can choose tA = xC , where C is the unique element in C such that A ⊆ C.
Consider A and C as in the previous sentence. If C ∈ Supp(y), which by
assumption is a subset of C, then A ⊆ C ∈ A implies A = C ∈ Supp(y),
since polars in A are pairwise disjoint. Thus, if A /∈ Supp(y), then C /∈
Supp(y) = Supp(x), and therefore [tA]A⊥ = [eA]A⊥ = [yA]A⊥ . On the other
hand, if A ∈ Supp(y), then C = A, because A ∈ C ⊇ Supp(y), and therefore
tA = xA = yA. Thus, we have shown that φCA(x) = y, as required.

Lemma 45. Let L be an e-cyclic semilinear residuated lattice, and let O(L)
be the direct limit of the family {φCA : LC → LA | C 4 A}. Consider an
arbitrary partition C and an element p 6= e in O(L). Then:

1. If x is a proxy of p at C, then there is a refinement A of C such that
y = φCA(x) is canonical.

2. If x is a proxy of p at C and B is any partition such that Supp(x) ⊆ B,
then p has a proxy z at B and Supp(z) = Supp(x). Moreover, if x is
canonical, then so is z.

Proof.
1. Let x be a proxy of p at C and consider the set Ex = {x⊥⊥C ∩ C | C ∈
Supp(x)}. Since C is a disjoint family of polars, so is Ex. Moreover {e} /∈ Ex,
and therefore it can be extended to a partition Ēx. Consider the common
refinement A = C ∨ Ēx (see Equation (5)) of both C and Ēx. Notice that
Ex ⊆ A because, if E ∈ Ex, then there is C ∈ C such that {e} 6= E = x⊥⊥C ∩C,
whence E = C ∩ E ∈ C ∨ Ēx.

Let y = φCA(x). As usual, we choose the representatives of y as follows:
yA = xC , where for every A ∈ A, C is the unique polar such that A ⊆ C ∈ C.
In order to prove the canonicity of y, consider an arbitrary A ∈ A. If
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A ∈ Ex, then there is C ∈ Supp(x) such that A = x⊥⊥C ∩ C ⊆ x⊥⊥C = y⊥⊥A .
If A /∈ Ex, let C the unique polar in C such that A ⊆ C. If C /∈ Supp(x),
then y⊥⊥A ∩ A ⊆ x⊥⊥C ∩ C = {e}, whence A /∈ Supp(y). If C ∈ Supp(x),
then x⊥⊥C ∩ C and A are two distinct elements of A (since A /∈ Ex), and so
(x⊥⊥C ∩ C) ∩ A = {e}, since all polars in A are pairwise disjoint. Hence

y⊥⊥A ∩ A = x⊥⊥C ∩ (C ∩ A) = (x⊥⊥C ∩ C) ∩ A = {e},

showing that A /∈ Supp(y). Therefore, Supp(y) = Ex, and then for every
A ∈ Supp(y), A ⊆ y⊥⊥A .

2. Suppose now that x is a proxy of p at C and that B is a partition such
that Supp(x) ⊆ B. Consider A = B ∨ C and y = φCA(x), where we choose
the representatives of y as usual. Since Supp(x) ⊆ B and Supp(x) ⊆ C,
then obviously Supp(x) ⊆ A, whence it follows that Supp(y) = Supp(x). By
virtue of Lemma 44, there is z ∈ LB such that φB(z) = y and Supp(z) =
Supp(y) = Supp(x). Moreover, if x is canonical then y is canonical, and by
the way we constructed z, we deduce also the canonicity of z.

We’ll make use of the following simple lemma:

Lemma 46. Let p ∈ O(L) and let x be a proxy of p at C. Then

1. Supp(x) = Supp(|x|);

2. The element |x| is the proxy of |p| at C, and |x| is canonical whenever
x is.

Proof. 1. Let x be a proxy of p at C. Then, by Lemmas 8, 34, and 35, for any
C ∈ C, C ∈ Supp(x) iff [xC ]C⊥ 6= [e]C⊥ iff x⊥⊥ ∩C 6= {e} iff |x|⊥⊥ ∩C 6= {e}
iff [|xC |]C⊥ 6= [e]C⊥ iff C ∈ Supp(|x|). 2. It is clear that |x| is the proxy
of |p| at C. If C ∈ Supp(|xC |), then C ∈ Supp(xC), by item (1). Then,
C ⊆ x⊥⊥C = |xC |⊥⊥.

The next lemma is the missing piece that we need to prove Theorem 48.
We have already seen that we can choose proxies in a canonical way and
that, under certain conditions, we can move them from one partition to
another. Intuitively, all the information about an element is included in the
coordinates of its support, and this information transfers from a partition to
any other partition that contains its support. In Lemma 47 below, we show
that elements in O(L) are disjoint if and only if the polars in their supports
are a disjoint family.
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Lemma 47. Let L be an e-cyclic semilinear residuated lattice, p, q ∈ O(L),
and x and y canonical proxies of p and q at some partitions C and D, re-
spectively. Then, |p| and |q| are disjoint elements of O(L) if and only if
Supp(x) ∪ Supp(y) is a disjoint set of polars of L.

Proof. Without loss of generality, by virtue of Lemma 46, we can assume
that p, q are negative, and therefore we can take all the representatives of
x and y negative. Let A = C ∨ D, s = φCA(x) and t = φDA(y), where the
representatives of s and t are chosen in the usual way.

Suppose that C ∈ C and D ∈ D are such that A = C ∩D 6= {e}. Notice
that (sA ∨ tA)⊥⊥ = (xC ∨ yD)⊥⊥ = x⊥⊥C ∩ y⊥⊥D , by virtue of Lemma 21. One
can easily see that the result follows from the fact that:

A ∈ Supp(s ∨ t) ⇔ C ∈ Supp(x) and D ∈ Supp(y).

The implication (⇒) is clear. For the reverse implication (⇐) we make use
of the canonicity of x and y. Indeed, if C ∈ Supp(x) and D ∈ Supp(y),
then C ⊆ x⊥⊥C and D ⊆ y⊥⊥D , and hence {e} 6= A = C ∩D ⊆ x⊥⊥C ∩ y⊥⊥D =
(sA ∨ tA)⊥⊥.

We now have all the tools we need to prove that O(L) is actually laterally
complete. The proof proceeds as follows: for any disjoint set of negative
elements S of O(L), canonical proxies with pairwise disjoint supports are
chosen. Then, these supports are collected into a partition that possesses
proxies of the elements of S. Lastly, it is shown that the infimum of these
proxies exists and is a proxy of the infimum of the original family.

Theorem 48. If L is an e-cyclic semilinear residuated lattice, then O(L) is
laterally complete.

Proof. Let {pλ | λ ∈ Λ} be a disjoint subset of O(L), and for every λ ∈ Λ,
let xλ be a canonical proxy of pλ at some partition Cλ. Then, by Lemma 47,
the set

⋃
Λ Supp(xλ) is a disjoint set of polars of L and can be extended to

a partition E . Now, for every λ ∈ Λ, E is a partition containing Supp(xλ),
and then by virtue of Lemma 45, pλ has a canonical proxy x′λ at E and
Supp(x′λ) = Supp(xλ). It follows that the supports of the elements x′λ at E are
all disjoint, and therefore their meet z =

∧
Λ x
′
λ in LE exists, by Remark 41.

We complete the proof by showing that
∧

Λ pλ exists and z is its proxy
at E . Since z 6 x′λ for all λ ∈ Λ, φE(z) 6 φE(x

′
λ) = pλ. Suppose now that

q ∈ O(L) is a lower bound of {pλ | λ ∈ Λ}, let y be a proxy of q at some
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partition C, and let A be a refinement of E and C. Set yλ = φEA(x′λ), for every
λ ∈ Λ. It can be seen that

∧
Λ yλ exists in LA, and actually

∧
Λ yλ = φEA(z):

clearly, φEA(z) 6 yλ, for every λ ∈ Λ. Suppose now that s ∈ LA and for
every λ ∈ Λ, s 6 yλ. Fix A ∈ A and let E ∈ E be the unique element
in E such that A ⊆ E. Since all the supports of the x′λ are disjoint, then
there is at most one λ0 ∈ Λ such that [(x′λ0)E]E⊥ 6= [e]E⊥ , in which case
[zE]E⊥ = [(x′λ0)E]E⊥ , and therefore [sA]A⊥ 6 [(x′λ0)A]A⊥ = [zA]A⊥ . Otherwise,
[zE]E⊥ = [e]E⊥ , whence [sA]A⊥ 6 [zA]A⊥ . Thus, it follows that s 6 φEA(z).

Further, for every λ ∈ Λ,

φA(φCA(y) ∧ yλ) = φC(y) ∧ φA(yλ) = q ∧ pλ = q = φA(φCA(y)).

Therefore, due to the injectivity of φA, φCA(y) ∧ yλ = φCA(y), that is to
say, φCA(y) 6 yλ. This implies that φCA(y) 6

∧
Λ yλ = φEA(z), and therefore

q = φA(φCA(y)) 6 φA(φEA(z)) = φE(z). This establishes the proof of φE(z) =∧
Λ pλ.

Finally, we have the main result of the section:

Theorem 49. Any algebra L in a variety V of e-cyclic semilinear residuated
lattices is densely embeddable in a laterally complete member of V.

Proof. It is an immediate consequence of Theorems 39 and 48, and the fact
that O(L) is a direct limit of products of quotients of L.

As we already mentioned, O(L) cannot be “much larger” than L, since L
is dense in O(L). We could then inquire into the minimality of O(L). That
is, we can ask whether O(L) is the smallest laterally complete residuated
lattice in which L is densely embeddable. The answer is no in general, and
it is not difficult to find a counterexample:

Example 50. Consider the Heyting algebra L given by the following Hasse
diagram:

e

a b

c

0
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It can be easily seen that L is an integral semilinear residuated lat-
tice (Gödel algebra). The Boolean algebra of polars of L is Pol(L) =
{{e}, a⊥⊥, b⊥⊥, L}, with a⊥⊥ = {e, a} and b⊥⊥ = {e, b}. Hence, the set
of partitions of Pol(L) is D(L) =

{
{L},

{
a⊥⊥, b⊥⊥

}}
. Let us denote the non

trivial partition of L by C. D(L) is a directed set with a top element, namely
C, and therefore the limit of the directed system

{
φ{L}C : L{L} → LC

}
is

LC itself. It is not difficult to see that L/a⊥ is a chain with three elements
[0]a⊥ < [a]a⊥ < [e]a⊥ , and analogously L/b⊥. Then O(L) is the Heyting
algebra:

ê

â b̂

• ĉ •

• •

0̂

where we have named the images of the embedding of L into O(L). We
note that since L is finite, it is trivially laterally complete. This implies that
the theory developed in this section does not produce a “minimal” laterally
complete extension. In Section 9, we prove the existence of minimal such
extensions in the class of GMV algebras.

8. Projectablility of O(L) and O<ω(L)

As the title of the section suggests, the main result of this section is The-
orem 55, which asserts that O(L) is strongly projectable for any semilinear
residuated lattice L. Thus, in view of the results of Section 7, every member
of a variety V of e-cyclic semilinear residuated lattices can be densely em-
bedded in a strongly projectable member of V . We, in fact, show that there
is another strongly projectable residuated lattice, denoted by O<ω(L), which
is generally smaller than O(L), is obtained via a direct limit construction
analogous to the one for O(L), and contains L as a dense subalgebra.

Definition 51. An e-cyclic residuated lattice L is said to be projectable if
every principal polar is a complemented element of C(L). That is, for all
a ∈ L,

L = a⊥ ∨C(L) a⊥⊥.
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It is called strongly projectable if for every convex subalgebra H ∈ C(L),

L = H⊥ ∨C(L) H⊥⊥.

Thus strong projectability of L is equivalent to the lattice C(L) being a Stone
algebra.

We start by exploring the relationship of the lattices of convex subalgebras
of an e-cyclic residuated lattice and any dense extension of it. This discussion
concludes with Proposition 53, which asserts that the Boolean algebras of
their polars are isomorphic. This result will be needed in this section and
plays a key role in Section 9.

Let L,H be e-cyclic residuated lattices such that L is a subalgebra of H.
Define the order-homomorphisms µ : C(L) → C(H) and ν : C(H) → C(L)
as follows: for all A ∈ C(L) and B ∈ C(H), µ(A) = CH[A], the convex
subalgebra of H generated by A, and ν(B) = B∩L. We first note that (µ, ν)
is an adjunction, since for all A ∈ C(L) and every B ∈ C(H),

A ⊆ ν(B) ⇔ A ⊆ B∩L ⇔ A ⊆ B ⇔ CH[A] ⊆ B ⇔ µ(A) ⊆ B.

Furthermore, ν is surjective, and hence µ is injective. Indeed, let A ∈ C(L)
and let S = {h ∈ H | a 6 h 6 e, for some a ∈ A}. If B = CH[S], then
S = B− (see Lemma 10) and ν(B) = B ∩ L = A. Lastly, µ preserves finite
meets since for every A1, A2 ∈ C(L) and every x ∈ CH[A1] ∩ CH[A2], if
x 6 e then there are ai ∈ Ai such that ai 6 x, for i = 1, 2, and therefore
a1 ∨ a2 6 x 6 e, whence x ∈ CH[A1 ∩ A2], and the other inclusion is trivial.
Thus, µ is an injective lattice homomorphism preserving arbitrary joins.

When an e-cyclic residuated lattice H is an extension of L, we use ( )∗ to
denote the polars of H and ( )⊥ to denote those of L. In the event L is dense
in H, we can say more about the adjunction (µ, ν):

Lemma 52. Let L and H be two e-cyclic residuated lattices such that L is
a dense subalgebra of H. The following hold with respect to the adjunction
(µ, ν) defined above:

(i) For every B ∈ C(H), B∗ = (µν(B))∗.

(ii) For every A ∈ C(L), ν(µ(A)∗) = (νµ(A))⊥.

(iii) The map ν preserves pseudocomplements, that is, for every B ∈ C(H), ν(B∗) =
ν(B)⊥.
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Proof.
(i) Let B ∈ C(H). We need to show that B∗ = (µν(B))∗. For the left-to-right
inclusion, notice that µν(B)∩B∗ ⊆ B∩B∗ = {e}, and so B∗ ⊆ (µν(B))∗. For
the other inclusion, suppose that D ∈ C(H) is such that µν(B) ∩D = {e}.
Then,

{e} = ν(µν(B)∩D) = νµν(B)∩ν(D) = ν(B)∩ν(D) = ν(B∩D) = (B∩D)∩L.

Since L is dense in H, we have that B∩D = {e}, whence D ⊆ B∗. Therefore,
(µν(B))∗ ⊆ B∗.

(ii) Let A ∈ C(L). We need to prove that ν(µ(A)∗) = (νµ(A))⊥. One
inclusion is just the observation that ν(µ(A)∗)∩ν(µ(A)) = ν(µ(A)∗∩µ(A)) =
ν({e}) = {e}, whence ν(µ(A)∗) ⊆ (νµ(A))⊥. For the other inclusion, suppose
that D ∈ C(L) is such that νµ(A) ∩ D = {e}. Then, µ(A) ∩ µ(D) =
µνµ(A) ∩ µ(D) = µ(νµ(A) ∩D) = µ({e}) = {e}, and hence µ(D) ⊆ µ(A)∗.
Since ν is onto, we have D = νµ(D) ⊆ ν(µ(A)∗).

(iii) Let B ∈ C(H). We have in view of the preceding discussion that
ν(B∗) = ν((µν(B))∗) = (ν(µν(B)))⊥ = ν(B)⊥, as we wanted to prove.

The adjunction (µ, ν) is put to use in the proof of the next proposition.

Proposition 53. If L is a dense subalgebra of an e-cyclic residuated lattice
H, then the Boolean algebras Pol(L)and Pol(H) are isomorphic. The isomor-
phism is implemented by the maps µ̂ : Pol(L) → Pol(H) and ν̂ : Pol(H) →
Pol(L), defined by µ̂(A) = (µ(A⊥))∗ and ν̂(B) = ν(B), for all A ∈ Pol(L)
and B ∈ Pol(H).

Proof. Let µ̂ and ν̂ be as in the statement of the proposition. In light of
Lemma 52.(ii), ν(B) ∈ Pol(L), for each B ∈ Pol(H). Note that ν̂ is surjec-
tive, since ν is surjective and preserves pseudocomplements. We claim that µ̂
is the left adjoint of ν̂. Note first that if A ∈ Pol(L), there exists C ∈ Pol(H)
such that A = ν(C). Then, by invoking both conditions of Lemma 52, we
get µ̂(A) = (µ(A⊥))∗ = (µ(ν(C)⊥))∗ = (µν(C∗))∗ = C∗∗ = C.

Now let A ∈ Pol(L) and B ∈ Pol(H). We need to prove that µ̂(A) ⊆ B
if and only if A ⊆ ν̂(B). Suppose first that µ̂(A) ⊆ B and let C ∈ Pol(H)
such that A = ν(C). Then C ⊆ B, and so A = ν(C) ⊆ B. On the other
hand, if A ⊆ B, then ν(B)⊥ ⊆ A⊥, which, combined with Lemma 52.(iii)
and the momotonicity of µ, implies that µν(B∗) ⊆ µ(A⊥). Then another
application of Lemma 52.(i) yields µ̂(A) = (µ(A⊥))∗ ⊆ (µν(B∗))∗ = B∗∗ =
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B. We have verified that (µ̂, ν̂) is an adjunction, and hence, in particular,
that µ̂ is injective. Lastly, µ̂ is surjective, since for B ∈ Pol(H), µ̂(ν(B)) =
(µ(ν(B)⊥))∗ = (µ(ν(B∗)))∗ = B∗∗ = B, by Lemma 52.(iii). We have shown
that µ̂ is a lattice (and hence a Boolean) isomorphism with inverse ν̂.

We continue by providing a description of all the polars of O(L) in terms
of the supports of their elements. Following the practice above, given S ⊆
O(L), we denote by S∗ the polar of S in O(L). For X ⊆ L, we abuse notation
and write X∗ for (φ(X))∗; in other words, we identify the elements of L with
their images in O(L) (see Theorem 39).

Lemma 54. Let L be an e-cyclic semilinear residuated lattice, A ∈ Pol(L),
and p ∈ O(L). Let C be a refinement of the partition {A,A⊥} so that LC
contains a canonical proxy x of p. Then:

1. p ∈ A∗12 if and only if C ⊆ A⊥, for every C ∈ Supp(x).

2. p ∈ A∗∗ if and only C ⊆ A, for every C ∈ Supp(x).

Proof. Without loss of generality, we may assume that p is negative, since p ∈
A∗ if and only if |p| ∈ A∗ (Lemma 10), and Supp(x) = Supp(|x|) (Lemma 46).
For every C ∈ C, there are only two mutually exclusive possibilities: C ⊆ A
or C ⊆ A⊥.

1. (⇐) Suppose that C ⊆ A⊥, for every C ∈ Supp(x). Consider an
arbitrary element a ∈ A− and write a = φ(a) for its image in O(L). Note
that aC = ([a]C⊥ | C ∈ C) is the proxy of a at C. Under the assumption, for
every C ∈ Supp(x), C ⊆ A⊥, and so a⊥⊥∩C = {e}. But then, by Lemma 34,
[a]C⊥ = [e]C⊥ . Thus,

[xC ]C⊥ ∨ [a]C⊥ =

{
[e]C⊥ ∨ [a]C⊥ if C ⊆ A

[xC ]C⊥ ∨ [e]C⊥ if C ⊆ A⊥
= [e]C⊥ .

Therefore, x and aC are disjoint, whence p and a are disjoint too. Since
a ∈ A− is arbitrary, it follows that p ∈ A∗.

(⇒) Suppose there exists C ∈ Supp(x) such that C ⊆ A, and let a ∈ C,
a < e. By the canonicity of x and our choice of C, a⊥⊥ ⊆ C ⊆ x⊥⊥C , and

12There is minor abuse of notation here. A more precise notation in accordance with
the preceding discussion would have been p ∈ µ(A)∗.
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hence
(a ∨ xC)⊥⊥ ∩ C = a⊥⊥ ∩ x⊥⊥C ∩ C = a⊥⊥ 6= {e}.

Therefore, x and aC are not disjoint, and thus p and a are not disjoint either.
We have shown that p /∈ A∗.

1. Is a consequence of (1) and the fact that A⊥∗ = A∗∗, or more precisely,
µ(A⊥)∗ = µ(A)∗∗. Indeed, µ(A)∗∗ = (µ(A)∗)∗ = (µ̂(A⊥))∗ = (µ̂(A))∗∗ (since
µ̂ is a homomorphism) = µ̂(A) = µ(A⊥)∗.

We are now in the position to prove that O(L) is strongly projectable.
In fact, we prove more:

Theorem 55. Let L be an e-cyclic semilinear residuated lattice. Then O(L)
is strongly projectable. Moreover, for all B ∈ Pol(O(L)), B ∨C(O(L)) B∗ =
B ⊗B∗ = O(L).

Proof. Let B be an arbitrary polar of O(L), and let A = {a ∈ L | a ∈ B}.
Note that in view of Proposition 53, A = ν̂(B), A ∈ Pol(L), and B = A∗∗.
Let p ∈ O(L) and let C be a partition of L that refines A = {A,A⊥} and p
has a canonical proxy x at C. We define, for every C ∈ C:

zC =

{
e if C ⊆ A⊥,

xC if C ⊆ A,
tC =

{
xC if C ⊆ A⊥,

e if C ⊆ A.

Thus, taking z = ([zC ]C⊥ | C ∈ C), t = ([tC ]C⊥ | C ∈ C), we can easily see
that both z and t are canonical, since x is canonical, and zt = x. Thus, if
q1 = φC(z) and q2 = φC(t), we have

p = φC(x) = φC(z · t) = φC(z) · φC(t) = q1 · q2.

Moreover, in view of Lemma 54, q1 ∈ A∗∗ = B and q2 ∈ A∗ = B∗. In order to
establish the uniqueness of the decomposition of p as a product of an element
in B and an element in B∗, suppose that we have two such decompositions:

q1 · q2 = p = q′1 · q′2.

Let C be a partition that refines A and contains canonical proxies x, z, t, z′,
and t′ for the elements p, q1, q2, q′1, and q′2, respectively. Hence, z · t = x =
z′·t′, because proxies are unique at each partition. Note that, since q1, q

′
1 ∈ B,

for every C ∈ C, if C ⊆ A⊥, [zC ]C⊥ = [e]C⊥ = [z′C ]C⊥ , by Lemma 54. And
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analogously, if C ⊆ A, [tC ]C⊥ = [e]C⊥ = [t′C ]C⊥ , since q2, q
′
2 ∈ B∗, and

therefore:

[zC ]C⊥ = [zC ]C⊥ · [e]C⊥ = [zC ]C⊥ · [tC ]C⊥ = [xC ]C⊥ = [z′C ]C⊥ · [t′C ]C⊥

= [z′C ]C⊥ · [e]C⊥ = [z′C ]C⊥ .

Hence, z = z′. Analogously, t = t′, and therefore q1 = q′1 and q2 = q′2.
Next we have to prove that if q1 · q2 6 q′1 · q′2, with q1, q

′
1 ∈ B and

q2, q
′
2 ∈ B∗, then q1 6 q′1 and q2 6 q′2. Arguing as and retaining the notations

of the preceding paragraph, it is easily shown that t 6 t′ and z 6 z′ in C.
Hence q1 6 q′1 and q2 6 q′2 in O(L).

Lastly, we can appeal to Lemma 54 once more and argue as above to
conclude that every element of B commutes with every element of B∗. This
completes the proof of the theorem.

Definition 56. An e-cyclic residuated lattice L is said to be orthocomplete
if it is both laterally complete and strongly projectable.

We readily obtain the following result:

Corollary 57. If L is an algebra in a variety V of e-cyclic semilinear residu-
ated lattices, then O(L) is an orthocomplete dense extension of L that belongs
to V.

Proof. It is an immediate consequence of Theorems 39, 48, and 55.

Given an e-cyclic semilinear residuated lattice, we denote by D<ω(L) the
set of all finite partitions of Pol(L). If C,D ∈ D<ω(L), then the refinement
of C and D is also finite (see Equation (5)), and thus the set D<ω(L) is also
a directed set. Let O<ω(L) denote the direct limit of the directed system{
φCA : LC → LA | C 4 A in D<ω(L)

}
. Notice that, since D<ω(L) is a

subposet of D(L), then O<ω(L) is embeddable in O(L).
In Section 7, infinite partitions were only required in the proof of the

lateral completeness of O(L). In fact, the set {pλ | λ ∈ Λ} chosen at the
beginning of the proof of Theorem 48 may be infinite, in which case the
partition E in the proof may be infinite as well. Thus, all we proved for O(L)
is also true for O<ω(L), except for Theorem 48 and Corollary 57. Lemma 54
is also true if we take p ∈ O<ω(L) and B a polar in O<ω(L). Therefore, the
following result holds.

Theorem 58. If V is a variety of e-cyclic semilinear residuated lattices and
L ∈ V, then O<ω(L) is a strongly projectable dense extension of L that
belongs to V.
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9. Laterally Complete Hull and Projectable Hull

We have established that every e-cyclic semilinear residuated lattice L
can be densely embedded in one that is both laterally complete and strongly
projectable, and hence in particular projectable. In this section we explore
conditions under which such an extension is minimal with respect to each
property in the following sense.

Definition 59. A laterally complete hull of a residuated lattice L is a lat-
erally complete residuated lattice H containing L as subalgebra, such that
(i) no proper subalgebra of H containing L is laterally complete; and (ii) L
is dense in H. A projectable hull and a strongly projectable hull are defined
in an analogous manner.

The main result of this section is Theorem 65, which asserts that any
algebra in a variety V of semilinear GMV algebras has a unique, up to iso-
morphism, semilinear laterally complete hull that belongs to V . Further, in
Theorem 74 we establish the existence and uniqueness of strongly projectable,
projectable and orthocomplete hulls in any variety of semilinear GMV alge-
bras. Lastly, in Theorem 76 we show that given a variety V of semilinear
GMV algebras and L ∈ V ,O<ω(L) is the unique, up to isomorphism, strongly
projectable hull of L. Combining Lemma 5 with Theorem 25, we obtain:

Proposition 60. A variety V of GMV algebras is semilinear if and only if
for every L ∈ V, all (principal) polars in L are normal.

A first step in establishing the existence and uniqueness of a laterally
complete hull in a variety V of semilinear GMV algebras is to show that any
algebra L in V has a minimal laterally complete extension inside O(L). A
reasonable course of action would be to take the intersection of all laterally
complete subalgebras of O(L) containing L. The next lemma reveals why
this approach will work in the setting of GMV algebras, but not necessarily
in general.

Lemma 61. Let L be a dense subalgebra of a GMV algebra H. For any
subset X of L−, if

∧LX exists, then so does
∧HX and they are equal.

Proof. Let a =
∧LX. Then, a is a lower bound ofX in L, and therefore in H.

Suppose that b is a lower bound of X in H. Then clearly a 6 a∨ b 6 e, since
all elements of X are negative, and therefore a = e\a 6 (a∨ b)\a 6 a\a = e.
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Suppose that (a ∨ b)\a < e. Then by the density of L in H, there exists
a c ∈ L such that

a 6 (a ∨ b)\a 6 c < e.

Hence, a/c 6 a/((a ∨ b)\a) = a ∨ b, and therefore a/c is a lower bound of
X. Now, since a/c ∈ L, we obtain a/c 6

∧LX = a. Whence e = a\a 6
(a/c)\a = (a/c∧ e)\a = a∨ c, since a/c is negative. But a 6 c, and therefore
c = a ∨ c = e, against the choice of c < e. Therefore, (a ∨ b)\a = e, which
implies b 6 a ∨ b 6 a. Since b is an arbitrary lower bound of X in H, we
deduce that

∧HX exists and
∧HX = a, as we wanted to prove.

Corollary 62. If H is a GMV algebra and {Li | i ∈ I} is a nonempty family
of subalgebras of H that are laterally complete and dense in H, then

⋂
I Li is

laterally complete.

Proof. Let L =
⋂
I Li. In order to prove that L is laterally complete, suppose

that X ⊆ L− is a disjoint subset. Then, for every i ∈ I, X ⊆ L−i , and
therefore

∧Li X exists. Since Li is dense in H, by Lemma 61,
∧HX exists

and
∧HX =

∧Li X ∈ Li. Thus,
∧HX is in every Li, and hence

∧LX exists
and coincides with

∧HX.

We have seen in Proposition 53 that if L is a dense subalgebra of an
e-cyclic residuated lattice H, then the Boolean algebras of polars of L and H
are isomorphic. This result will be employed in Corollary 63 to establish an
isomorphism between the directed sets of partitions of L and H, and pave the
way for the proof of Proposition 64, which states that O(L) can be embedded
into O(H).

Corollary 63. If L is a dense subalgebra of an e-cyclic residuated lattice H,
the map

C 7→ C = {µ̂(C) | C ∈ C}

is an order isomorphism between the join-semilattice 〈D(L),4〉 of partitions
of Pol(L) and the join-semilattice 〈D(H),4〉 of partitions of Pol(H).

Proof. Using the fact that µ̂ : Pol(L) → Pol(H) and ν̂ : Pol(H) → Pol(L)
are isomorphisms, and Lemma 27, it is easy to see that the map is well
defined, and actually a bijection. If C 4 A, and E ∈ A, then there exists a
unique A ∈ A such that µ̂(A) = E, and a unique C ∈ C such that A ⊆ C.
Therefore E = µ̂(A) ⊆ µ̂(C) ∈ C, and it is straightforward that µ̂(C) is the
only element of C containing E. That is, C 4 A.
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Proposition 64. Let L be a dense subalgebra of an e-cyclic residuated lattice
H, and let α : L→ O(L), β : H→ O(H) be the canonical embeddings. Then
there is an embedding τ : O(L)→ O(H) rendering commutative the following
diagram:

H O(H)

L O(L)

β

α

i τ (13)

Proof. By Proposition 53, there exists an isomorphism µ̂ : Pol(L)→ Pol(H),
with inverse ν̂. If C ∈ Pol(L), then the assignment fC⊥ : L/C⊥ → H/µ̂(C)∗

– defined by fC⊥([a]C⊥) = [a]µ̂(C)∗ , for all a ∈ L – is an injective homomor-
phism. Indeed, just note that µ̂(C)∗∩L = µ̂(C⊥)∩L = ν̂µ̂(C⊥) = C⊥. This
produces the family of homomorphisms {fC⊥πC⊥ : LC → Hµ̂(C)∗ | C ∈ C}.
Therefore, recalling that C = {µ̂(C) | C ∈ C}, the couniversal property
of the product HC induces a homomorphism τC : LC → HC such that
πµ̂(C)∗ τC = fC⊥πC⊥ , for all C ∈ C. Note that, for every x = ([xC ]C⊥ | C ∈ C)
in LC, τC(x) = ([xC ]µ̂(C)∗ | µ̂(C) ∈ C). Further, τC is an embedding, since
each fC⊥ , C ∈ C, is an embedding.

It can be readily seen that for every C 4 A in D(L), C 4 A (by Corol-
lary 63), and the bottom square of the following diagram commutes:

O(L) O(H)

LC HC

LA HA

τ

τC

φCA

φC

φC A

φC

τA

φA φA

Therefore, since O(L) is the direct limit, there exists a unique τ rendering
the whole diagram commutative. Furthermore, τ is an embedding, since if
p, q ∈ O(L) are such that τ(p) = τ(q), and x, y are proxies of p, q at C,
then φCτC(x) = τ(φC(x)) = τ(p) = τ(q) = τ(φC(y)) = φCτC(y). The equality
φCτC(x) = φCτC(y) shows that τC(x) and τC(y) are proxies of τ(p) at C. It
follows that τC(x) = τC(y), and hence x = y by the injectivity of τC.

Finally, taking α and β the embeddings of L and H into O(L) and O(H),
respectively, we readily see that the following diagram commutes, where i is
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the inclusion of L into H:

H H{H} O(H)

L L{L} O(L)

∼=

β

φ{H}

∼=

α

i

φ{L}

τ{L} τ

Now we have all we need to prove one of the main results of this section,
namely that every GMV algebra possesses a laterally complete hull, which is
unique up to isomorphism.

Theorem 65. Any algebra L in a variety V of semilinear GMV algebras has
a unique, up to isomorphism, laterally complete hull that belongs to V.

Proof. Let L be a semilinear GMV algebra. In view of Theorems 39 and 48,
O(L) is laterally complete and the isomorphic copy α[L] of L under the
canonical embedding α : L → O(L) is a dense subalgebra of O(L). It is
clear that any subalgebra of O(L) that contains α[L] is a dense subalgebra.
Let K be the intersection of all (necessarily dense) subalgebras of O(L) that
are laterally complete and contain α[L]. Hence, K is laterally complete by
Corollary 62. Further, O(L) and K belong to V . Combining these facts, we
conclude that L has a laterally complete hull K in V .

Suppose that H is another laterally complete hull of L in V . We can
apply Proposition 64 to find an embedding τ that renders Diagram (13)
commutative. Note that, since L is dense in H and β is a dense embedding,
we have that β[L] is dense in O(H). Hence τ [O(L)] is dense in O(H), since
β[L] = τα[L] 6 τ [O(L)] 6 O(H). Therefore, τ [O(L)] and β[H] are both
laterally complete and dense in O(H), and hence τ [O(L)]∩ β[H] is laterally
complete by Corollary 62. Therefore, β[H] ∩ τ [O(L)] = β[H], since β[H] is
a laterally complete hull of β[L], and β[H] ∩ τ [O(L)] is a lateral complete
subalgebra of β[H] containing β[L]. Thus, β[H] 6 τ [O(L)], and we can take
H′ = τ−1β[H] 6 O(L). Then, α[L] = τ−1β[L] 6 H′ and H′ is laterally
complete, and therefore K 6 H′. But, since H is a laterally complete hull of
L, then H′ is a laterally complete hull of α[L], and therefore H′ = K. Hence,
H ∼= K.
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We next prove that any laterally complete projectable GMV algebra is
strongly projectable (Proposition 70) by showing that any polar in a laterally
complete GMV algebra is principal (Corollary 69). The proofs of these results
require some preliminary lemmas.

Lemma 66. Let L be an e-cyclic residuated lattice and let C be a polar of
L. We have the following:

1. C contains a maximal disjoint subset.

2. If X a maximal disjoint subset of the residuated lattice C, then C =
X⊥⊥ in C(L).

Proof. 1. The proof of this part is a standard application of Zorn’s Lemma.
We consider the poset X of all disjoint subsets of C ordered by inclusion.
Then, the union of every chain of X is obviously disjoint, and therefore, by
Zorn’s Lemma, X possesses a maximal element. If X is a such an element,
then X⊥∩C = {e}, because otherwise there would be some a ∈ C ∩X⊥ and
a < e disjoint to all the elements of X. But then X ∪ {a} would be in X ,
contradicting the maximality of X.

2. Since X is a maximal disjoint subset of C, C ∩ X⊥ = {e}, and so
C ⊆ X⊥⊥. Then C⊥ ∨X⊥⊥ = L, where the join ∨ is taken in the Boolean
algebra of polars. On the other hand, X ⊆ C implies that X⊥⊥ ⊆ C⊥⊥ = C.
Thus C = X⊥⊥ as was to be shown.

The proofs of the next three results make use of the hypothesis that the
algebras under consideration are GMV algebras.

Lemma 67. If L is a GMV algebra and a, b ∈ L−, then a∨ b = e if and only
if a\b ∧ e = b.

Proof. First note that a\b∧ e = a\b∧ b\b = (a∨ b)\b. Therefore, if a∨ b = e,
then a\b∧ e = (a∨ b)\b = e\b = b. Conversely, if a\b∧ e = b, then a∨ b = b/
((a ∨ b)\b) = b/((a\b) ∧ (b\b)) = b/((a\b) ∧ e) = b/b = e.

Lemma 68. Let L is a GMV algebra and let X ⊆ L− such that
∧
X = a

exists. Then X⊥ = a⊥.

Proof. Obviously, if |y| ∨ a = e, then for every x ∈ X, |y| ∨ x = e, since
a 6 x 6 e. Thus, by Equation (3), a⊥ ⊆ X⊥. In order to prove the
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other inclusion, let us suppose that y ∈ X⊥. Then, again by Equation (3),
|y| ∨ x = e, for all x ∈ X, and so, |y|\x ∧ e = x by Lemma 67. Hence

|y|\a∧e =
(
|y|\

∧
X
)
∧e =

( ∧
x∈X

(|y|\x)
)
∧e =

∧
x∈X

(
(|y|\x)∧e

)
=
∧
x∈X

x = a,

which implies, again by Lemma 67, that |y| ∨ a = e. Thus X⊥ ⊆ a⊥, by
Equation (3).

Corollary 69. Any polar in a laterally complete GMV algebra is principal.

Proposition 70. If a GMV algebra is laterally complete and projectable,
then it is orthocomplete.

Proof. This is an immediate consequence of Corollary 69.

The following result is of independent interest.

Proposition 71. A GMV algebra L is (strongly) projectable if and only if
G(L) and I(L) are (strongly) projectable.

Proof. We first consider the strongly projectable case. Let H ∈ C(L). In
view of Lemma 12, there exist H1 ∈ C(G(L)) and H2 ∈ C(I(L)) are such
that H = H1 ⊗H2. Using Lemmas 12 and 22, we have:

H⊥L ∨C(L) H⊥⊥L = (H1 ⊗H2)⊥L ∨C(L) (H1 ⊗H2)⊥⊥L

= (H
⊥G(L)

1 ⊗H⊥I(L)

2 ) ∨C(L) (H
⊥⊥G(L)

1 ⊗H⊥⊥I(L)

2 )

= (H
⊥G(L)

1 ∨C(L) H
⊥I(L)

2 ) ∨C(L) (H
⊥⊥G(L)

1 ∨C(L) H
⊥⊥I(L)

2 )

= (H
⊥G(L)

1 ∨C(L) H
⊥⊥G(L)

1 ) ∨C(L) (H
⊥I(L)

2 ∨C(L) H
⊥⊥I(L)

2 )

= (H
⊥G(L)

1 ∨C(L) H
⊥⊥G(L)

1 )⊗ (H
⊥I(L)

2 ∨C(L) H
⊥⊥I(L)

2 )

It is now clear L is strongly projectable if and only if G(L) and I(L) are
strongly projectable.

The proof for projectability would be entirely analogous, taking into ac-
count that principal polars of L decompose as a inner direct product of
principal polars of G and I, in view of Lemma 24.

Corollary 72. 1. In a projectable GMV algebra L,

L = a⊥ ∨C(L) a⊥⊥ = a⊥ ⊗ a⊥⊥,

for all a ∈ L.
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2. In a strongly projectable GMV algebra L,

L = A⊥ ∨C(L) A⊥⊥ = A⊥ ⊗ A⊥⊥,

for all A ∈ C(L).

Proof. This is an immediate consequence of Proposition 18.

The next lemma is essential in proving the uniqueness of projectable and
strongly projectable hulls in the setting of semilinear GMV algebras.

Lemma 73. Let A be a (strongly) projectable GMV algebra, B a dense sub-
algebra of A, and {Hi | i ∈ I} a family of (strongly) projectable subalgebras
of A that contain B. Then, H =

⋂
i∈I Hi is (strongly) projectable.

Proof. To begin with, notice that since for every i ∈ I, B ⊆ Hi and B is
dense in A, then so are Hi, for every i ∈ I, and H =

⋂
i∈I Hi.

Fix an arbitrary i ∈ I. Since Hi is a dense subalgebra of A, ν̂i : Pol(A)→
Pol(Hi) determined by ν̂i(F ) = F∩Hi is an isomorphism of Boolean algebras,
by virtue of Theorem 53. Obviously, if X ⊆ Hi, we have that ν̂i(X

⊥A
) =

X⊥
A ∩Hi = X⊥

Hi , even though X is not a polar. Therefore, X⊥
A⊥A ∩Hi =

ν̂i(X
⊥A⊥A

) = ν̂i(X
⊥A

)⊥
Hi = X⊥

Hi⊥Hi .
We consider an arbitrary element h ∈ H and will see that H = h⊥

H ⊗
h⊥

H⊥H
, the case of strong projectability being entirely analogous. Every

x ∈ H admits a unique decomposition x = x1x2 as an element of Hi =
h⊥

Hi⊗h⊥Hi⊥Hi , since Hi is projectable. But, h⊥
Hi = h⊥

A∩Hi and h⊥
Hi⊥Hi =

h⊥
A⊥A ∩ Hi, as we mentioned before. Therefore, x = x1x2 is the unique

decomposition of x in A = h⊥
A ⊗ h⊥A⊥A

.
Since i ∈ I was arbitrarily chosen, then all the decompositions of x as an

element of Hi = h⊥
Hi ⊗ h⊥Hi⊥Hi , for every i ∈ I, actually coincide among

them, as they coincide with the decomposition of x as an element of A =
h⊥

A ⊗ h⊥A⊥A
, whence x1, x2 ∈ H =

⋂
I Hi. Therefore, x1 ∈ h⊥

A ∩H = h⊥
H

,

and x2 ∈ h⊥
A⊥A ∩ H = h⊥

H⊥H
. It is also obvious now that if x = x1x2

and y = y1y2 are unique decompositions of x and y as elements of H =
h⊥

H ⊗ h⊥H⊥H
, then x 6 y if and only if x1 6 y1 and x2 6 y2.

Theorem 74. Any algebra L in a variety V of semilinear GMV algebras has
a unique, up to isomorphism, projectable hull, strongly projectable hull, and
orthocomplete hull that belongs to V.
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Proof. By Theorem 58, if L is a semilinear GMV algebra, then it can be
densely embedded in the strongly projectable residuated lattice O<ω(L).
Therefore, by Lemma 73, L has a projectable hull and a strongly projectable
hull, which are the intersection of all the (strongly) projectable subalgebras
of O<ω(L) containing L.

Moreover in view of Corollary 57, L is densely embeddable in an or-
thocompete GMV algebra, namely O(L). Therefore, by Corollary 62 and
Lemma 73, L has an orthocomplete hull, which is the intersection of all the
orthocomplete subalgebras of O(L) containing L.

An argument similar to the one in the proof of Theorem 65 shows that
these hulls are unique up to isomorphism.

We close this section by showing O<ω(L) is the strongly projectable hall
of L. We start with a technical lemma.

Lemma 75. If C = {C1, . . . , Cn} is a partition of a projectable GMV algebra
H, and ai ∈ Ci, for i = 1, . . . , n, are such that a1 · · · an = e, then for all i,
ai = e.

Proof. We proceed by induction in n. If n = 1, there is nothing to prove.
Suppose that n > 1. Since C is a partition and ai ∈ Ci, we have that for
every j 6= i, ai ∈ C⊥j . Therefore,

e = a1 · · · an = a1(a2 · · · an) ∈ C1 ⊗ C⊥1 ,

whence we obtain that a1 = e and a2 · · · an = e. By the induction hypothesis,
a2 = · · · = an = e, as was to be proved.

Theorem 76. If L is an algebra in a variety V of semilinear GMV algebras,
then O<ω(L) is the strongly projectable hull of L in V.

Proof. We only need show that if L is a dense subalgebra of a strongly
projectable algebra H in V , then O<ω(L) is embeddable in H.

In order to do so, we start by defining for every C ∈ Pol(L) a homomor-
phism fC : L→ H, using the decomposition H = C∗⊗C∗∗, for every x ∈ L,
fC(x) = x1 is the unique element of C∗ such that there is x2 ∈ C∗∗ such that
x = x1 · x2. The map fC is well defined and a homomorphism. We notice
that if x ∈ C, then fC(x) = eH, and hence C ⊆ ker fC , whence we obtain a

homomorphism f̃C : L/C → H.
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Consider now a finite partition C of L, and the map ψC : LC → H deter-
mined by:

ψC([x1]C⊥1 , . . . , [xn]C⊥n ) = f̃C⊥1 ([x1]) · · · f̃C⊥n ([xn]).

The map ψC is trivially a homomorphism in view of Proposition 18 and
moreover, it is injective by virtue of Lemma 75. This defines a family {ψC :
LC → H | C ∈ D<ω(L)} of injective homomorphisms, which moreover is
compatible with the system {φCA | C 4 A, C,A ∈ D<ω(L)}, in the sense
that for every C 4 A in D<ω(L), ψAφCA = ψC. Thus, there is a unique
homomorphism ψ : O<ω(L)→ L rendering commutative the diagram:

O<ω(L) H

LC

ψ

φC ψC

Since all the involved homomorphisms are injective, we have that ψC is an
embedding of O<ω(L) into H, as we wanted to prove.
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