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Abstract. This article is concerned with free objects and free extensions

over posets in the category of frames. Its primary goal is to present novel

representations for these objects as subdirect products of certain chains.
Constructions for the corresponding objects in the category of bounded

distributive lattices are also presented.

1. Discussion and the Main Results

The primary aim of this note is to present novel representations for free objects
and free extensions over posets in the category Frm of frames. Representations
for the corresponding objects in the category D of bounded distributive lattices
are also presented.

Free frames are easy to describe, see for example Johnstone [5]. The free
frame F over a set X is usually represented as the frame of lower sets of the
free meet-semilattice with identity, or more concretely, as the the frame of lower
sets of the semilattice of all finite subsets of X ordered by reverse set-inclusion.
It can also be shown that F is isomorphic to the ideal completion of the free
bounded distributive lattice over X. The latter representation follows from the
results of the present paper, but it can also be obtained directly by using the
universal properties of free distributive lattices and ideal completions of lattices.

The statements for the main results will require some notation. For any poset
P , we write ⊥⊕ P ⊕> for the poset obtained from P by adjoining a new least
element ⊥ and a new greatest element >. Given a nonempty poset P = (P,≤),
let R denote the set consisting of all total orders on P extending ≤. Further,
for each r ∈ R, let Pr denote the chain ⊥ ⊕ (P, r) ⊕ >, and let Qr denote its
ideal completion. Finally, let α : P →

∏
r∈R Pr ≤

∏
r∈RQr be the diagonal

map p 7→ (. . . , p, p, p, . . . ).
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Theorem 1.1.

(1) The D-free extension of P is isomorphic to the {⊥,>}–sublattice of∏
r∈R Pr generated by α(P ).

(2) The free extension of P in Frm is isomorphic to the subframe of
∏

r∈RQr

generated by α(P ).

The corresponding representation for the free frame and the free bounded
distributive lattice over a nonempty set X is obtained by letting R be the set of
all total orders on X. One can actually be more selective about the orders used
in the representations, as the next result shows. Let X be a nonempty set, and
let R = {r|r is a well-ordered chain on X}. For each r ∈ R, let Xr = (X, r),
and Yr = ⊥ ⊕ Xr ⊕ >. Define α : X →

∏
r∈R Yr to be the diagonal map

α(x) = (. . . , x, x, . . . ).

Theorem 1.2.

(1) The D-free lattice over X is isomorphic to the {⊥,>}– sublattice of∏
r∈R Yr generated by α(X). Moreover, α(X) is a set of free generators

for this lattice.
(2) The free frame over X is isomorphic to the subframe of

∏
r∈R Yr gener-

ated by α(X). Moreover, α(X) is a set of free generators for this frame.

It is well-known that the free distributive lattice over a set of cardinality κ
is a subdirect product of chains of cardinality κ (see, for example, Balbes and
Dwinger [1], p. 120). The preceding theorem refines this result by making the
subdirect product representation concrete and easy to use, and by restricting
the class of chains arising in the representation. The results for frames are
apparently new.

Corollary 1.2.1. The free frame extension L of a poset P is a bialgebraic,
coherent frame. Moreover, the lattice of compact elements of L is the D-free
extension of P .

Many of the ideas for the aforementioned representations can be traced back
to Weinberg [9], Bernau [2], and Powell and Tsinakis [6]. The results in Francello
[4] and Powell and Tsinakis [7] suggested the plausibility of such representations
for distributive lattices and frames.

A frame is a complete lattice L which satisfies the Frame Distributive Law

a ∧
∨
X =

∨
{a ∧ x|x ∈ X},

for all a ∈ L and X ⊆ L. Such lattices have a least element, which we shall
denote by ⊥, and a greatest element, denoted by >. Frame homomorphisms are
functions between frames which preserve arbitrary joins and finite meets (and
thus preserve ⊥ and >). The category of frames and frame homomorphisms
will be denoted by Frm. We denote by D the category consisting of bounded
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distributive lattices (distributive lattices with ⊥ and >) and lattice homomor-
phisms which preserve ⊥ and >.

Coherent frames will be of particular interest. A coherent frame is an algebraic
frame whose subposet of compact elements forms a bounded distributive lattice.
The coherent frames are isomorphic to ideal completions of bounded distributive
lattices.

In what follows, we shall write S ⊆◦X to indicate that S is a nonempty, finite
subset of X. Let C = D or Frm. Given a C-object L, we denote the C-object
generated by X ⊆ L by [X]C . Also, given an object L in C which is generated
by X ⊆ L, L is said to be C-free over X if given M ∈ ObC and any function
f : X → M , there exists a C-morphism f : L → M such that f |X = f . It is

easy to verify that this f is uniquely determined. Finally, if P is a partially
ordered set, then L ∈ ObC is the C-free extension of P if P generates L and
every order-preserving function from P to a C-object M can be extended to a C
-morphism from L to M .

We will focus primarily on extensions of posets, as it is clear that the C-free
object over a nonempty set X can be viewed as the C- free extension of a totally
unordered poset of cardinality |X|.

2. Proofs of the Results

We begin with a few preliminary lemmas.

Lemma 2.1. Let T and S be subsets of a poset P = (P,≤) such that t 6≤ s for
each t ∈ T and s ∈ S. Then there exists a total order on P extending ≤ such
that every element of T exceeds every element of S.

Proof. We define a new order ≤′ on P as follows:
x ≤′ y ⇐⇒ (x ≤ y) or (y ∈

⋃
t∈T ↑ t and x ∈

⋃
s∈S ↓ s).

This defines a partial order which preserves ≤, and in which every element of T
exceeds every element of S. We now extend ≤′ to a total order on P as outlined
in Crawley and Dilworth [3], page 6. �

The proof of the next lemma can be found in Balbes and Dwinger [1], p. 86.

Lemma 2.2. Let L andM be bounded distributive lattices. Let X be a nonempty
generating subset of L. A function f : X →M can be extended to a D-morphism
f : L→ M if and only if whenever T and S satisfy T ∪ S ⊆◦X and

∧
T ≤

∨
S,

then
∧
f(T ) ≤

∨
f(S).

Lemma 2.3. Let L and M be frames. Let X be a nonempty generating subset
of L such that

∧
T ∈ K(L), for all T ⊆fin X. A function f : X → M can

be extended to a frame morphism f : L → M if and only if whenever T and S
satisfy ∅ 6= T

⋃
S ⊆ X,T ⊆fin X, and

∧
T ≤

∨
S, then

∧
f(T ) ≤

∨
f(S).
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Proof. Assume f can be extended to a frame morphism. Let ∅ 6= T
⋃
S ⊆

X,T ⊆fin X, and
∧
T ≤

∨
S. Then

∧
f(T ) =

∧
f(T ) = f(

∧
T ) ≤ f(

∨
S) =∨

f(S) =
∨
f(S).

Now assume that the conditions in the statement of the lemma hold. Let
f : X → M , where M is a frame. By Lemma 2.2, we can extend f to a
D-morphism f : [X]D →M . (Note that f(⊥) = ⊥ and f(>) = >.) Now,

L = [X]Frm = {
∨
i∈I

(
∧
Si)|Si ⊆◦X} ∪ {⊥,>},

and

[X]D = {
∨

1≤i≤n

(
∧
Si)|Si ⊆◦X} ∪ {⊥,>}.

It is clear that every element x of L can be expressed as a join of elements of
[X]D: x =

∨
i∈I(

∧
Si),

∧
Si ∈ [X]D. If x has the preceding representation, let

f(x) = f(
∨

i∈I(
∧
Si)) =

∨
i∈I f(

∧
Si). We claim that this definition induces a

function f(x) : L → M . Assume x ∈ L has representations x =
∨

i∈I(
∧
Si) =∨

j∈J(
∧
Sj). To show that f is well-defined, it suffices to show that for each

i ∈ I, f(
∧
Si) ≤

∨
j∈J f(

∧
Sj). Let i ∈ I. We have

∧
Si ≤

∨
j∈J(

∧
Sj),

with
∧
Si ∈ K(L), by hypothesis. Thus, there exists J ′ ⊆fin J such that∧

Si ≤
∨

j∈J′(Sj). Therefore, f(
∧
Si) ≤ f(

∨
j∈J′(

∧
Sj) =

∨
j∈J′ f(

∧
Sj) ≤∨

j∈J f(
∧
Sj). So f is a well-defined function.

Finally, it is straightforward to verify that f is a frame morphism that extends
f . �

We now present intrinsic characterizations of the D-free extension and the
free frame extension of a poset P .

Lemma 2.4. Let L be a bounded distributive lattice generated by a nonempty
subposet P . Then L is the D-free extension of P if and only if whenever T and
S satisfy T ∪ S ⊆◦P and

∧
T ≤

∨
S, then there exist t ∈ T and s ∈ S such that

t ≤ s.

Proof. In view of Lemma 2.2, the condition is clearly sufficient. Conversely,
suppose that L is the D-free extension of P . Let T ∪ S ⊆◦P such that t 6≤ s for
all t ∈ T and s ∈ S. By Lemma 2.1, there exists a total order r on P extending
the original partial order such that every element of T exceeds every element of
S. Let Pr = (P, r), and let Qr = ⊥⊕ Pr ⊕>. The identity map from P to Qr

extends to a D-morphism from L to Qr. It follows that
∧
T 6≤

∨
S in L, since∧

T >
∨
S in Qr. �
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Corollary 2.0.2. Let L be a bounded distributive lattice generated by a nonempty
subset X. Then L is the D-free lattice over X if and only if whenever T and S
satisfy T ∪ S ⊆◦X and

∧
T ≤

∨
S, then T ∩ S 6= ∅.

Lemma 2.5. Let L be a frame generated by a nonempty subposet P .Then L
is the free frame extension of P if and only if whenever T and S satisfy ∅ 6=
T ∪ S ⊆ P , T ⊆fin P , and

∧
T ≤

∨
S, then there exist t ∈ T and s ∈ S such

that t ≤ s.

Proof. Assume L is the free frame extension of P . Let ∅ 6= T ∪ S ⊆ P with T
finite and assume that t 6≤ s for all t ∈ T and s ∈ S. We claim that

∧
T 6≤

∨
S.

By Lemma 2.1, there exists a total order r on P which extend the original
order and in which every element of T exceeds every element of S. Let Pr =
⊥⊕(P, r)⊕> and Qr = I(Pr). Since Pr is a chain and thus a distributive lattice,
Qr is a frame. We view Qr simply as an algebraic lattice with K(Qr) = Pr. By
the definition of Pr, it is clear that

∧
T ≥

∨
S in both Pr and Qr. We claim

that, in fact,
∧
T >

∨
S; if

∧
T =

∨
S, then t ≤

∨
S for some t ∈ T . However,

t is compact in Qr, which implies that t ≤ s for some s ∈ S; this contradicts
our original assumption, so

∧
T >

∨
S in Qr. Now define f : P → Qr by

f(p) = p. This is an order-preserving map, so it can be extended to a frame
homomorphism f : L → Qr. Now, if

∧
T ≤

∨
S in L, then f(

∧
T ) ≤ f(

∨
S),

which implies that
∧
f(T ) ≤

∨
f(S); that is,

∧
T ≤

∨
S in Qr, which is a

contradiction. Therefore,
∧
T 6≤

∨
S.

Conversely, assume the conditions in the statement of the lemma hold. We
first claim that

∧
T ∈ CJP (L) for all T ⊆fin P . First, let us assume T = ∅.

We verify that if
∧
∅ = > ≤

∨
Y , for some Y ⊆ L, then > ∈ Y . For each y ∈ L,

either y = ⊥, y = >, or y =
∨

i∈I(
∧
Si), with Si ⊆◦P for each i ∈ I. Note that

Y 6= {⊥}, and if ⊥ ∈ Y , then
∨
Y =

∨
(Y −⊥), so we may assume ⊥ /∈ Y . Now

let us assume > /∈ Y . Then for each y ∈ Y , we can express y as y =
∨

i∈I(
∧
Si),

with Si ⊆◦P for each i ∈ I. Thus, > =
∨
Y =

∨
(
∨

i∈I(
∧
Si)) ≤

∨
P ; that is,

> =
∧
∅ ≤

∨
P , in violation of the hypothesis assumption. Therefore, > ∈ Y ,

which implies that > ∈ CJP (L).
Now let T ⊆◦P , and assume

∧
T ≤

∨
Y , for some Y ⊆ L. Again, for each

y ∈ L, either y = ⊥, y = >, or y =
∨

i∈I(
∧
Si), with Si ⊆◦P for each i ∈ I. Note

that if > ∈ Y , then
∧
T ≤

∨
Y = > ∈ Y . Arguing as above, we can assume

⊥ 6∈ Y 6= ∅. Now we assume that
∧
T ≤

∨
i∈I(

∧
Si), with Si ⊆◦P for each i ∈ I.

Our goal is to show that
∧
T ≤

∧
Si, for some i ∈ I.

We first claim that given such a representation of
∧
T and any f ∈

∏
i∈I Si,

there exist t ∈ T and if ∈ I such that t ≤ f(if ). We know that
∧
T ≤∨

i∈I(
∧
Si), with Si ⊆◦P for each i ∈ I. Thus,

∧
T ≤

∨
i∈I(

∧
Si) ≤

∧
{
∨

i∈I f(i)|f ∈∏
i∈I Si}. So

∧
T ≤

∨
i∈I f(i) for each f ∈

∏
i∈I Si. Let f ∈

∏
i∈I Si. Now,

T ⊆fin P, {f(i)|i ∈ I} ⊆ P , and
∧
T ≤

∨
i∈I f(i) imply that, by hypothesis,

there exist t ∈ T and if ∈ I such that t ≤ f(if ).
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We finally claim that
∧
T ≤

∧
Si, for some i ∈ I. Assume not. Then for

each i ∈ I,
∧
T 6≤

∧
Si, so there exists si ∈ Si such t 6≤ si for each t ∈ T . Now

consider the map g ∈
∏

i∈I Si defined by g(i) = si. Then t 6≤ g(i) for all t ∈ T
and i ∈ I. This is a contradiction of the above, so

∧
T ≤

∧
Si, for some i ∈ I.

Thus,
∧
T ∈ CJP (L) for each T ⊆fin P .

Now, let f : P →M be an order-preserving map. Let ∅ 6= T ∪ S ⊆ P, T ⊆fin

P , and
∧
T ≤

∨
S.

∧
T ∈ CJP (L) implies that

∧
T ∈ K(L). By hypothesis,

then, there exist t ∈ T and s ∈ S such that t ≤ s. So
∧
f(T ) ≤ f(t) ≤ f(s) ≤∨

f(S). Thus, by Lemma 2.3, f can be extended to a frame homomorphism. �

Corollary 2.0.3. Let X be a nonempty generating set for a frame L. Then L
is the free frame over X if and only if whenever T and S satisfy ∅ 6= T ∪S ⊆ X,
T ⊆fin X, and

∧
T ≤

∨
S, then T ∩ S 6= ∅.

We are now ready to establish the main results of this paper.

Proof. (Theorem 1.1)
(1) Let L be the {⊥,>}–sublattice of

∏
r∈R Pr generated by α(P ). Note that

P is order isomorphic to α(P ), and hence we need to show that L is the D-free ex-
tension of α(P ). We shall make use of Lemmas 2.1 and 2.4. Consider nonempty
finite subsets T = {α(x1), . . . , α(xn)} and S = {α(y1), . . . , α(ym)} of α(P ) such
that α(xi) 6≤ α(yj), for i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . ,m}. It follows
that xi 6≤ yj in the original order of P and hence, by Lemma 2.1, there exists a
total order r ∈ R such that every element of the set {x1, . . . , xn} exceeds every
element of the set {y1, . . . , ym}. It follows that

∨
{y1, . . . , ym} <

∧
{x1, . . . , xn}

in Pr; hence,
∧
T 6≤

∨
S in L. Also, if T = ∅, then

∨
{y1, . . . , ym} <

∧
∅ = > for

any Qr. Likewise, if S = ∅, then
∨
∅ = ⊥ <

∧
{x1, . . . , xn}. In all three cases,∧

T 6≤
∨
S in L. Thus, by Lemma 2.4, [α(P )]D is the D-free extension of α(X).

(2) Let L be the subframe of
∏

r∈RQr generated by α(P ). Assume T =
{α(x1), . . . , α(xn)}, S = {α(yj)|j ∈ J}, and α(xi) 6≤ α(yj) for each i and j. So
for each i and j, xi 6≤ yj in the original order. By Lemma 2.1, there exists a
total order r ∈ R such that every element of {x1, . . . , xn} exceeds every element
of {yj |j ∈ J}. Thus,

∨
{yj |j ∈ J} ≤

∧
{x1, . . . , xn} in Qr. In fact,

∨
{yj |j ∈

J} <
∧
{x1, . . . , xn}; if

∨
{yj |j ∈ J} =

∧
{x1, . . . , xn}, then xi ≤

∨
{yj |j ∈ J}

for some 1 ≤ i ≤ n. But this element is compact in Qr, so xi ≤ yj for some
j ∈ J . This contradiction implies that

∨
{yj |j ∈ J} <

∧
{x1, . . . , xn}; hence,∧

T 6≤
∨
S in L. The cases T = ∅ and S = ∅ can be handled as in the first part

of the proof by using the compactness of > in the chains Qr. Thus, by Lemma
2.5, [α(P )]Frm is the free frame extension of α(P ). �

Proof. (Theorem 1.2)
This proof follows in the same manner as Theorem 1.1. In the case of a

totally unordered set X, each total order will extend the original order. We can
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then take ideal completions of these total orders; however, it suffices to take all
well-ordered chains with added ⊥ and > elements. �

Proof. (Corollary 1.2.1)
We have established within the proof of Lemma 2.5 that if L is the free frame

extension of P , then
∧
T ∈ CJP (L) for each T ⊆fin P . Thus, it is evident from

the representation of L that each element of L is a join of CJP elements of L.
Any such frame is known to be bialgebraic. Finally, Theorem 1.1 shows that L
is a coherent frame whose lattice of compact elements is the D-free extension of
P . �
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