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Abstract

Uniform interpolation properties are defined for equational consequence in
a variety of algebras and related to properties of compact congruences on
first the free and then the finitely presented algebras of the variety. It is
also shown, following related results of Ghilardi and Zawadowski, that a
combination of these properties provides a sufficient condition for the first-
order theory of the variety to admit a model completion.
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1. Introduction

The following remarkable feature of intuitionistic propositional logic IPC
was established by A. M. Pitts in [31]. Given any formula a(Z, y) of the logic,
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there exist formulas o () and of(y), left and right uniform interpolants of
a with respect to z, respectively, such that for any formula 8(y, z),

Flpcﬁ—>04 <~ Flpcﬂ—>OéL and |_1pcoé—>ﬁ <~ l_IPC OéR—>ﬁ.

Each of the seven intermediate propositional logics admitting the usual Craig
interpolation property also admits uniform interpolation; however, there are
modal logics, such as S4, that admit Craig interpolation but not uniform
interpolation (see [16] for details and references).

The main aim of this paper is to study uniform interpolation in the set-
ting of universal algebra. Instead of a propositional logic, we consider a va-
riety of algebras: a class of algebraic structures of the same signature that is
defined by equations (equivalently, closed under homomorphic images, subal-
gebras, and direct products). Although there may exist faithful translations
between the variety and a propositional logic (e.g., Boolean algebras and
classical logic, Heyting algebras and intuitionistic logic, MV-algebras and
Lukasiewicz logic), this need not be the case. In particular, the signature
may not contain a ‘suitable’ implication connective. We therefore focus here
on consequences in the variety between a set of equations on the left and
a single equation on the right. The most natural interpolation property in
this setting is deductive interpolation (studied in [12}[13,19}[20}23}28}129}34] ),
which coincides with Craig interpolation only in the presence of a suitable
deduction theorem. Indeed, a variety with the congruence extension prop-
erty admits deductive interpolation if, and only if, it has the amalgamation
property (see [23] for proofs and references). In this paper, we define left and
right uniform interpolation properties for a variety and obtain correspond-
ing algebraic characterizations. We also obtain algebraic characterizations for
uniform versions of the Maehara interpolation property studied in [12}23}34].

The starting point for our study of uniform interpolation is the extensive
work on interpolation and model completions by Ghilardi and Zawadowski,
collected in the monograph [16]. These authors studied category-theoretic
properties of varieties that correspond to propositional logics with (left and
right) uniform interpolation, establishing these properties for certain vari-
eties of Heyting and modal algebras. Our motivations here for supplement-
ing this category-theoretic view of uniform interpolation with a universal
algebraic perspective are two-fold. First, we define left and right uniform
interpolation as specific properties of a variety, whereas in [16] these arise
as combinations of other properties. This allows us to identify new exam-



ples of varieties with and without uniform interpolation, not restricted to
intermediate and modal logics, including groups, MV-algebras, implicative
semilattices, Sugihara monoids, and bounded lattices. Second, our algebraic
perspective exhibits connections between uniform interpolation and known
properties in equational logic and universal algebra. In particular, we obtain
uniform versions of Maehara interpolation and a better understanding of the
connection between uniform interpolation and amalgamation.

A further logical motivation for studying uniform interpolation lies in its
relationship to the notion of a model completion, which originated in the
groundbreaking work on model-theoretic algebra of A. Robinson [32]. A
model completion of a first-order theory axiomatizes the class of algebras
in which ‘all potentially solvable equations possess solutions’ and always has
quantifier elimination. The prototypical example is the theory of fields, whose
model completion is the theory of algebraically closed fields. Ghilardi and
Zawadowski showed in [16] that category-theoretic properties of varieties
of algebras for intermediate and modal logics with uniform interpolation
imply the existence of a model completion for the first-order theory of the
variety. Building on their work, we relate the algebraic uniform interpolation
properties introduced in this paper to the existence of a model completion.
This approach is also related to the use in [21,22] of model-theoretic methods
(in particular, quantifier elimination) to establish the amalgamation property
for certain varieties of semilinear commutative residuated lattices.

The key notions needed for this algebraic view of uniform interpolation
turn out to be compact (i.e., finitely generated) congruences and pairs of
adjoint maps between them. The importance of compact congruences was
already implicit in [16], where they appear as ‘regular monomorphisms in the
opposite of a category of finitely presented algebras’. A notable conceptual
contribution of our work is that we view these notions as central to the
algebraic study of uniform interpolation. Compact congruences are needed
in order to obtain a stable theory of uniform interpolation when venturing
outside the realm of Heyting and modal algebras considered in |16], where
compact congruences may be harmlessly identified with certain elements of
algebras (see also Remark below). In other settings, such as that of
groups, more care is required, and the semilattice of compact congruences is
the appropriate setting for studying uniform interpolation.

Outline of the paper. After introducing the necessary background and
notation in Section 2| we establish the main theoretical results for right and



left uniform interpolation in Sections [3] and [ respectively. In particular,
Theorems and characterize varieties admitting an algebraic form of
right and left uniform interpolation. In Section [5] we recast the results of [16]
in this algebraic light, using the characterizations of the previous sections to
give an algebraic proof of the existence of a model completion in the presence
of right and left uniform interpolation. Throughout the paper, we consider
a range of examples of varieties for which uniform interpolation properties
hold, or fail to hold.

2. Congruence and consequence

In this section, we recall notions and basic results from universal alge-
bra required for the paper, focusing in particular on (compact) congruences
of algebras and how they relate to equational consequence in a variety. In
Subsection 2.1, we consider join-semilattices of compact congruences, and
liftings of homomorphisms to these semilattices. In Subsection [2.2] we de-
scribe the relationship between equational consequence and congruences on
free algebras of a variety. Finally, in Subsection [2.3] we recall the notion of
deductive interpolation and related algebraic properties such as amalgama-
tion. We assume familiarity with basic definitions from universal algebra, as
provided in, e.g., [7, Ch. T-TI].

2.1. Congruence lattices and lifting homomorphisms

An element k in a complete lattice L is compact if, whenever k < \/ .S
for some S C L, there exists a finite £ C S such that k& < \/ F. The set
of compact elements of L forms a join-subsemilattice of L, denoted by KL.
An algebraic lattice is a complete lattice in which every element is a join of
compact elements (see, e.g., [10,|14,|18] for further details).

For any algebra A, the set of congruences on A is denoted by Con A.
The intersection of a set of congruences on A is again a congruence on A,
so Con A is a complete lattice under the inclusion order.E| In fact, Con A is
always an algebraic lattice |7, Theorem 5.5]. For any S C A x A, we denote
by Cg,S the congruence on A generated by S. Recall that the compact

3We adhere here to the usual convention in universal algebra that congruences are
ordered by set-theoretic inclusion; hence, § < 1 if, and only if, the natural map from
A /0 to A/ is well-defined. We warn the reader that this convention sometimes makes an
order-reversal necessary when comparing with other settings, cf., e.g., Remarks[2.3|and
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elements of Con A are exactly the finitely generated congruences; we denote
the set of these compact congruences on A by KCon A. Note that, although
KCon A is always a join-subsemilattice of Con A, meets in KCon A need not
exist in general.

A pair of maps f: P < Q : g between partially ordered sets P, Q is called
an adjunction or adjoint pair if for all a € P, b € @, it holds that f(a) < b
if, and only if, a < g(b). The map f is called left adjoint to g, and g is called
right adjoint to f. Note that if f, g is an adjoint pair, then they are both
monotone; in fact, f preserves arbitrary existing joins in P and ¢ preserves
arbitrary existing meets in Q. In this case, the composite map g o f is a
closure operator on P. We refer to, e.g., |14, Ch. 7] or |18, Sec. O-3] for more
background on adjunctions and closure operators.

In the following definition, central to this paper, we lift a homomorphism
between algebras to an adjoint pair between their congruence lattices.

Definition 2.1. Let Ah: A — B be a homomorphism. The adjoint lifting of
h to the congruence lattices of A and B is the pair of maps

h*: ConA < ConB :h71,

h*(¥) := Cg {(h(a), h(a")) : (a,d) € ¥},
h=(0) := {(a,d') € A* : (h(a),h(d)) € O} = ker h(—) /6.

We call h* the direct image lifting and h~! the inverse image lifting of h. We
denote the composite map A= o h* by ¢,: Con A — Con A.

For any homomorphism h: A — B, h* is left adjoint to A~! and hence
the map ¢, is a closure operator on the complete lattice Con A. Moreover, h*
restricts to a map KCon A — KCon B, which we call the compact lifting of h.
Note, however, that h~! need not preserve compact congruences in general.
(Consider, for example, any non compact congruence ¢ on an algebra A and
a homomorphism h: A — A /0 such that § = h=1(A4).)

Regarding the existence of a right adjoint to the compact lifting of a
homomorphism, we have the following general fact.

Proposition 2.2. Let f: L < M :g be an adjunction between algebraic
lattices such that f preserves compact elements. The restriction f|kr, has a
right adjoint if, and only if, g preserves compact elements, and in this case,
the right adjoint of f|kr, is g|lkm-



Proof. If g preserves compact elements, then g|lgn: KM — KL is clearly
right adjoint to f|kr. Conversely, suppose that f|kr, has a right adjoint ¢'.
Let m € KM. Then fg¢'(m) < m, so ¢'(m) < g(m), since g is right adjoint
to f. Moreover, for any | € KL such that [ < g(m), we have f(I) < m, and
hence [ < ¢'(m), since ¢’ is right adjoint to f|lgkm. As g(m) is the join of
compact elements below it, g(m) < ¢’'(m). So g(m) = ¢’'(m) is compact. [

In particular, for any homomorphism h: A — B between algebras, h*|kcon a
has a right adjoint if, and only if, h~! preserves compact congruences.

Remark 2.3. Let V be a variety. The congruence lattice of an algebra
A in V is isomorphic to the opposite of the lattice rSubyer(A) of regular
subobjects of A, regarded as an object in the category V°P. Under this anti-
isomorphism, the adjoint lifting (h*, h~1) of h corresponds to the adjunction,
usually denoted by (3,,h*) in categorical logic. Moreover, if A is finitely
presented, then the join-semilattice of compact congruences is isomorphic to
the opposite of the lattice rSubeopp (A) of regular subobjects of A in the full
subcategory Vf(;p of VP whose objects are the finitely presented algebras. We
refer to, e.g., [16, Ch. 2], for more details.

Remark 2.4. The congruence lattice of any Heyting algebra A is isomorphic
to the filter lattice of A (the isomorphism sends a congruence  on A to the
f-equivalence class of the top element of A, see, e.g., [3]). The compact filters
are just the principal filters, and hence A is isomorphic to the opposite of

KCon A.

We end this subsection by establishing a general lattice-theoretic fact
about compact elements in intervals (Lemma and some properties of
surjective homomorphisms (Proposition that will be used in Section .
These results belong to the folklore of the subject; we include proofs here for
the sake of completeness.

Lemma 2.5. Let L be a complete lattice and k € KL. For any a € [k, T]g,
it holds that a € KL if, and only if, a € K([k, T]L).

Proof. 1f a € KL, then certainly a € K([k, T]y). For the converse, suppose
that a € K([k, T]r). Consider S C L satisfying a < \/S. Since k < a, we
have a = aVk < \/,.4(sVE), and, by assumption, there exists a finite F; C S
such that a <\/ . (s V k). Moreover, since k € KL and k < a <\/ S, there
exists a finite F, C S such that £ < \/ F;. Combining the two inequations,
we see that a < \/(F} U F3), as required. O
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Proposition 2.6 (cf. [23, Lem. 1]). Let h: A — B be a surjective homo-
morphism. Then:

(a) For any ¢ € Con A, c,(v)) = ¢ V ker h.
(b) The image of ¢, is the interval [ker A, Va]cona-
(c) If ker h is compact, then h~! preserves compact congruences.

Proof. (a) Let us write 6 for ker h. The inclusion ‘O’ is clear because § =
cn(Aa) and ¢, is a closure operator. For the inclusion ‘C’, note that, since
¥V 0 is a congruence in the interval [#, Va] C Con(A), the Correspondence
Theorem [7, Thm. 6.20] gives ¢, (¢ V 0) = ¢V . Since ¢, is order-preserving,
cn(¥) C ep(yp Vv 0), from which the required inclusion follows.

(b) This is a consequence of (a) and the fact that ¢ is in the image of ¢,
if, and only if, ¢;(¢) = 1.

(c) Since h™! is a lattice isomorphism from ConB to [ker h, Va]cona, it
sends compact elements of ConB to compact elements of [kerh, Vacona.
By Lemma , the compact elements of [ker h, Valcona are exactly those
elements of KCon A that contain ker h. O

2.2. FEquational consequence and free algebras

We briefly recall here some basic facts about free algebras and equational
consequence, referring to, e.g., [23, Sec. 2] and |7, I1.10] for more background.
For convenience, let us assume for the rest of the paper that £ is a fixed
algebraic signature with at least one constant symbol. For any (possibly
infinite) set of variables T, we denote by T(Z) the L-term algebra over T,
recalling that any assignment f from T to the universe A of an L-algebra
A lifts uniquely to a homomorphism f: T(Z) — A. Elements «, 3 of T(Z)
are called L-terms; L-equations are ordered pairs of elements («, 3) of T(Z),
written also as « ~ . We denote arbitrary L-equations by ¢ and sets of
L-equations by X, A, T',II, and write «(T), €(T), or X(Z) to denote that the
variables of, respectively, an L-term «, L-equation €, or set of L-equations
> are included in . We also adopt the convention that x,7,z, etc. always
denote disjoint sets of variables, and often write T,7 to denote their disjoint
union.

Given a set of L-equations 3(T), an L-algebra A, and an assignment
f:T — A, we write A, f | X to denote that 3 C kerf. We also write
A EXYif A f E X for all assignments f: T — A. Let K be any class



of L-algebras. Then we define for a set of L-equations ¥ U {e} containing
exactly the variables in the set 7,

Y Exe <= forevery A € K and assignment f: 7T — A,
AfEY = AfEe

Given a set of L-equations XU A, we write X = A if ¥ g e for all e € A.

Remark 2.7. Informally, =x may be called the ‘equational consequence
relation” of K. A genuine equational consequence relation (in the sense of
Blok and Pigozzi [6]) is obtained only if we restrict the considered equations
to a fixed set of variables. Note, however, that if IC is a variety, then the
consequence relation of K over a fixed countably infinite set of variables
determines the consequence relation for any set of variables (see [23, Sec. 2]).
Also note that, in terms of first-order logic, if 3 is finite, then ¥ |=x ¢ is
equivalent to: the universal sentence VZ(A X — ¢) lies in the first-order
theory of the class K.

Let us assume now and for the rest of the paper that V is a fixed variety
of L-algebras and omit any further reference to the signature £. We denote
the V-free algebra on a set T of free generators by F(T), constructed as the
largest quotient of T(Z) that lies in V, noting that both T(Z) and F(¥) exist
even when T = (), since £ contains a constant symbol by assumption. When
clear from the context, we will write «, €, or ¥ to denote also the element,
pair of elements, or set of pairs of elements in F(Z) corresponding to a term
a, an equation g, or a set of equations .

The fundamental connection between equational consequence and con-
gruences on free algebras is given by the following lemma.

Lemma 2.8 (cf. 23] Lem. 2]).
(a) For any set of equations ¥(), algebra A, and assignment f: 7 — A,

AfEY < Cgpn, X © ker f.
(b) For any sets of equations X(Z), A(%T),

Yy A <= Cg ACCg, .2

F(7)

Proof. (a) Clear from the definition and the fact that ker]?is a congruence
on T(7).



(b) Recall first that the variables ¥ occurring in 3(7), A(Z) are included
in (but may not equal) the set of variables T and observe that

YEyA <= forevery A €V and assignment f: T — A,
AFEY = AfEA

The left-to-right direction follows by restricting an assignment f: 7 — A to
g: y — A; the right-to-left direction follows by extending any assignment
g: 7y — A arbitrarily to an assignment f: T — A.

Suppose now that ¥ =, A. Consider the natural assignment f: T —
F(z)/Cg,,, 2. Clearly F(7)/Cg, X, f | X, so F(7)/Cg, %, [ E A
Hence, by (a), A C ker]?: CgF(E)E. So also CgF@A C CgF@Z.

For the converse, suppose that Cg__ A C Cg__¥. Let h: T(z) — F(7)

F(%)
be the natural homomorphism. Then

F(7)

h*(CgT@A) = CgF@A C CgF@Z = h*(CgT@Z).

So, by Proposition [2.6]a),

Cg. ACc(Cg. . >»)=Cg_ YVkerh.

T(T) T(T) T(Z)

Now consider A € V and an assignment f: 7 — A satisfying A, f &= ¥ and
hence, by (a), Cg. % C ker f. Since ker h C ker f,

T(Z)

Cg. AC CgT@E\/kerh C kerf.

()
That is, A, f = A. Hence ¥ =y A. O

Note also that equational consequence in V is finitary; that is, for any set
of equations XU {e}, whenever X =y ¢, there exists a finite ¥’ C 3 such that
¥ =y e. This follows from the previous lemma and the fact that, since any
congruence lattice is algebraic, Cg_ 2= U{Cs, - ¥ ¥ C XYY finite}.

2.3. Deductive interpolation

The following property of equational consequence may be viewed as a
natural generalization of Craig interpolation for classical propositional logic
to varieties of algebras and has been studied in depth by a number of authors
(see, in particular, [124|13}19]20}23,28.29}34] ).



Definition 2.9. V admits deductive interpolation if for any finite sets 7,7,z
and finite set of equations X(7,7) U {(y, Z)} satisfying ¥ |y €, there exists
a finite set of equations II(y) such that 3 =y IT and 11 =y €.

Below we recall some useful reformulations of this property.

Proposition 2.10. The following are equivalent:

(i) V admits deductive interpolation.
(ii) For any finite sets Z,y and finite set of equations ¥(Z,7), there exists
a set of equations II(y) such that for any equation (7, z),

by ):V e <— 1l |:V €.
(iii) For any finite sets 7,7, Z, the following diagram commutes:

—1

Con F(7,7)

ConF(7)

-k

J I

ConF(z,7,%) 7 ConF(7,%)

where i, j, k, and [ denote the inclusion maps between corresponding
finitely generated free algebras.

Proof. We consider first the diagram in (iii). For any § € ConF(7,7), let ¥
denote the set of equations {a(7,7) =~ B(Z,7) : (a, B) € 0}. We claim that,
for an arbitrary equation (7, 2):

(a) 8(?,2) S k’flj*(g) — X ):V E.
(b) e(y,z) € I*i"1(f) <= there exists a finite set of equations II(7) such
that 29 ):y IT and II ):y g.

(a) follows immediately from Lemmal[2.8 For (b), recall that 6 is the directed
join of the compact congruences below it. This join is preserved by i~! and
[* (since it is a left adjoint). Hence €(y,%) € [*i~1(0) if, and only if, there is a
compact ¢’ < 6 such that (7, %) € I*i1(#). (b) now follows by Lemma [2.§|

The equivalence of (i) and (iii) follows from (a) and (b). (ii) = (i) is
an easy consequence of the finitarity of the equational consequence relation,
so it remains to establish (i) = (ii). Given finite sets 7,7 and a finite set
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of equations X(Z,7), let II(y) = {6(y) : ¥ =y d}. Clearly, ¥ =y II. So if
Il =y ¢, then ¥ |y e. Conversely, if ¥ |y e, then, by (i), there exists a
finite set of equations IT'(7) such that ¥ =y II" and I |y €, so I" C IT and
hence also IT =y . O

Deductive interpolation enjoys close relationships with familiar algebraic
properties. Recall that a class of algebras IC has the amalgamation property
if for every 5-tuple (A, B, C, i, j) where A, B, C € K and i, j are embeddings
of A into B, C, respectively, there exists D € K and embeddings h, k of B, C,
respectively, into D such that the compositions hi and kj coincide. Recall
also that IC has the congruence extension property if any congruence of a
subalgebra of A € K extends to A. We state the following theorem, which
appeared first in [19], credited there to unpublished work of H.J. Keisler.

Theorem 2.11 (cf. |23, Thm. 22)).

(a) If V has the amalgamation property, then V admits deductive interpo-
lation.

(b) If ¥V admits deductive interpolation and has the congruence extension
property, then V has the amalgamation property.

Remark 2.12. The congruence extension property for V is itself equivalent
to the following property of equational consequence studied in [2}/11},23,[28]:
for any finite sets 7,7 and finite set of equations X(Z,y) U II(y) U {¢(¥)}
satisfying ¥, II =y €, there exists a finite set of equations A(7) such that
Y =y A and AJIT =y e (see |23, Thm. 20]).

The combination of the amalgamation and congruence extension proper-
ties is equivalent to the following (stronger) interpolation property of equa-
tional consequence in V.

Definition 2.13. V admits Maehara interpolation if for any finite sets 7,7,z
and finite sets of equations I'(Z,7), 3(7, %), A(7, Z) satisfying 'Y =y A,
there exists a set of equations I1(7) such that I =y, IT and 11, ¥ =y A.

Theorem 2.14 (cf. |23, Thm. 29]). The following are equivalent:

(i) V admits Maehara interpolation.
(ii) V admits deductive interpolation and has the congruence extension
property.
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(iii) V has the amalgamation property and the congruence extension prop-
erty.

The preceding theorem may be traced back to [34] and [12]. Note also that
the combination of the amalgamation property and the congruence extension
property (and hence Maehara interpolation) is equivalent to the transferable
injections property (see |23, Sec. 5] for further details and references).

3. Right uniform interpolation

In this section, we give a suitable syntactic definition for right uniform
deductive interpolation in the variety ), and show it to be equivalent to a
natural algebraic property of V.

Definition 3.1. A variety V admits right uniform deductive interpolation if
for any finite sets Z,7 and finite set of equations (7, 7), there exists a finite
set of equations I1(y) such that

Y =y II and for any equation €(7,z), Y Fye = Il |y e. (1)

A finite set of equations II(y) that satisfies is called a right uniform
interpolant of X with respect to 7.

Since any two right uniform interpolants of ¥ with respect to T must be
equational consequences of one another in ¥V, we may also speak of the right
uniform interpolant, denoting by 3z(X) some finite set of equations II(7)
satisfying .

A useful equivalent way of phrasing property is as follows:

for any equation £(7,%), ¥ EFye < I |ye. (2)

Note in particular that using this alternative characterization of deductive
interpolation, it is easy to see that right uniform deductive interpolation
implies deductive interpolation.

Uniform interpolation properties are closely related to properties of the
finitely presented algebras in the variety. Recall that a finite presentation
of an algebra A is a surjective homomorphism p: F(Z) — A such that T is
finite and ker p is a compact congruence on F(Z). An algebra A is called
finitely presented if it has a finite presentation.

We now state the main theorem of this section.

12



Theorem 3.2. The following are equivalent:

(i) V admits right uniform deductive interpolation.

(ii) V admits deductive interpolation, and the compact lifting of any homo-
morphism between finitely presented algebras in V' has a right adjoint.

Observe that in a locally finite variety, any finitely presented algebra A
is finite and hence KCon A = Con A for any finitely presented algebra A.
So the second part of condition (ii) in Theorem [3.2| holds in any locally finite
variety, and we obtain the following result.

Corollary 3.3. A locally finite variety admits right uniform deductive in-
terpolation if, and only if, it admits deductive interpolation.

Example 3.4 (Varieties generated by Heyting chains). Any variety gener-
ated by a Heyting chain is locally finite, and admits deductive interpolation
and hence also right uniform deduction interpolation if, and only if, the chain
has one, two, three, or infinitely many elements [20)].

The proof of Theorem [3.2| will be split into two steps:

(I) Establish an equivalence between right uniform deductive interpolation
and a property of congruences on free algebras (Proposition .

(IT) Show that the property of congruences on free algebras of step (I)

extends to a property of all finitely presented algebras (Proposition.

Proving Propositions and from which Theorem follows directly,
will occupy us for the rest of this section. In the first of these propositions
below, the equivalence of (i) and (iii) is required for Theorem [3.2 The
equivalent statement (ii) provides an interesting alternative characterization
of right uniform deductive interpolation that involves only compact liftings
of homomorphisms between (possibly infinitely generated) free algebras.

Proposition 3.5. The following are equivalent:

(i) V admits right uniform deductive interpolation.
(ii) For any sets T,y, the compact lifting of the inclusion homomorphism
i: F(y) — F(Z,y) has a right adjoint, '
(iii) V admits deductive interpolation, and, for any finite sets Z, 7, the com-
pact lifting of the inclusion homomorphism i: F(y) — F(7,7) has a

right adjoint, 771.
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Proof. (i) = (ii). Suppose that V has right uniform deductive interpolation
and consider any sets 7,7 and § € KCon F(7, 7). Pick a finite set of equations
¥.(7,7) that generates 6. By right uniform deductive interpolation, we obtain
a finite set of equations II(7) such that ¥ =y € if, and only if, II |=y € for
any equation £(g,z). By Lemma 2.8 for any equation £(y), we have that
¥ |y ¢ is equivalent to i(e) € Cg (X)) =0, and II |5y ¢ is equivalent to
€€ CgF@(H). So Cg, (IT) = i~'(#) and the congruence i~'(f) is compact,
as required.

(ii) = (iii). Suppose that (ii) holds. Clearly, to establish (iii), it suffices
to prove that V admits deductive interpolation. Consider disjoint finite sets
7 and 7 and a finite set of equations X(7,7). Let W be an infinite set disjoint
to 7 and ¥ and let 0 := Cg_ ME)(E). By assumption, the compact lifting of
the inclusion homomorphism i: F(y,w) — F(Z,7,w) has a right adjoint i~
Let A(y,w) be a finite set of equations that generates i~'() for some finite
u C w. Since w is infinite and w is finite, we may identify Z in the statement
of deduction interpolation using condition ([2)) with the infinite set w \ .
Let o: T(Z,y,w) — T(7,y,Z) be any substitution acting as the identity on
T(7,7,z) and satisfying o(T(w)) C T(g). We define I1(7) := o(A).

Observe now that for any equation e(y,w),

i(e) € Cg (B)=0 = cci '(§)=Cg

F(y,w) (A)

F(z,7,0)
and hence, using Lemma [2.8]
by ):V e <= A ):V .

In particular, 2 =y A. Consider an equation (7, Z) such that ¥ =y, . Then
A Ey e, and so 0(A) |y o(e), that is, IT =y, e. Suppose, conversely, that
I =y e. Since ¥ =y A, it follows that o(X) =y 0(A), that is, ¥ =y 1T and,
combining these consequences, ¥ =y €. So V admits deductive interpolation.

(i) = (i). Let T, 7 be finite sets and X(7,7) a finite set of equations.
Define 0 = Cg_ <E@(Z). Using (iii), the compact lifting of the inclusion ho-
momorphism 7: F(y) < F(7,7) has a right adjoint i~'. Let II(y) be a finite
set of equations that generates :~'(#). Now consider any equation &(y,z). If
¥ &y e, then, using deductive interpolation, pick a finite set of equations
A(7) such that ¥ =y A and A |y e. Since only variables from 3 occur in
A and i7'(Cg, (X)) = Cg,_ (II), we have Il =y A. Hence Iy 6. [
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Example 3.6 (Groups). The variety of groups has the amalgamation prop-
erty and therefore admits deductive interpolation, but it does not admit right
uniform deductive interpolation. It is not the case that for any finite sets x, 7y,
the compact lifting of the inclusion homomorphism i: F(y) — F(Z,7) has
a right adjoint. That is, there exists § € KConF(Z,7) such that 6 N F(y)?
is not finitely generated. Indeed, let p: F(y) — G be a recursive presen-
tation of a finitely generated group G which is not finitely presentable.
(For example, take 7 = {a,b}, and G = F(y)/(R), where R is the rela-
tion {(a""ba"b,ba""ba") : n € N}.) By Higman’s embedding theorem, there
exists a finitely presented group H and an embedding j: G — H. Choose
a finite generating set A C H which contains jp(y) for every y € 3. Let
T be a finite set of variables disjoint from ¥ such that there is a bijection
TUY — A, and let ¢: F(Z,7) — H be the unique homomorphism extending
this bijection. By Lemma [3.9 below, 6 := ker ¢ is compact, since H is finitely
presented. But 8 N F(7)? = ker p, which is not compact by assumptionﬁ

Example 3.7 (Lattice-ordered abelian groups and MV-algebras). We claim
first that the variety LA of lattice-ordered abelian groups, generated as a
quasivariety by (R, A,V,+,—,0) (cf. [1, Lemma 6.2]), admits right uniform
deductive interpolation. It suffices to show that a finite set of equations
Y. (z,7) has a right uniform interpolant with respect to x. Moreover, writing
a < B for a A~ «a, we may assume (with a little work, omitted here) that
¥ consists of inequations 0 < o +nz (1 € 1), 0 < f;—nx (j € J), and 0 < 7,
(k € K) for some n > 1, finite sets I, J, K, and terms «;, 3,7 that do not
contain x. A right uniform interpolant II(7) then consists of the inequations
0<a;+p8; (iel,je J)and 0 < v, (k € K). Since LA also has the
congruence extension property, this variety has the amalgamation property.

Let us consider now the variety MV of MV-algebras for a signature
Ly, generated as a quasivariety by [0,1] = ([0, 1], &, —,0), where a & b =
min(1, a+b) and ~a = 1—a. We recall that further operations may be defined
as 1 := =0, a®b := =(ma®-b), aVb := ~(-a®b)®b, and aNb := —(—aV-b).
Consider the signature L4 of lattice-ordered abelian groups with an addi-
tional constant 1 and the L 4-algebra R = (R, A,V,+,—,0,1). It follows
from McNaughton’s representation theorem (or see [23 Sec. 6] for a direct
proof) that (i) the interpretation of any £qy-term S in [0, 1] is equivalent to
the interpretation of some L 4-term (e A0)V 1 in R, and, conversely, (ii) the

4This example is based on an argument communicated to us by M. Sapir.
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interpretation of any £ 4-term (aA0) V 1 in R is equivalent to the interpre-
tation of some L pq-term £ in [0, 1]. Right uniform deductive interpolation
for MYV may then be established as in the case of lattice-ordered abelian
groups described above. Again, since M) also has the congruence extension
property, this variety has the amalgamation property.

Further details of these arguments, without explicit mention of uniform
interpolation, may be found in [23, Sec. 6]. Let us also remark that the
representation of finitely presented MV-algebras via rational polyhedra can
be used to provide a geometric argument for uniform interpolation (see [25]).

Proposition 3.8. The following are equivalent:

(i) For any finite sets 7,7, the compact lifting of the inclusion homomor-
phism i: F(Z) — F(7,7) has a right adjoint.

(ii) For any finitely presented algebras A, B in V), the compact lifting of
any homomorphism f: A — B has a right adjoint.

The key point in proving (i) = (ii) in Proposition [3.8| will be to show, in
Lemma [3.11] that it is always possible to choose suitable finite presentations
of the finitely presented algebras A and B. Before we can do this, we need
the following preliminary lemma, which shows that, in a finitely presented
algebra, we can arbitrarily choose a finite set of generators, and always obtain
a finite presentation. The proof generalizes an argument from group theory
due to B.H. Neumann, cf., e.g., |33, Thm. 2.2.3]. These results are also closely
related to [9, Theorem II1.8.4]. We give direct algebraic proofs.

Lemma 3.9. Let A be a finitely presented algebra in V. For any finite
set T and surjective homomorphism f: F(Z) — A, the congruence ker f is
compact.

Proof. Pick a finite presentation ¢g: F(y) — A of A, and a finite set II(7)
of generators for ker g. Since g is surjective, we may choose a substitution
t: F(Z) — F(y) such that got = f, and, as f is surjective, also a substitution
s: F(y) — F(7) such that fos=g.

Claim. The finite set {(s(«),s(5)) : (o, B) € I} U{(x, st(z)) : = in T}
generates ker f.

Proof of Claim. Denote by 9 the congruence generated by the set in the
claim. Clearly, ¢» C ker f. For the other inclusion, let B := F(Z)/¢ and
denote by p: F(Z) — B the natural quotient map. Let h: F(y) — B be the
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homomorphism p o s. Note that, for each («, ) € II,

Hence kerg C kerh, since II generates ker g. The general homomorphism
theorem then implies that there exists a unique homomorphism k: A — B
such that ko g = h. For each z in Z,

Since both p and k o f are homomorphisms from F(Z) to B, it now follows
that p = ko f. Hence, ker f C kerp = 1. O

We may now easily conclude the following results.

Corollary 3.10. Let A be a finitely presented algebra in V' and let 6 be a
congruence on A such that A/ is finitely presented. Then 6 is compact.

Proof. Let f: F(Z) — A be a finite presentation of A. Let p be the quotient
map A — A/f and let g := pof. By Lemma, f7H0) = ker g is a compact
congruence. Since f is surjective, we have f*(f~'(0)) = 6. Hence, since f*
preserves compact congruences, 6 is compact. O

Lemma 3.11. Let f: A — B be a homomorphism between finitely pre-
sented algebras in V. Then there exist finite presentations p4: F(Z) - A
and pp: F(T,y) — B such that pg oi = f opy, where i: F(Z) — F(7,7) is
the inclusion homomorphism.

Proof. Let pa: F(T) - A and ¢p: F(y) — B be finite presentations of A and
B. Since ¢p is surjective, for each x € T, we may pick s(z) € F(7) such that
f(pa(z)) = gp(s(x)). Define a substitution s: F(Z,7) — F(7) by sending
each y in 7 to itself, and each x in T to s(z). Let pp := ggos. Note that pp is
onto and that pgoi = fopy holds by construction. Moreover, F(7,7) /ker pg
is isomorphic to the finitely presented algebra B, so, by Corollary ker pp
is compact. O

We are now in a position to prove Proposition [3.8] which also concludes

the proof of Theorem

Proof of Proposition[3.8. (ii) = (i) is trivial. For (i) = (ii) let f: A — B
be a homomorphism between finitely presented algebras. We prove that
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f71(0) is compact for any compact congruence # on B. By Lemma [3.11]
there exist finite presentations ps: F(Z) - A and pp: F(7,y) — B such
that pgp oi = f opa. Now, if 6 is a compact congruence on B, then pj'(6)
is a compact congruence on F(Z,7) by Corollary since B/# is finitely
presented. By assumption, the congruence ¢ := i ~!(p5' (#)) is compact. Note
that, since pp o = f o pa, we have ¢ = p'(f~()). Hence the composite
F(z) » A — A/f71(0) is a finite presentation of the algebra A/f~1(6). By
Corollary again, f~1(0) is compact. ]

Using Theorem [3.2] we also obtain an algebraic characterization of a right
uniform version of Maehara interpolation.

Definition 3.12. V admits right uniform Maehara interpolation if for any
finite sets 7,7 and a finite set of equations I'(Z,7), there exists a finite set of
equations II(7) such that for any finite sets of equations X(7, %), A(y, Z),

| DY IZ];A — I X ):v A.

Theorem 3.13. The following are equivalent:

(i) V admits right uniform Machara interpolation.
(ii) V admits right uniform deductive interpolation and has the congruence
extension property.
(iii) V has the amalgamation property and the congruence extension prop-
erty, and the compact lifting of any homomorphism between finitely
presented algebras in V has a right adjoint.

Proof. (i) = (ii). If ¥V admits right uniform Maehara interpolation, then it
clearly admits both right uniform deductive interpolation and Maehara in-
terpolation. By Theorem [2.14] V also has the congruence extension property.

(ii) = (iii). Suppose that V admits right uniform deductive interpola-
tion and has the congruence extension property. It follows that V admits
deductive interpolation, and hence, by Theorem [2.11], has the amalgamation
property. That the compact lifting of any homomorphism between finitely
presented algebras in V has a right adjoint is a consequence of Theorem [3.2]

(iii) = (i). Suppose first that V has the amalgamation property and the
congruence extension property. Then, by Theorem [2.14] V admits Maehara
interpolation. Suppose also that the compact lifting of any homomorphism
between finitely presented algebras in V has a right adjoint. Then, by Theo-
rem 3.2 V admits right uniform deductive interpolation. Now consider finite
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sets T,y and a finite set of equations I'(Z,7). By right uniform deductive
interpolation, there exists a finite set of equations II() such that for any
finite sets of equations A(y, Z),

=y A <= I =y A

Now consider any finite sets of equations ¥(7,2), A(y,z). If I, ¥ = A, then
by Maehara interpolation, there exists a finite set of equations IT'(7) such
that T' =y II" and TI', A =y, X. But then also IT =y IT' and, as required,
I, A =y . Conversely, suppose II; A =, ¥. Then I' =y, 11, by the preceding
equivalence, and hence I', ¥ =y, A. O

4. Left uniform interpolation

In this section, we introduce a uniform deductive interpolation property
on the left, observing that left and right uniform interpolation do not be-
have entirely symmetrically. In Proposition [£.3] we provide an analogue of
the characterization in Proposition [3.5, but then see in Example that
the direct analogue of Theorem does not hold for left uniform interpo-
lation. We therefore provide an alternative characterization of this property
in Theorem 410l

Definition 4.1. V admits left uniform deductive interpolation if for any
finite sets 7,z and finite set of equations A(7, %), there exists a finite set of
equations II(7) such that

IT =y A and for any set of equations X(Z,7), X =y A = Y Ep Il (3)

A finite set of equations I1(7) satisfying (3)) is called a left uniform interpolant
of A with respect to the variables Z.

Again, two left uniform interpolants of the same set A are equational
consequences of one another, so we may also speak of the left uniform inter-
polant, denoting by Vz(A) some finite set of equations II(y) satisfying (3).
We also again obtain a useful equivalent way of phrasing property :

for any set of equations X(7,7), ¥ |y A < ¥ |y 1L (4)

Remark 4.2. Left uniform deduction interpolation may fail for a variety
for a rather trivial reason. It may be the case that for some finite set of
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equations A(7, z), there is no set of equations I1(y) satisfying II =, A. For
example, in the variety of lattice-ordered abelian groups LA, clearly there
exists no set of equations I1(y) such that I =4 y = 2.

The proof of the following proposition is entirely analogous to that of
Proposition [3.5]

Proposition 4.3. The following are equivalent:

(i) V admits left uniform deductive interpolation.
(ii) For any sets T, 7, the compact lifting of the inclusion homomorphism
i: F(y) — F(7,7y) has a left adjoint V;.
(iii) V admits deductive interpolation, and, for any finite sets 7,9, the com-
pact lifting of the inclusion homomorphism i: F(y) — F(7,7) has a
left adjoint V;.

Recalling that an order-preserving map between complete lattices has a
left adjoint if, and only if, it preserves all meets, we obtain the following
result.

Corollary 4.4. If V is locally finite, then the following are equivalent:

(i) V admits left uniform deductive interpolation.
(ii) For any sets T, 7, the compact lifting of the inclusion homomorphism
i: F(y) — F(T,7) preserves intersections.
(iii) V admits deductive interpolation, and, for any finite sets Z, ¥, the com-
pact lifting of the inclusion homomorphism i: F(7) <— F(Z,7) preserves
intersections.

Example 4.5 (Implicative semilattices). The variety ZSL of implicative
semilattices is locally finite and admits deductive interpolation. Hence it
admits right uniform deductive interpolation. However, it is not the case that
for any finite sets Z, 7, the lifting of the inclusion homomorphism i: F(y) <
F(7,7) preserves intersections. For example, let T = {z}, ¥ = {y1, 42} and
let 6; be the congruence on F(7) generated by (T,y;) for i = 1,2. Then
(T, ((1h = ) A (y2 = x)) — ) is in *(A;) Ni*(#2), but not in i*(6; N 6s)
(otherwise, the join operation would be definable in ZSL, which it is not).
So ZSL does not admit left uniform deductive interpolation.
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As mentioned already, the analogue of Theorem does not hold for the
case of left uniform deductive interpolation. How might we fix this? Recall
that, in Section [3] after proving the ‘right’ version of Proposition [4.3] which
we called step (I) on page [13] we were able to extend the relevant property
from inclusion maps to arbitrary homomorphisms between finitely presented
algebras. Example shows that the same strategy cannot work for the left
case. It turns out that the ‘missing ingredient’ for proving a characterization
as in Theorem for the left case is a characterization of the maps of the
form p*, for p a surjective homomorphism between finitely presented algebras,
that have a left adjoint.

For this missing ingredient, recall that a join-semilattice (L, Vv, L) is called
dually Brouwerian if the operation V is left residuated, i.e., for any a,b € L,
there exists an element a — b € L such that for any ¢ € L, a — b < ¢ if, and
only if, a < bV ¢. The following lemma is crucial.

Lemma 4.6. For any algebra A, the following are equivalent:

(i) For all 8 € KCon A, the compact lifting of ps: A — A/0 has a left
adjoint, V.
(ii) The join-semilattice KCon A is dually Brouwerian.

Proof. Note that a semilattice L is dually Brouwerian, if, and only if, for every
a € L, the function j,: L — Tpa defined by j,(b) := a Vb, has a left adjoint.
We prove that the latter condition is equivalent to (i) when L = KCon A. By
Proposition for any # € KCon A, the following diagram is well-defined

and commutes:
I N
Py

KCon A/Q [97 vA]KConA

Since p, ! is an isomorphism, p} has a left adjoint if, and only if, j, has a left
adjoint. ]

Proposition 4.7. The following are equivalent:

(i) The compact lifting of any finite presentation p: F(T) — A has a left
adjoint.
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(ii) For any finite set Z, the join-semilattice KCon F(7) is dually Brouwe-
rian.

(iii) For any finitely presented A € V, the join-semilattice KCon A is dually
Brouwerian.

(iv) For any finite set T and finite sets of equations X(7), A(Z), there exists
a finite set of equations II(Z) such that for any finite set of equations
r(@),

IYE)A <= T'EyIL

If V is locally finite, then (i)-(iv) are equivalent to

(v) V is congruence distributive.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma [4.6]
Also (iii) clearly implies (ii). For the converse direction, let p: F(Z) — A be
a finite presentation of A. By the Correspondence Theorem [7, Thm. 6.20],
Con A = [kerp, V]conr(z). Then, using Lemma K([kerp, V]conr@) =
[ker p, V]kcon @), so KCon A = [kerp, V]kconr@)- From the assumption
that KConF (%) is dually Brouwerian, it follows that the join-semilattice
[ker p, V]kconF(z) is also dually Brouwerian.

The equivalence of (ii) and (iv) follows directly from the correspondence
between equational consequence and congruences on free algebras established
in Lemma [2.8] Finally, observe that if V is locally finite, then F(T) is finite
for any finite set  and the finite lattice KConF(Z) = ConF(Z) is dually
Brouwerian if, and only if, it is distributive, so (ii) is equivalent to (v). O

Remark 4.8. The property that KCon A is dually Brouwerian for all A € V
is equivalent to the property that V admits equationally definable principal
congruences (see [4,5] for details and further characterizations). This is
strictly stronger than the property that KCon A is dually Brouwerian for all
finitely presented A € V. In particular, it is known that the only non-trivial
variety of lattices admitting equationally definable principal congruences is
the variety of distributive lattices [24]. On the other hand, any variety of
lattices generated by a finite lattice (in particular, any finite non-distributive
lattice) is locally finite and congruence distributive.

Let us mention also that if KCon A is dually Brouwerian for some algebra
A then Con A is distributive. Note first that Con A is always isomorphic to
the ideal lattice L of the join-semilattice KCon A. Moreover, if KCon A is
dually Brouwerian, then L = Con A. But the variety of dually Brouwerian
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join-semilattices is congruence distributive, so also Con A is distributive.
These results about dually Brouwerian join-semilattices, stated here without
proof, may be found in [26},27].

Example 4.9 (MV-algebras). Recall from Example[3.7]that the variety MV
of MV-algebras admits right uniform interpolation. A similar argument
demonstrates that it also admits left uniform interpolation; in particular,
unlike the case of lattice-ordered abelian groups mentioned in Example [4.2]
there is always a variable-free set of equations satisfying II = A for any
set of equations A, namely II = {0 ~ —0}. Hence for any sets 7,7, the
compact lifting of the inclusion homomorphism i: F(y) — F(Z,y) has a left
adjoint V;. However, it is not the case that the compact lifting of any finite
presentation p: F(Z) — A has a left adjoint.

We show that the equivalent syntactic condition (iv) of Proposition
fails. Recall first the local deduction theorem for MV-algebras stating that
for any set of equations I' and terms «, 3,

F''df{ax1ll EFmy fr1l <= I Epmy " < B for some n € N.

Now let ¥ = {z ~ 1} and A = {y ~ 1}. Suppose that there exists II(z,y)
such that for any finite set of equations I'(z, ),

rx ):MVA <~ F):Mvn

Then 11, ¥ Eap A, so, by the local deduction theorem, IT |y 2 < y for
some n € N. However, also {z""' <y} UX Euy A, so {a"! <y} By 1L
It follows that {z"™! < y} | 2™ < ¥, a contradiction.

We now prove our main theorem for left uniform deductive interpola-
tion. The proof is reasonably straightforward at this point, thanks to the
groundwork laid in Sections [2] and [3]

Theorem 4.10. The following are equivalent:

(i) V admits left uniform deductive interpolation, and KCon F(Z) is a du-
ally Brouwerian join-semilattice for any finite set 7.

(ii) V admits deductive interpolation, and the compact lifting of any homo-
morphism between finitely presented algebras in V has a left adjoint.

Proof. (i) = (ii). We have already observed that deductive interpolation
follows from left uniform deductive interpolation. Consider a homomorphism
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f: A — B between finitely presented algebras. Using Lemma [3.11] we may
pick finite presentations ps: F(Z) — A and pg: F(Z,y) — B such that
pp ot = fopa. Then the following lifted diagram commutes:

-k

1

KCon F(7T) KCon F(7,7)
(pa)* h (pB)* (5)
KCon A KConB

*

By Proposition (c), (pA)*1 preserves compact congruences. Moreover,
(pa)*o (10,4)*1 = idkconA. SO We obtain

o= f"opa) opa) " =(pp) oi*o(pa)".

Recall from Section [2| that (p4)~! always has a left adjoint, (p4)*. Moreover,
i* has a left adjoint by (i) and Proposition [4.3| and (pp)* has a left adjoint
by (i) and Proposition 1.7} we denote these left adjoints by V; and V,,,
respectively. Hence, since adjunctions compose, f* = (pg)* 0i* o (pa)~! has
a left adjoint, namely Vy := (pa)* oV, 0V,,.

(ii) = (i). Follows using Proposition [4.3| and Proposition [4.7] O

As in the case for right uniform deductive interpolation, we also obtain an
algebraic characterization of a left uniform version of Maehara interpolation.

Definition 4.11. V admits left uniform Maehara interpolation if for any
finite sets 7, Z and finite sets of equations X(7, z), A(7, Z), there exists a finite
set of equations I1(y) such that for any finite set of equations I'(%, ),

F,E):VA = F):VH

Theorem 4.12. The following are equivalent:

(i) V admits left uniform Maehara interpolation.

(ii) V has the amalgamation property and the congruence extension prop-
erty, and the compact lifting of any homomorphism between finitely
presented algebras in V has a left adjoint.

Proof. (i) = (ii). Suppose that V admits left uniform Maehara interpolation.
Then V clearly admits Maehara interpolation and left uniform deductive in-
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terpolation. Hence, by Theorem [2.14] V has the amalgamation property and
the congruence extension property. Moreover, using the equivalent syntac-
tic property given in Proposition 1.7, KConF(Z) is dually Brouwerian for
any finite set . So by the previous theorem, the compact lifting of any
homomorphism between finitely presented algebras in V has a left adjoint.
(ii) = (i). Suppose that V has the amalgamation property and the con-
gruence extension property (equivalently Machara interpolation) and that
the compact lifting of any homomorphism between finitely presented alge-
bras in V has a left adjoint. Then V admits deductive interpolation, so,
by the previous theorem, V admits left uniform deductive interpolation and
KCon F(7) is a dually Brouwerian join-semilattice for any finite set Z. Now
consider any finite sets 7,z and finite sets of equations %(y,z), A(y,z). Us-
ing the fact that KCon F(7, Z) is dually Brouwerian, we obtain a finite set of
equations IT'(7, Z) such that for any finite set of equations I'(7, Z),

'Yy A = 'y IT.

Now, using left uniform deductive interpolation, we obtain a finite set of
equations II(7) such that for any finite set of equations I'(Z,7),

F):VHI <~ F):];H

Consider any finite set of equations I'(Z,7). Observe first that, if I' =y 1,
then T' =y IT. But also II', ¥ =y A, so, as required, T', ¥ =y A. Suppose,
conversely, that I', ¥ =, A. Using Maehara interpolation, we obtain a finite
set of equations I1”(7, Z) such that

r ):V H” and H”, Y ):V A.

Hence, using the first equivalence above, 11" =) I, and so also I' &y, IT.
Finally then, using the second equivalence above, I" =y, II. We conclude that
) admits left uniform Maehara interpolation. n

5. Uniform interpolation and model completions

In this section we provide sufficient conditions for the first-order theory of
a variety V to have a model completion. In particular, we show that this is the
case if V admits left and right Maehara uniform interpolation (Corollary [5.5).
Let us emphasize that a variety of algebras over an algebraic signature £ may
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also be understood as a class of structures over the first-order language £ in
the sense of model theory. That is, an algebra is a structure in the first-order
language containing a function symbol for each operation symbol of £. By
the first-order theory of a variety, we mean the set of first-order sentences in
this language that are true in all algebras of the variety.

We first recall some relevant notions from model theory, referring to |8
Sec 3.5] for further details. Two first-order theories 7" and 7" are called
co-theories if they entail the same universal sentences. Semantically, 7" is a
co-theory of T if, and only if, every model of T embeds into a model of 7" and
vice versa. A first-order theory T™ is called model complete if every formula
is equivalent over T™ to an existential formula. That is, model complete
theories are those in which alternations of quantifiers can be eliminated.
Semantically, a theory T™* is model complete if, and only if, every embedding
between models of T™ is elementary. A theory T™ is called a model companion
of T if it is a model complete co-theory of T. A model completion of T is
a model companion 7™ such that for any model M of T', the theory of T*
together with the diagram of M is complete.

In the following proposition, we collect some useful facts related to model
completions:

Proposition 5.1 (See, e.g., [8, Prop. 3.5.13, 3.5.15, 3.5.18, 3.5.19]).

(a) Any theory has at most one model companion.

(b) If a V3-theory T" has a model companion 7%, then 7™ coincides with
the theory of the existentially closed models for T

(c¢) If T* is a model companion of 7', then 7™ is a model completion of T’
if, and only if, the class of models of T" has the amalgamation property.

(d) A model completion of a universal theory admits quantifier elimination.

The following theorem, although stated and proved here in a different
form, is essentially [17, Thm. 1].

Theorem 5.2. Suppose that V has the amalgamation property and admits
left and right uniform deductive interpolation, and that KCon A is dually
Brouwerian for any finitely presented A in V. Then the theory of V has a
model completion.

Proof. Fix a countable set of variables y. Denote by & the set of finite sets
of equations with variables in 7. Let

J={T,Ar...;A,,x) :n>0, [A,...,A, €&, x €7}
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For any I' € &, write ¢r for the first-order formula A, s cr(a &~ 3). For
any T C g containing the variables that occur in I', let 0r(Z) be the compact
congruence that I" generates on F(Z). Throughout this proof, we will use
the fact (cf. Lemma that, for any algebra A and assignment f: 7 — A,
we have A, f = ¢r if, and only if, Op(Z) C ker f, where f: F(z) — A is
the unique extension of f to the free algebra F(Z). For any non-empty finite
sequence (I'; Ay, ..., A,) of elements of £, write O .Ay,...,A,) for the formula
¢F A Anm:]_ _‘CbAm~

Fix j = (IAy,...,A,,x) € J. Let T be the finite set of variables
occurring in TUJ" _; A, and let Z := 7 \ {z}. Let i: F(z) — F(T) be
the homomorphism induced by the inclusion Z C Z. By the assumption
that V admits right uniform deductive interpolation and Proposition [3.5]
the congruence i~ (6r(T)) on F(Z) is compact, so we may pick a finite set of
equations > that generates this congruence. For 1 < m < n, the congruences
Vi(0a,, (T) — Or(T)) on F(Z) are compact by the assumption that V admits
left uniform deductive interpolation and Proposition [4.3] so we may also
pick finite sets of equations II,, that (interpreted in F(Z)) generate these
congruences. Now define ¢; to be the first-order formula ¢, 1m,) —
TP Ay, A)-

Let T" be the theory of V and define 7% := T'U {¢; : j € J}. We claim
that 7™ is the model completion of T'. To prove this, we will show that 7™
has quantifier elimination (cf. Proposition[5.1[(d)), and that 7* is a co-theory
of T'. The result then follows by Proposition [5.1j(c).

.....

.....

T* has quantifier elimination. We prove that
for all (T, Ay,...,Ap,z) €J, T+ (3zdra,,..an) = ¢, - (6)

From @, and the fact that ; € T™ by definition, it follows that in 7™ the
existential quantifier in any formula of the form Jdz¢r a, ... A,) can be elimi-
nated. It then follows that 7™ has quantifier elimination [8, Lemma 1.5.1].
For the proof of (€]), let j = (T',Aq,...,A,,z) € J. Let A be an al-
gebra in V. For any variable assignment g: Z — A, we show that A g |=
Jxdra,,..A,) implies A g = dsm,,..m,). Let g: Z — A be any variable
assignment such that A, g = Jzdra,,.a,). We prove that A, g |= ¢5 and
A, g | —¢n, forall1 <m < n. Picka € Asuch that A, g = ¢ a,,..a,)(a)
Extend g to an assignment f: T — A by letting f(z) := a. Since A, f | ¢r,
we have 0p(T) C ker f. Hence, 05(z) = i '(6p(%)) C i '(ker f) = ker f/,
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since 7 o f’ = f, proving A, f' = ¢x. Towards a contradiction, suppose that
A, f' k= ¢y, for some 1 < k < n. Then i, (04, (%) — 0p(%)) = On1, () C ker f".
By adjunction, we get 6a, (Z) C Or V i*(ker ]/”\’) C ker]/”\. But this contradicts
the fact that A, f = —¢a,.

T* is a co-theory of 7. Since T' C T™, it suffices to show that any
universal sentence entailed by 7™ is entailed by 7. We will show first that,
for any j = (I'; Ay, ..., Ay, z) € J, A’ in V, and assignment f': Z — A/,

-----

A Lf E P AL, A)- (7)

To prove , let ]/"“\’: F(Z) — A’ be the unique extension of f’ to a homo-
morphism. We first assume that ]/”\’ is surjective, then subsequently deduce
the general case of .

Let i: F(Z) — F(T) be the natural inclusion homomorphism. Consider
the congruence 0 := 0 V i*(ker ]?’) on F(Z). Let A be the quotient of F(7)
by 6, and denote the natural quotient map by p: F(Z) — A. Note that,
using the assumption A’, f' = ¢y, we have 65, = i~1(fr) C ker f/, and also
i~Yi*(ker f') = ker ' by [23, Lemma 5]. It follows that i~!(d) = ker f’, so
there is a well-defined injective homomorphism ¢: A" < A which satisfies
Lo fl=mpoi.

F(z) —— F(7)

ff[ p
A/%A

Let f: T — A be the extension of the assignment ¢ f’ by setting f(x) := p(x).
Note that f = p, since these two homomorphisms agree on all the variables.

.....

definition, O C 6 = kerp = ker f. Also, forAeach 1 < k < n, we have
A" f" = —¢n,, so i,(0a, —Or) = On, € ker f’, so by adjunction 6a, <
Or Vi*(ker f’) = 6, as required.
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For the general case of , let B’ be the image of f’ in A’, and find an
extension «': B' = B with B,/ f' = 3x¢r a, ... a,), Witnessed by b € B, say.
Since V has the amalgamation property, applying this to the injections ¢ and
the inclusion B’ — A’, we find an extension ¢: A’ — A together with a map
A: B — A such that A\// = ¢|g/. Since AT ,A1,...,A,) 1S quantifier-free, we will
now have A, tf = Jxdra,,. A, Witnessed by x := A(D).

To finish the proof, let x be a universal sentence such that 7% - y. By the
compactness theorem of first-order logic, there exists a finite subset F' C J
such that T"U{¢; : j € F'} F x. We prove that, in fact, T x. Let A’ be
any algebra in V. Let Z be the set of free variables occurring in {¢; : j € F'},
and pick an arbitrary assignment f’: Z — A’. By repeatedly applying ,
we obtain an extension ¢: A’ — A such that A, .f" = ¢; for each j € F.
Now, since T"U {¢; : j € F'} I x, we have A |= x. Since A’ is a subalgebra
of A and y is universal, it follows that A’ = y, as required. O

Corollary 5.3. Suppose that V is locally finite and congruence distributive,
has the amalgamation property, and for any finite sets 7,7, the compact
lifting of the inclusion homomorphism i: F(y) < F(Z,7) preserves intersec-
tions. Then the theory of V has a model completion.

Example 5.4 (Sugihara monoids). The variety of Sugihara monoids is lo-
cally finite, congruence distributive (as it has a lattice reduct), and has the
amalgamation property [22]. Moreover, for any finite sets 7,7, the compact
lifting of the inclusion homomorphism i: F(y) < F(Z,7) preserves intersec-
tions. Hence the theory of Sugihara monoids admits a model completion.

Corollary 5.5. If a variety V admits both left and right uniform Maechara
interpolation, then the theory of V has a model completion.

Example 5.6 (Varieties of Heyting algebras). The non-trivial varieties of
Heyting algebras whose theories have a model completion are exactly those
that admit left and right uniform interpolation, which, by the results in
[16, Ch. 4], are exactly the seven varieties identified by Maksimova that admit
deductive interpolation (equivalently, have the amalgamation property).

Let us conclude by comparing our Theorem to |16, Thm. 3.8], which
states that if the opposite category of the finitely presented algebras in a
variety is an r-Heyting category, then the variety has a model completion.

We briefly recall the definition of a r-Heyting category from [16, Ch. 3],
where the reader can find more details. Note that the following category-
theoretic definitions will be applied to the opposite of a category of finitely
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presented algebras. In particular, ‘regular subobjects’ correspond to com-
pact congruences, ‘epis’ are subalgebra inclusions, ‘pullback functors’ are the
covariant liftings of the form h* (Def. 2.1)), and left and right adjoints are
swapped with respect to the rest of this paper, also see Remark above.
An r-regular category is defined to be a category which has finite limits, each
arrow factorizes as an epi followed by a regular mono, and epis are stable
under pullbacks. By [16, Prop. 3.3], a category with finite limits is r-regular
if, and only if, the pullback functors operating on regular subobjects have
left adjoints satisfying the Beck-Chevalley condition. An r-Heyting category
is an r-regular category in which finite joins of regular subobjects exist, and
the pullback functors on regular subobjects have right adjoints.

Proposition 5.7. Let V be a variety with the congruence extension property.
The following are equivalent:

(i) The opposite of the category of finitely presented algebras in V is an
r-Heyting category.
(ii) V admits left and right uniform deductive interpolation, and KCon A
is a Heyting algebra for any finitely presented A in V.
(iii) V has the left and right Maehara uniform interpolation properties, and
KCon A has finite meets for any finitely presented A in V.

Proof. (i) < (ii). By |16, Prop. 3.3] cited above, V is r-regular if, and only
if, ¥V admits right uniform deductive interpolation, since the Beck-Chevalley
condition for left adjoints is equivalent to having the amalgamation property
in the presence of the congruence extension property (see, e.g., [15,30]).
The equivalence now follows from Theorem [4.10] and the fact that Heyting
algebras are exactly dually Brouwerian semilattices in which all finite meets
exist. (Recall that finite joins of regular subobjects correspond to finite meets
of compact congruences.)

(ii) < (iii). By Theorem [4.10} the conjunction of left uniform deductive
interpolation and KCon A being dually Brouwerian for all finitely presented
A is equivalent to deductive interpolation and all compact liftings having left
adjoints. By Theorems [2.14] and [4.12} in the presence of the congrue=nce
extension property this is equivalent to left Maehara uniform interpolation.
By Theorem [3.13] the congruence extension property and right uniform de-
ductive interpolation are together equivalent to right Maehara uniform in-
terpolation. O
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Remark 5.8. In light of Proposition[5.7], our result in Theorem [5.2]is slightly
more general than [16, Thm. 3.8], in that we do not need to assume the
congruence extension property and that finite meets of compact congruences
exist. These properties were added in [16] to obtain the partial converse |16,
Thm. 3.11], which says that under certain conditions the opposite category of
finitely presented algebras in a variety admitting a model-completion must be
r-Heyting. However, close inspection of the proof of [16, Thm. 3.8] shows that
the additional assumptions on the category are not needed for the direction
which establishes existence of a model completion on the basis of uniform
interpolation properties. The slight generalization we obtain here may be
useful for applications in contexts where the congruence extension property
or the existence of finite meets of compact congruences fails.
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