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Abstract In this (part survey) paper,we revisit algebraic and
proof-theoretic methods developed by FrancoMontagna and
his co-authors for proving that the chains (totally ordered
members) of certain varieties of semilinear residuated lat-
tices embed into dense chains of these varieties, a key step in
establishing standard completeness results for fuzzy logics.
Such “densifiable” varieties are precisely the varieties that are
generated as quasivarieties by their dense chains. By showing
that all dense chains satisfy a certain e-cyclicity equation, we
give a short proof that the variety of all semilinear residuated
lattices is not densifiable (first proved by Wang and Zhao).
We then adapt the Jenei–Montagna standard completeness
proof for monoidal t-norm logic to show that any variety of
integral semilinear residuated lattices axiomatized by addi-
tional lattice-ordered monoid equations is densifiable. We
also generalize known results to show that certain varieties
of cancellative semilinear residuated lattices are densifiable.
Finally, we revisit the Metcalfe–Montagna proof-theoretic
approach, which establishes densifiability of a variety via
the elimination of a density rule for a suitable hypersequent
calculus, focussing on the case of commutative semilinear
residuated lattices.
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1 Introduction

Proving the completeness of an axiom system with respect
to an intended semantics is a familiar problem in the study
of logical systems. For classical propositional logic, the
Lindenbaum-Tarski construction can be used to show that
derivability of a formula α is equivalent to the validity of the
equation α ≈ 1 in the class BA of all Boolean algebras. The
goal then is to show that α ≈ 1 is valid in BA if and only
if it is valid in the standard two-element Boolean algebra 2.
By Birkhoff’s theorem for equational classes, this is equiv-
alent to showing that 2 generates BA as a variety. But also,
by the Stone representation theorem, every Boolean algebra
embeds into a power of 2, so this algebra generates BA even
as a quasivariety.

Two of the most important “fuzzy” logics, with intended
semantics defined over the real unit interval [0, 1], are Gödel
logic G and Łukasiewicz logicŁ. Gödel logic was introduced
byDummett (1959) as a generalizationoffinite-valued logics
definedbyGödel (1932).The intended semantics for the logic
is provided by the algebraG = 〈[0, 1],∧,∨,→, 0, 1〉, while
an axiomatization is obtained as an extension of intuitionistic
logic with the prelinearity axiom schema (α → β) ∨ (β →
α). Completeness corresponds, as in the classical case, to
showing that the variety GA of Gödel algebras is generated
by G, which follows from the fact that GA is generated by
countable Gödel chains (totally orderedmembers ofGA) and
the observation that any countable Gödel chain embeds into
G. Proving completeness for Łukasiewicz logic is harder.
The axiom system introduced by Łukasiewicz (1930) was
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shown to be complete for the intended semantics given by the
algebra 〈[0, 1],→,¬〉, where x → y = max(1, 1 − x + y)
and ¬x = 1− x , in an unpublished proof by Wajsberg in the
1930s and then a long syntactic proof by Rose and Rosser
(1958). A more elegant algebraic proof, introducing MV-
algebras and involving the theory of lattice-ordered abelian
groups, was provided by Chang the same year (Chang 1958).
For further details and references, we refer to Cignoli et al.
(2000).

Amore general approach to logics with semantics defined
over [0, 1] was initiated by Hájek in his 1998 monograph
(Hájek 1998). The intended semantics of Hájek’s basic
fuzzy logic BL is the class of “standard BL-algebras”
〈[0, 1],∧,∨, ·,→, 0, 1〉, where · is a continuous t-norm:
a commutative associative increasing binary function on
[0, 1] with unit 1 and residuum →. Completeness for BL
with respect to this intended semantics corresponds to the
generation of the variety of BL-algebras by the standard
BL-algebras and was proved by Cignoli et al. (essentially
by showing that two axioms used by Hájek were redun-
dant) 2years later (Cignoli et al. 2000). BL thus provides
an underlying logic for studying extensions based on partic-
ular (classes of) t-norms including Gödel logic, Łukasiewicz
logic, and also product logicwhere the t-norm is just ordinary
multiplication (Hájek et al. 1996).

Observing that a t-norm admits a residuum if and only if
it is left-continuous, Godo and Esteva introduced monoidal
t-norm logic MTL in 2001 (Esteva and Godo 2001) with
an intended semantics given by standard MTL-algebras
〈[0, 1],∧,∨, ·,→, 0, 1〉, where · is a left-continuous t-norm
with residuum →. Standard completeness for MTL, or,
equivalently, generation of the variety of MTL-algebras
by the standard MTL-algebras, was proved by Jenei and
Montagna a year later (Jenei and Montagna 2002). Their
method was subsequently applied to obtain standard com-
pleteness results for many other fuzzy logics, including
non-commutative, n-contractive, involutive, and first-order
versions of MTL (Ciabattoni et al. 2002; Esteva et al. 2002;
Montagna and Ono 2002; Jenei and Montagna 2003).

The “Jenei–Montagna” method for a logic L consists of
establishing the following:

1. The variety of L-algebras is generated as a quasivariety
by its countable chains.

2. Each countable L-chain embeds into a countable dense
L-chain.

3. Each countable dense L-chain embeds into a standard
L-algebra.

The first claim follows for a broad family of “semilinear”
varieties of residuated lattices (see Sect. 2 below), while the
third claim is achieved via a Dedekind-MacNeille construc-

tion that holds for varieties of residuated lattices defined by
equations of a certain form. The second claim, which pro-
vides the main focus for this paper, is established by defining
the required embeddings of chains into dense chains.

The introduction of BL, MTL, and a plethora of related
logics provided an explicit connection between logics with
intended semantics defined over the real unit interval and
substructural logics with weakening such as FLew [see Ono
and Komori (1985)]. This connection was witnessed, on the
one hand, by the development of hypersequent calculi for
many of these logics (Avron 1991; Baaz et al. 2004; Met-
calfe et al. 2004, 2005) [see also Metcalfe et al. (2008);
Metcalfe (2011)] and, on the other, by the intensive study
of their algebraic semantics given by varieties of residu-
ated lattices (Jipsen and Tsinakis 2002; Blount and Tsinakis
2003; Galatos et al. 2007). This led, in the 2003 disserta-
tion of the first author (Metcalfe 2003), to the introduction
of new “weakening free” substructural fuzzy logics. In par-
ticular, uninorm logic UL was conjectured to be complete
with respect to all standard UL-algebras 〈[0, 1],∧,∨, ·,→,

e, f, 0, 1〉 where · is a left-continuous uninorm: a com-
mutative associative increasing binary function on [0, 1]
with unit e and residuum →. In this case, however, find-
ing the embeddings required by the second step of the
Jenei–Montagna method proved to be difficult. Metcalfe and
Montagna therefore introduced a newproof-theoreticmethod
in 2007 (Metcalfe andMontagna 2007), proving that the vari-
ety of UL-algebras for the logic UL is generated by its dense
chains and hence also, via a Dedekind-MacNeille comple-
tion, by its standardmembers. Thismethodwas subsequently
simplified and extended to other families of logics in Ciabat-
toni and Metcalfe (2008), Baldi et al. (2012), Baldi (2014)
and Baldi and Ciabattoni (2015a, b).

The “Metcalfe–Montagna” method for a logic L consists
of the following steps:

1. A hypersequent calculus L is defined for L that is com-
plete with respect to validity in all L-algebras and admits
cut elimination.

2. The extension LD of L with a “density rule” is shown to
be complete with respect to validity in all dense L-chains.

3. Density elimination is proved for LD; that is, a derivation
of a hypersequent in LD can be algorithmically trans-
formed into a derivation of the same hypersequent in L.

Remarkably, in recent papers by Galatos and Horčik (2016)
and Baldi and Terui (2016), the method has been reinter-
preted algebraically to obtain the embeddings required by
the Jenei–Montagna method.

In this (part survey) paper, we revisit the Jenei–Montagna
andMetcalfe–Montagna methods for proving that the chains
of a variety of semilinear residuated lattices embed into dense
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chains of the variety. In Sect. 2, we prove, following related
results in the literature [see in particular Metcalfe and Mon-
tagna (2007), Ciabattoni andMetcalfe (2008), Metcalfe et al.
(2008), Cintula et al. (2009), Cintula and Noguera (2011)
and Horčík (2011)], that these “densifiable” varieties are
precisely those generated as a quasivariety by their dense
chains. By showing that all dense chains satisfy a certain e-
cyclicity equation, we then give a short proof of Wang and
Zhao’s result that the variety of semilinear residuated lat-
tices is not densifiable (Wang and Zhao 2009). In Sect. 3,
we adapt the Jenei–Montagna method of Jenei and Mon-
tagna (2002) to show that any variety of integral semilinear
residuated lattices axiomatized by additional lattice-ordered
monoid equations is densifiable. We also generalize methods
introduced in Esteva et al. (2002), Horčík (2005) and Horčík
et al. (2006) to show that certain varieties of cancellative
semilinear residuated lattices are densifiable. In Sect. 4, we
describe the Metcalfe–Montagna method of Metcalfe and
Montagna (2007), providing a proof of densifiability for the
variety of commutative semilinear residuated lattices. We
conclude the paper in Sect. 5 with some open problems and
directions for further research.

2 Densifiable varieties of semilinear residuated
lattices

A residuated lattice [see Blount and Tsinakis (2003), Jipsen
and Tsinakis (2002), Galatos et al. (2007) andMetcalfe et al.
(2010) for further details] is an algebraic structure

L = 〈L ,∧,∨, ·, \, /, e〉

satisfying the following conditions:

(a) 〈L , ·, e〉 is a monoid;
(b) 〈L ,∧,∨〉 is a lattice with order ≤;
(c) \ and / are binary operations satisfying the residuation

property

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

If ≤ is a total order, then we call L a (residuated) chain. If
≤ is also dense, then we call L a dense chain. We recall that
a residuated lattice is commutative if it satisfies xy ≈ yx ,
integral if it satisfies x ≤ e, and idempotent if it satisfies
xx ≈ x . In commutative residuated lattices, the residuals
x\y and y/x coincide and we therefore often replace both
with x → y, shortening the signature accordingly. We also
define x0 = e and xn+1 = x · xn for n ∈ N.

A residuated lattice is called semilinear if it is a subdirect
product of residuated chains. The class SemRL of semi-
linear residuated lattices forms a variety; a finite equational

basis for SemRL is provided in Blount and Tsinakis (2003)
[see also Jipsen and Tsinakis (2002) and Botur et al. (2015)].
Any subvariety V of SemRL is clearly generated as a qua-
sivariety by its countable chains; that is, V = ISPPU (Vc),
where Vc is the class of countable chains in V and I, S,
P, and PU denote the isomorphism, subalgebra, product,
and ultraproduct class operators, respectively. Equivalently,
a quasi-equation is valid in V if and only if it is valid in Vc.

In this paper, we aim to identify varieties of semilinear
residuated lattices that are generated as quasivarieties by their
dense chains. The following characterization of this prop-
erty is an easy consequence of Cintula and Noguera (2011)
(Theorems 3.4.3 and 3.4.11), by way of Czelakowski and
Dziobiak (1990) (Lemma 1.5); for convenience, we provide
here a self-contained proof.

Theorem 1 A variety V of semilinear residuated lattices is
generated as a quasivariety by its dense chains if and only if
each chain in V embeds into a dense chain in V .

Proof Let V be a variety of semilinear residuated lattices.
For the right-to-left direction, it suffices to recall that every
algebra in V embeds into a product of chains of V . So if each
chain inV embeds into a dense chain inV , then every algebra
in V embeds into a product of dense chains in V .

For the left-to-right direction, suppose that V is generated
as a quasivariety by the class Vd consisting of the dense
chains of V , i.e. V = ISPPU (Vd). LetA ∈ V be a non-trivial
chain. Then, since an ultraproduct of dense chains is again
a dense chain, we may assume that A is a subalgebra of a
product B = ∏

i∈I Bi of dense chains Bi (i ∈ I ). Given
a, b ∈ B, let [a = b] = {i ∈ I : a(i) = b(i)}.

For each proper filter F on I (that is, a filter of the Boolean
algebraP(I )), consider the following congruence relation on
∏

i∈I Bi :

aθFb ⇐⇒ [a = b] ∈ F.

Note that θF ∩ A2 is a congruence on A and for filters
F, K on I ,

θF ∩ θK = θF∩K .

We consider the set of filters

F = {F ⊆ P(I ) : F is a proper filter on I and θF ∩ A2 = �A}.

Observe that {I } ∈ F �= ∅. Moreover, if C is a chain in F ,
then θ∪C ∩ A2 = �A, which implies that C has an upper
bound in F . Hence, by Zorn’s Lemma, F has a maximal
element U , which is clearly proper. We claim that U is an
ultrafilter on I .

Let J be a proper non-empty subset J of I . Let ↑ J be
the principal filter on I generated by J , and ↑(I \ J ) the
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principal filter generated by I \ J . Set F1 = U ∨ ↑ J and
F2 = U ∨ ↑(I \ J ). Then (θF1 ∩ A2) ∩ (θF2 ∩ A2) = (θF1 ∩
θF2) ∩ A2 = (θF1∩F2) ∩ A2 = θU ∩ A2 = �A. Since A is
a chain, the element �A is finitely meet irreducible in the
congruence lattice of A [see Blount and Tsinakis (2003)].
Hence, either θF1 ∩ A2 = �A or θF2 ∩ A2 = �A. But then
the maximality of U implies that J ∈ U or I \ J ∈ U ,
establishing thatU is an ultrafilter on I . Since θU ∩A2 = �A,
it follows that A is isomorphic to the subalgebra A/U of
B/U . We conclude the proof by observing that B/U is an
ultraproduct of dense chains and hence itself a dense chain.

��

For convenience, let us call any variety of semilinear resid-
uated lattices satisfying one of the equivalent conditions in
Theorem 1 densifiable. The next result shows that any den-
sifiable variety of semilinear residuated lattices is e-cyclic,
that is, it satisfies the e-cyclicity equation x\e ≈ e/x . This
equation plays a key role in the development of Conrad-type
theory in the setting of residuated lattices (Botur et al. 2015).

Lemma 1 Every dense residuated chain satisfies the e-
cyclicity equation x\e ≈ e/x.1

Proof We show that x\e ≈ e/x is valid in any dense resid-
uated chain A. Suppose for a contradiction that a\e > e/a
for some a ∈ A. Then, using residuation, a > (a\e)\e. By
assumption, a > b > (a\e)\e for some b ∈ A. So, using
residuation again, e > a\b and (a\e)b > e. Combining these
inequations, (a\e)b > a\b, which gives a(a\e)b > b. But
e ≥ a(a\e), so b = eb ≥ a(a\e)b > b, a contradiction.
Hence a\e ≤ e/a, and reasoning symmetrically, a\e = e/a.

��

Consider now the three element (idempotent) residuated
chainCwith universeC = {⊥, e,�} ordered by⊥ < e < �
and multiplication table

· ⊥ e �
⊥ ⊥ ⊥ �
e ⊥ e �
� ⊥ � �

It is easily checked that · is associative and residuated, soC =
〈C, ·, \, /,∧,∨, e〉 is a residuated chain. But also ⊥\e = e
and e/⊥ = �, so C is not e-cyclic. We immediately obtain
the following result:

Theorem 2 [Wang and Zhao (2009)] The variety of semilin-
ear residuated lattices is not densifiable.

1 This result was observed independently by Nikolaos Galatos (private
communication).

The first proof of this theorem, given by Wang and Zhao
(2009) (disproving a conjecture in Metcalfe et al. (2008)),
followed a similar pattern, but involved a more compli-
cated equation and a much larger algebra. A significantly
shorter proof, using an equation with three variables and a
four element algebra, was provided by Horčik (2011). It is
also noted in Horčík (2011) that the variety of idempotent
semilinear residuated lattices is not densifiable, an immedi-
ate consequence here of the fact that the algebra C defined
above is idempotent. We should remark that, strictly speak-
ing, the proofs in Horčík (2011) establish the densifiability
of varieties of pointed residuated lattices (or FL-algebras):
residuated lattices with an extra constant symbol. Since
this constant symbol satisfies no extra equations for these
varieties, the difference in the results is negligible. How-
ever, other failures of densifiability established in Horčík
(2011) for involutive varieties of semilinear residuated lat-
tices (again by finding a suitable chain where an equation
satisfied by all dense chains fails) are particular to the pointed
residuated lattices setting.

3 An algebraic approach

In order to show that a variety of semilinear residuated
lattices is densifiable, it suffices to establish a single den-
sification step: embedding chains of the variety containing a
gap between two elements into chains of the variety where
the gap is filled. More precisely:

Lemma 2 A variety V of semilinear residuated lattices is
densifiable if and only if any countable chain A ∈ V satisfy-
ing a < b for some a, b ∈ A is a subalgebra of a countable
chain B ∈ V satisfying a < c < b for some c ∈ B.

Proof Let V be a variety of semilinear residuated lattices.
The left-to-right direction is straightforward. Suppose that V
is densifiable and let A be a countable chain in V satisfying
a < b for some a, b ∈ A. Then, A is a subalgebra of a
dense chain C in V and there exists c ∈ C such that a <

c < b. We let B be the countable subalgebra of C generated
by A ∪ {c}. For the right-to-left direction, suppose that any
countable chainA ∈ V satisfying a < b for some a, b ∈ A is
a subalgebra of a countable chainB ∈ V satisfyinga < c < b
for some c ∈ B. To prove that V is densifiable, it suffices to
show that every countable chain A ∈ V embeds into a dense
chain B ∈ V . Let A0 = A. We define for each n ∈ N, a
countable chain An+1 ∈ V such that An is a subalgebra of
An+1 and for all a, b ∈ An satisfying a < b, there exists c ∈
An+1 such that a < c < b. Enumerate all pairs ai , bi ∈ An

satisfying ai < bi and define A0
n = An and Ai+1

n for i ∈ N

as a countable chain in V (which exists by assumption) such
that Ai

n is a subalgebra of Ai+1
n and for some ci ∈ Ai+1

n ,
ai < ci < bi . Let An+1 ∈ V be the countable limit algebra
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with universe An+1 = ⋃
i∈N Ai

n . Note that for any pair a < b
in An , there exists c ∈ An+1 such that a < c < b. Finally, let
B ∈ V be the countable limit algebra with B = ⋃

n∈N An .
Clearly, A0 is a subalgebra of B, which is a dense chain by
construction. ��
This criterion for densifiability is formulated for commuta-
tive semilinear residuated lattices in Metcalfe et al. (2008)
and appears also in more general versions in Cintula and
Noguera (2011), Baldi and Terui (2016) and Galatos and
Horčik (2016).

We will now use this lemma to establish the densifiability
of various families of varieties of semilinear residuated lat-
tices defined by equations of a particular form. Let us call a
formula built using the operation symbols · and e, a monoid
formula, and a formula built using∧,∨, ·, and e, an �-monoid
(short for lattice-ordered monoid) formula. We call α ≤ β

a monoid inequation if α and β are monoid formulas, and
α ≈ β an �-monoid equation if α and β are both �-monoid
formulas.

Let us denote the variety of integral semilinear residuated
lattices by SemIRL. The proof of the following theo-
rem generalizes the proof provided by Jenei and Montagna
for (bounded) commutative integral semilinear residuated
lattices in Jenei and Montagna (2002), extended to other
varieties of integral residuated lattices by various authors
in Ciabattoni et al. (2002), Esteva et al. (2002), Jenei and
Montagna (2003) and Horčík (2011).

Theorem 3 Anyvariety definedover SemIRLby �-monoid
equations is densifiable.

Proof Let V be a non-trivial variety defined over SemIRL
by �-monoid equations. By distributing joins and meets over
multiplication andusing lattice distributivity, every �-monoid
formula is clearly equivalent to either a join of meets of
monoid formulas or a meet of joins of monoid formulas.
Hence every �-monoid equation can be replaced by inequa-
tions with a join of meets of monoid formulas on the left
and a meet of joins of monoid formulas on the right. Using
standard lattice properties, it follows that V is axiomatized
over SemIRL by inequations of the form

α1 ∧ · · · ∧ αn ≤ β1 ∨ · · · ∨ βm

where α1, . . . , αn, β1, . . . , βm are monoid formulas built
using the variables x1, . . . , xk . We claim that the formulas
β1, . . . , βm can be chosen in such a way that any variable
occurring on the right occurs on the left of these inequations.
Suppose that this is not the case for some variable xi . Observe
that xi does not occur in some β j ; otherwise, e ≤ xi holds
in all algebras in V , contradicting the fact that A is a non-
trivial algebra. Now let α1 ∧ · · · ∧αn ≤ β ′

1 ∨ · · · ∨β ′
m be the

inequation obtained by substituting xi with β j . If the original

inequation holds in an integral semilinear residuated lattice
A, then clearly so does the new inequation, as it is a substi-
tution instance of the original inequation. The converse also
holds, since, by integrality, β ′

k ≤ β j holds in A for each k
such that xi occurs in βk . So we have removed xi from the
equationwithout changingV . The claim follows by repeating
this argument.

Now letA ∈ V be a countable chain and consider a, b ∈ A
satisfying a < b. By Lemma 2, it suffices to show that A
is a subalgebra of some countable chain B ∈ V satisfying
a < c < b for some c ∈ B. Let us therefore assume that
for all c ∈ A, either c ≤ a or b ≤ c. Let 2 = {0, 1} be the
two-element chain and let

B = {(c, 1) : c ∈ A} ∪ {(b, 0)}

be the countable subset of the lexicographic product A
−→× 2

endowed with the restriction of the order of A
−→× 2. Define

(u, r) ·B (v, s) = (uv, 1) ∧ (u, r) ∧ (v, s).

Observe first that

(u, r)(e, 1) = (ue, 1) ∧ (u, r) ∧ (e, 1) = (u, r)

= (eu, 1) ∧ (e, 1) ∧ (u, r) = (e, 1)(u, r).

Also, if (u, r) ≤ (v, s), then u ≤ v, so uw ≤ vw and
wu ≤ wv, and

(u, r)(w, t) = (uw, 1) ∧ (u, r) ∧ (w, t)

≤ (vw, 1) ∧ (v, s) ∧ (w, t) = (v, s)(w, t)

(w, t)(u, r) = (wu, 1) ∧ (w, t) ∧ (u, r)

≤ (wv, 1) ∧ (w, t) ∧ (v, s) = (w, t)(v, s).

Since B is a chain, it follows also that

((u, r) ∧ (v, s))(w, t) = (u, r)(w, t) ∧ (v, s)(w, t).

Hence, for associativity, we obtain

((u, r)(v, s))(w, t) = ((uv, 1) ∧ (u, r) ∧ (v, s))(w, t)

= (uv, 1)(w, t) ∧ (u, r)(w, t)

∧(v, s)(w, t)

= (uvw, 1) ∧ (uv, 1) ∧ (uw, 1)

∧(vw, 1) ∧ (u, r) ∧ (v, s) ∧ (w, t)

= (uvw, 1) ∧ (u, r) ∧ (v, s) ∧ (w, t)

= (u, r)((v, s)(w, t)).
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For the residuals, we observe that

(u, r)(v, s) ≤ (w, 1) ⇐⇒ (uv, 1) ∧ (u, r) ∧ (v, s)

≤ (w, 1)

⇐⇒ uv ≤ w

⇐⇒ v ≤ u\w
⇐⇒ (v, s) ≤ (u\w, 1),

noting that in the second equivalence, if (uv, 1) ∧ (u, r) ∧
(v, s) ≤ (w, 1), then either (uv, 1)∧(u, r)∧(v, s) = (uv, 1),
or one of uv = u ≤ w and uv = v ≤ w holds. Hence, we
obtain

(u, r)\(w, 1) = (u\w, 1) and, similarly,

(w, 1)/(v, s) = (w/v, 1).

But also,

(u, r)(v, s)≤(b, 0) ⇐⇒ (uv, 1)∧(u, r)∧(v, s)≤(b, 0)

⇐⇒ (uv, 1) ≤ (a, 1) or (u, r)

∧(v, s) ≤ (b, 0),

so, writing ⇒ for the Heyting implication of B viewed as a
chain, we obtain

(u, r)\(b, 0) = (u\a, 1) ∨ ((u, r) ⇒ (b, 0)) and

(b, 0)/(v, s) = (a/v, 1) ∨ ((v, s) ⇒ (b, 0)).

Hence, B is an integral residuated chain. Now observe that

(u1, r1)(u2, r2) · · · (un, rn) = (u1u2 . . . un, 1)

∧(u1, r1) ∧ (u2, r2)

∧ · · · ∧ (un, rn).

We aim next to show that B satisfies all defining inequations
of V of the form

α1 ∧ · · · ∧ αn ≤ β1 ∨ · · · ∨ βm

where α1, . . . , αn, β1, . . . , βm are monoid formulas built
using the variables x1, . . . , xk and each xi occurs on the left.
Consider ui ∈ A and ri ∈ {0, 1} for 1 ≤ i ≤ k. Let vp andwq

be the elements of A obtained for 1 ≤ p ≤ n and 1 ≤ q ≤ m
by evaluating αp and βq with each xi assigned to ui . Without
loss of generality, wemay assume that v1 = min{v1, . . . , vn}
and w1 = max{w1, . . . , wm}. The inequation above holds in
A, so v1 ≤ w1. Now let v′

p and w′
q be the elements of B

obtained for 1 ≤ p ≤ n and 1 ≤ q ≤ m by evaluating αp

and βq with each xi assigned to (ui , ri ). Then, recalling the
definition of the multiplication in B and the fact that each αp

and βq are monoid formulas, we obtain

v′
1 ∧ · · · ∧ v′

n =
n∧

p=1

(vp, 1) ∧ (u1, r1) ∧ · · · ∧ (uk, rk)

≤ (v1, 1) ∧ (u1, r1) ∧ · · · ∧ (uk, rk)

≤ (w1, 1) ∧ (u1, r1) ∧ · · · ∧ (uk, rk)

≤
m∨

q=1

((wq , 1) ∧ (u1, r1) ∧ · · · ∧ (uk, rk))

≤ w′
1 ∨ · · · ∨ w′

m .

We may therefore conclude that B ∈ V and that a �→ (a, 1)
is an embedding of A into B with (a, 1) < (b, 0) < (b, 1) as
required. ��

It is worth making a few remarks in connection with
the preceding proof. Observe first that if our goal were
to embed A into a totally ordered residuated semigroup
containing an element between a and b, then we could
define multiplication as simply (u, r) ·B (v, s) = (uv, 1)
[see Lemma 4.1.2 of Horčík (2011)]. The more complicated
version (u, r) ·B (v, s) = (uv, 1)∧ (u, r)∧ (v, s) is required
here to ensure that (e, 1) is a unit of the multiplication.
Observe also that more straightforward options are avail-
able for the target algebra B if we are concerned only with
embedding A into a residuated chain containing an element
between a and b. One could, for example, consider the whole
algebra A

−→× 2 instead of B above, defining multiplication in
the same manner. More generally, it suffices to construct a
totally ordered monoid extension B ofA that contains c with
a < c < b.WhileBmay not possess all residuals, we require
that it preserves those in A. Now the embedding of B into
the residuated chain L(B) of all order-ideals of B preserves
products, residuals, finite joins, and all existing meets. The
subalgebraC of L(B) generated by B is a countable chain in
SemIRL that satisfies the required density property.

As remarked above, densifiability results have often been
stated for varieties in the signature of pointed residuated
lattices. The following lemma shows that in an integral set-
ting, adding axioms ensuring that the additional constant ⊥
denotes the least element makes no difference to the densifi-
ability of the variety.

Lemma 3 Let V be a densifiable variety of integral semilin-
ear residuated lattices and let V ′ be the variety of integral
semilinear bounded residuated lattices defined by the equa-
tional theory of V and ⊥ ≤ x. Then V ′ is densifiable.

Proof Let V and V ′ be as in the statement of the lemma and
consider any chainA′ ∈ V ′. Then the residuated lattice reduct
A ofA′ is in V . By assumption,A embeds into a dense chain
B ∈ V . Let ⊥′ be the image in B of the bottom element ⊥ of
A and define C to be the interval [⊥′, e]. It is clear that C is
closed under the lattice and residual operations of B. Also,
sinceA embeds intoB,⊥′ is an idempotent element ofB and
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a, b ∈ C implies ⊥′ = ⊥′⊥′ ≤ ab ≤ e, i.e. ab ∈ C . So C
with the operations of B restricted to C forms a subalgebra
C of B. Let C′ be C with an additional constant interpreted
by⊥′. Then,C′ is a dense chain in V ′, and clearlyA′ embeds
into C′. ��

A residuated lattice is called cancellative if it satisfies
xy/y ≈ x and x\xy ≈ y. The variety CanSemRL of
cancellative semilinear residuated lattices then consists of
all residuated lattices satisfying the semigroup cancellation
laws xy ≈ xz ⇒ y ≈ z and yx ≈ zx ⇒ y ≈ z. Important
subvarieties of CanSemRL include the varieties SemLG
and SemLG− of semilinear �-groups and negative cones of
semilinear �-groups, respectively. The densifiability results
below generalize or adapt methods used to prove (standard)
completeness results for �MTL and related logics in Esteva
et al. (2002), Horčík (2005) and Horčík et al. (2006).

Theorem 4 Any variety defined over CanSemRL or
SemLG− by monoid inequations is densifiable.

Proof Any trivial variety is densifiable, so let V be a non-
trivial variety defined over CanSemRL or SemLG− by
monoid inequations. We claim that V contains a countable
non-trivial integral chainC. IfV is a variety of negative cones
of lattice-ordered groups, then the free algebra of V on one
generator is in V and isomorphic to 〈Z−,∧,∨,+,→, 0〉
where x → y = min(0, y − x). If V is defined over
CanSemRL by monoid inequations, then V must contain a
countable chain with a non-trivial negative cone C. Clearly,
C is semilinear, cancellative, and, since taking the negative
cone preserves all inequations between monoid terms, C is
in V .

Now consider any countable chainA ∈ V and B = A×C
with lexicographic order ≤B. The operation

(a, x) ·B (b, y) := (ab, xy)

is clearly associativewith neutral element (e, e) and cancella-
tive. Also, if (a, x) ≤ (b, y) then a < b or a = b and x ≤ y.
Hence for each (c, z) ∈ B, ac ≤ bc and it follows that either
ac < bc or ac = bc and xz ≤ yz, i.e.

(a, x)(c, z) = (ac, xz) ≤ (bc, yz) = (b, y)(c, z).

Moreover, it is easily checked that

(a, x)\B(b, y) =
{

(a\b, x\y) if a(a\b) = b

(a\b, e) if a(a\b) < b

(a, x)/B(b, y) =
{

(a/b, x/y) if (a/b)b = a

(a/b, e) if (a/b)b < a.

Hence, B is a cancellative residuated chain and a negative
cone if A is also a negative cone. Moreover, B satisfies any

monoid inequation satisfied by A and C and is hence in V .
Finally, a �→ (a, e) is an embedding of A into B and when-
ever a < b inA, also (a, e) < (b, c) < (b, e) for some c < e
in C. ��

In the context of �-groups, we consider the inverse oper-
ation x−1 = x\e = e/x and call inequations between
formulas built using ·, e, and −1 group inequations.

Theorem 5 Any variety defined over SemLG by group
inequations is densifiable.

Proof Let V be a non-trivial variety defined over SemLG
by group inequations and consider any countable chain A ∈
V . Define B as the lexicographic product of A and Z =
〈Z,∧,∨,+,−, 0〉 ∈ V , where

(a, x) ·B (b, y) = (ab, x + y)
(a, x)\B(b, y) = (a\b, y − x)
(a, x)/B(b, y) = (a/b, x − y).

Then, B is a totally ordered group. Moreover, all group
inequations satisfied by both A and Z are satisfied by B,
so B ∈ V . Observe finally that a �→ (a, 0) is an embed-
ding of A into B such that whenever a < b in A, also
(a, 0) < (a, 1) < (a, b) in B. ��

The previous theorem provides only a limited family of
varieties of �-groups closed under lexicographic products by
Z. It is shown in Huss (1991) that there are uncountably
many varieties of �-groups that are closed with respect to
such lexicographic products and an equal number of semilin-
ear varieties that are not. Many of the varieties that do are not
of the type described in Theorem 5. Second, lexicographic
products can dramatically change the membership of a vari-
ety. Indeed, there is an interesting example of a semilinear
�-group variety V such that, if V l is the variety generated by
all algebras {Z−→×G | G ∈ V}, then [V,V l ] is an uncountable
interval of semilinear varieties.

We turn our attention now to a further characteriza-
tion of densifiability that is particularly useful in syntactic
approaches to this property. Let Fm(Y ) be the formula
algebra of the language of residuated lattices over a set of
variables Y , writing just Fm when Y is a fixed countably
infinite set of variables X . For any class K of residuated lat-
tices, we define for � ∪ {α} ⊆ Fm,

� �K α ⇐⇒ for each A ∈ K and homomorphism h : Fm → A,
whenever e ≤ h(β) for all β ∈ �, also e ≤ h(α).

It is easily shown that �K is a substitution-invariant con-
sequence relation [see Metcalfe et al. (2010) for details].
Moreover, if K is a quasivariety, then �K is finitary: that
is, whenever � �K α, then there exists some finite �′ ⊆ �
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such that �′ �K α. If a variety V is generated as a quasivari-
ety byK ⊆ V , then a quasi-equation is valid in V if and only
if it is valid in K, and for � ∪ {α} ⊆ Fm,

� �V α ⇐⇒ � �K α.

Hence, any variety V of semilinear residuated lattices satis-
fies the following linearity property for � ∪ {α, β} ⊆ Fm:

� ∪ {α\β} �V γ1 and � ∪ {β\α} �V γ2

�⇒ � �V γ1 ∨ γ2.

Moreover, for any variety V of commutative residuated lat-
tices and � ∪ {α, β} ⊆ Fm, we have the following “local
deduction theorem”:

� ∪ {α} �V β ⇐⇒ there exists n

∈ N such that � �V (α ∧ e)n → β.

We refer to Galatos et al. (2007), Metcalfe et al. (2008) and
Cintula and Noguera (2011) for further details and refer-
ences.

Let FV (Y ) be the free algebra of a variety V of residuated
lattices on a set of variables Y ⊆ X . We denote the image of
α under the natural map from Fm(Y ) to FV (Y ) by ᾱ. Given
� ⊆ Fm(Y ), we write FV (Y )/� to denote the quotient of
FV (Y ) by the convex normal subalgebra of FV (Y ) generated
by {ᾱ : α ∈ �}. We note that for any countable A ∈ V and
Y ⊆ X of the same cardinality asA, there exists� ⊆ Fm(Y )

such thatA is isomorphic toFV (Y )/�. Note also that for any
α, β ∈ Fm(Y ),

� �V α\β ⇐⇒ FV (Y )/� |� α ≤ β,

where |� denotes the usual satisfaction relation of first-order
logic.Weare nowable to prove our further characterization of
densifiable varieties of semilinear residuated lattices, estab-
lished for the commutative case in Metcalfe and Montagna
(2007) and generalized to extended languages in Ciabat-
toni andMetcalfe (2008) and implicational semilinear logics
in Cintula and Noguera (2011) and Cintula and Noguera
(2016). Let us write Var(S1, . . . , Sn) for the set of variables
occurring in some structures (sets, multisets, sequents, or
hypersequents) S1, . . . , Sn defined over Fm.

Lemma 4 A variety V of semilinear residuated lattices is
densifiable if and only if for any � ∪ {α, β, γ } ⊆ Fm and
variable x /∈ Var(�, α, β, γ ):

� �V (α\x) ∨ (x\β) ∨ γ �⇒ � �V (α\β) ∨ γ.

Moreover, if V is a commutative variety, then V is densifiable
if and only if for any {α, β, γ } ⊆ Fm

and variable x /∈ Var(α, β, γ ):

�V (α → x) ∨ (x → β) ∨ γ �⇒ �V (α → β) ∨ γ.

Proof Suppose first that V is densifiable and hence gen-
erated as a quasivariety by its dense chains. Consider
� ∪ {α, β, γ } ⊆ Fm and x /∈ Var(�, α, β, γ ). If � ��
V(α\β) ∨ γ , then for some dense chain A ∈ V and homo-
morphism h : Fm → A, we have h(δ) ≥ e for each δ ∈ �,
h(α) > h(β), and h(γ ) < e. Because A is a dense chain,
there exists c ∈ A such that h(α) > c > h(β). We define
h′ : Fm → A by h′(y) = c if y = x , and h′(y) = h(y) other-
wise. Then h(δ) ≥ e for each δ ∈ �, h′(α) > h′(x) > h′(β),
and h′(γ ) < e. So � �� V(α\x) ∨ (x\β) ∨ γ .

For the converse direction, consider a >A b in a countable
residuated chain A ∈ V . We need to prove that there exists
a residuated chain B ∈ V such that A is a subalgebra of
B and a >B c >B b for some c ∈ B. First, because A is
countable, we can assume that A = FV (Y )/�, for some set
of formulas � ⊆ Fm(Y ) such that x /∈ Y . For γ ∈ Fm(Y ),
let us write [γ ] for the equivalence class of γ̄ in A. Consider
a = [α] >A [β] = b and define

� = {γ \δ : γ, δ ∈ Fm(Y ) and [γ ] >A [δ]}

Then � �� V(α\β) ∨ ∨
�′ for any finite �′ ⊆ � and hence

also, by assumption,

(�) � �� V(α\x) ∨ (x\β) ∨
∨

�′ for any finite �′ ⊆ �.

Enumerate all pairs of formulas 〈γn, δn〉 from Fm(Y ∪ {x}).
Let �0 = � and define �n+1 for n ∈ N such that �n+1 =
�n ∪{γn\δn} or�n+1 = �n ∪{δn\γn} and (�) is satisfied by
�n+1. If this were not possible at step n + 1, then we would
have

�n ∪ {γn\δn} �V (α\x) ∨ (x\β) ∨ ∨
�1

for some finite �1 ⊆ �

and �n ∪ {δn\γn} �V (α\x) ∨ (x\β) ∨ ∨
�2

for some finite �2 ⊆ �.

But then, by the linearity property,

�n �V (α\x) ∨ (x\β) ∨
∨

(�1 ∪ �2),

a contradiction. Let�∗ = ⋃
n∈N �n and defineB = FV (Y ∪

{x})/�∗. Then, B is a chain by construction. Also, writing
now [γ ] for the equivalence class of γ̄ in B, we have [α] >B

[x] >B [β]. Finally, A can be viewed as a subalgebra of B
by construction: if [γ ] >A [δ], then � �� Vγ \δ and so also
�∗ �� Vγ \δ, and [γ ] >B [δ].

Suppose now that V is a commutative variety. The right-
to-left direction follows immediately from the more general

123

Author's personal copy



Density revisited

case above. For the other direction, suppose that for any
{α, β, γ } ⊆ Fm and x /∈ Var(α, β, γ ), whenever �V (α →
x)∨ (x → β)∨γ , also �V (α → β)∨γ . We prove that this
implication holds also in the presence of a set of formulas �

and hence thatV is densifiable. Consider�∪{α, β, γ } ⊆ Fm
and x /∈ Var(�, α, β, γ ) such that

� �V (α → x) ∨ (x → β) ∨ γ.

By the local deduction theorem, for some {δ1, . . . , δm} ⊆ �

and δ = (δ1 ∧ e) · · · (δm ∧ e),

�V δ → ((α → x) ∨ (x → β) ∨ γ )

and, using some valid equations of commutative semilinear
residuated lattices,

�V ((δ · α) → x) ∨ (x → (δ → β)) ∨ (δ → γ ).

So then, by assumption,

�V ((δ · α) → (δ → β)) ∨ (δ → γ ),

and, using some valid equations of commutative semilinear
residuated lattices,

�V (δ · δ) → ((α → β) ∨ γ ).

But δ · δ is of the form (δ′
1 ∧ e) · · · · · (δ′

k ∧ e) for some
{δ′

1, . . . , δ
′
k} ⊆ �, so by the local deduction theorem once

more, � �V (α → β) ∨ γ . ��
Let us remark that the proof of the second part of this

theorem for commutative varieties of semilinear residuated
lattices makes essential use of the local deduction theorem
for such varieties. We do not know, however, whether or not
the statement holds in the more general setting of semilinear
residuated lattices.

4 A proof-theoretic approach

In this section, we describe a proof-theoretic method for
establishing the densifiability of semilinear varieties, intro-
duced byMetcalfe andMontagna in Metcalfe andMontagna
(2007) and developed further in Ciabattoni and Metcalfe
(2008), Baldi et al. (2012), Baldi (2014) and Baldi and Cia-
battoni (2015a, b). For convenience and clarity of exposition,
we focus here on just one fundamental example: the variety
CSemRL of commutative semilinear residuated lattices. By
Lemma 2, we know that in any densifiable variety, a count-
able chain containing a gap can be embedded into a countable
chain where the gap has been filled by at least one element.

However, it can be a challenging problem—for non-integral
varieties in particular—to find these embeddings. Indeed,
recent work of Galatos and Horčik (2016) and Baldi and
Terui (2016) demonstrates the usefulness of proceeding in
the opposite direction: appropriate embeddings forCSemRL
and other varieties have been obtained via an analysis of the
corresponding proof-theoretic approach.

Recall that by Lemma 4, it suffices for the densifiabil-
ity of CSemRL to show that for any {α, β, γ } ⊆ Fm and
x /∈ Var(α, β, γ ), whenever �CSemRL (α → x) ∨ (x → β),
also �CSemRL (α → β) ∨ γ . We could try to establish this
property by considering derivations of corresponding equa-
tions in equational logic or formulas in a suitable axiom
system. However, in such proof systems, we have very little
control over the formulas that occur in derivations. Instead,
we make use here of a hypersequent calculus that is not only
sound and complete with respect to validity in CSemRL,
but also admits cut elimination, allowing us to consider
only derivations built from subformulas of the formula to
be proved.

Let us define a sequent as an ordered pair consisting of a
multiset of formulas � and a formula α, written � ⇒ α. A
hypersequent is a finite multiset of sequents, written

�1 ⇒ α1 | . . . | �n ⇒ αn .

Hypersequent rules are sets of rule instances, each consist-
ing of a finite set of hypersequents called the premises of
the rule and a further hypersequent called the conclusion.
These are typically presented schematically using α, β, γ, δ

as metavariables for formulas, �,�,�,� as metavariables
for finitemultisets of formulas, andG,H asmetavariables for
hypersequents. A hypersequent calculus is just a set of hyper-
sequent rules. In Fig. 1, we present a hypersequent calculus
CSemRL for the variety of commutative semilinear resid-
uated lattices; we also define CSemRL◦ to be CSemRL
without (cut).

A derivation of a non-empty hypersequent G in a cal-
culus S is a finite labelled tree such that the root node is
labelled G and for each node labelled G0 with child nodes
labelled G1, . . . ,Gn , there is a rule instance of a rule of S
with premises G1, . . . ,Gn and conclusion G0. Note in partic-
ular that a derivation in CSemRL will have leaves labelled
with hypersequents of the form G | α ⇒ α, corresponding
to the rule (id) whose instances have no premises. We write
d �S G to denote that there is a derivation d of G in S, or just
�S G if the particular derivation is unimportant. Note that�S

can also be defined as a consequence relation between hyper-
sequents, where hypersequents on the left can label leaves in
a derivation, but wewill not need this here [seeMetcalfe et al.
(2010) for further details].
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Fig. 1 The hypersequent
calculus CSemRL

Example 1 We derive the prelinearity law in CSemRL as
follows:

x ⇒ x (id) y ⇒ y (id)

x ⇒ y | y ⇒ x (com)

x ⇒ y |⇒ y → x
(⇒→)

⇒ x → y |⇒ y → x
(⇒→)

⇒ x → y |⇒ (x → y) ∨ (y → x)
(⇒∨)2

⇒ (x → y) ∨ (y → x) |⇒ (x → y) ∨ (y → x)
(⇒∨)1

⇒ (x → y) ∨ (y → x)
(ec)

Notice that the hypersequent (x ⇒ y | y ⇒ x) two lines
down can be read as just a “hypersequent translation” of
(x → y) ∨ (y → x).

We interpret sequents and non-empty hypersequents by
the function

I(β1, . . . , βm ⇒ α) = (β1 · · · · · βm) → α

I(�1 ⇒ α1 | · · · | �n ⇒ αn) = I(�1 ⇒ α1)

∨ · · · ∨ I(�n ⇒ αn).

The following soundness, completeness, and cut elimination
results are proved in Metcalfe and Montagna (2007).

Theorem 6 For any non-empty hypersequent G:

�CSemRL I(G) ⇐⇒ �CSemRL G ⇐⇒ �CSemRL◦ G.

General approaches to defining sequent and hypersequent
calculi for varieties of (semilinear) residuated lattices and
establishing cut elimination are described in Ciabattoni and
Metcalfe (2008), Metcalfe et al. (2008), Ciabattoni et al.
(2008) and Ciabattoni et al. (2012, 2016). Let us just remark
here that calculi for integral commutative semilinear residu-
ated lattices and idempotent integral commutative semilinear
residuated lattices are obtained by extendingCSemRLwith,
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respectively, aweakening rule (wl), and both (wl) and a con-
traction rule (cl):

G | � ⇒ δ

G | �,� ⇒ δ
(wl)

G | �,�,� ⇒ δ

G | �,� ⇒ δ
(cl)

By adding also axioms for a constant ⊥ of the form �,⊥ ⇒
δ, we obtain calculi for the varieties of MTL-algebras and
Gödel algebras. However, to obtain calculi for varieties of
(bounded) pointed residuated lattices, we should, in general,
adapt the definition of a sequent slightly to allow an empty
right-hand side.

We now consider an appropriate “density” rule that cor-
responds to the condition in Lemma 4.

G | � ⇒ x | �, x ⇒ δ

G | �,� ⇒ δ
(density)

x /∈ Var(G, �,�, δ}.

A version of the density rule was introduced by Takeuti and
Titani in the context of first-order Gödel logic in Takeuti
and Titani (1984), and a first constructive density elimination
procedurewas given for a hypersequent calculus for this logic
by Baaz and Zach (2000).

We define CSemRLD to be the calculus CSemRL
extended with (density). We will show below that this
extended calculus admits density elimination: that is, any
derivation inCSemRLD can be transformed into a derivation
in CSemRL. The transformation proceeds [following Cia-
battoni andMetcalfe (2008)] by removing applications of the
rule that are uppermost in a derivation. For example, suppose
that we have a derivation d ending

...

� ⇒ x | �, x ⇒ δ

�,� ⇒ δ
(density)

Intuitively, we would like to replace occurrences of x in d
“asymmetrically”: with � if x occurs on the left, and with �

on the left and δ on the right, if x occurs on the right. What
we obtain might no longer be a derivation, but is still a finite
tree labelled with hypersequents, now ending

...

�,� ⇒ δ | �,� ⇒ δ

�,� ⇒ δ

The last step is an application of (ec) and applications of
the operational rules, and most structural rules are preserved
by this replacement. Where the derivation potentially breaks
down is in applications of (com) where xs can occur in
premises on both the left and the right. For instance, if d
ends with

x ⇒ x (id)

...

�′,� ⇒ δ

�′ ⇒ x | �, x ⇒ δ
(com)

...

� ⇒ x | �, x ⇒ δ

�,� ⇒ δ
(density)

then replacing xs as suggested, we get

�,� ⇒ δ

...

�′,� ⇒ δ

�′,� ⇒ δ | �,� ⇒ δ
(com)

...

�,� ⇒ δ | �,� ⇒ δ

�,� ⇒ δ
(ec)

But now we are missing the sub-derivation of (�,� ⇒ δ),
which was what we wanted to prove in the first place. How-
ever, in this case, we can simply replace the application of
(com)with an application of (ew) and remove the occurrence
of (�,� ⇒ δ) as a premise. Indeed, we can in general use
applications of (cut) to repair such derivations.

Theorem 7 CSemRLD admits density elimination.

Proof Wefirst introduce some useful notation. Let us assume
that (subscripted) λ andμ denote non-negative integers, and,
for any multiset of formulas �, let �λ denote the multiset
union of λ copies of �. We use [, ] to denote multisets and
the symbol � for multiset union. Given hypersequents

G = ([�i ⇒ x]ni=1 | [� j , [x]λ j

⇒ γ j ]mj=1 | [�k, [x]μk+1 ⇒ x]lk=1)

Hx = (H | � ⇒ x | �, x ⇒ δ)

where x /∈ Var(�1, . . . , �n,�1, . . . ,�m, γ1, . . . , γm,

�1, . . . , �l ,H, �,�, δ), we define

(G,Hx )
D = (H | [�i ,� ⇒ δ]ni=1 | [� j , �

λ j ⇒ γ j ]mj=1

| [�k, �
μk ⇒ e]lk=1).

Then, it is sufficient to establish the following.

Claim If d1 �CSemRL◦ G and d2 �CSemRL◦ Hx , then �CSemRL

(G,Hx )
D | �,� ⇒ δ.

To see that this suffices observe that an uppermost applica-
tion of (density) can be eliminated. Let G = (G′ | � ⇒ x |
�, x ⇒ δ) be the premise of such an application and sup-
pose that �CSemRL G. Then by cut elimination, �CSemRL◦ G
and it follows from the claim applied with Hx = G that
�CSemRL G′ | G′ | �,� ⇒ δ | �,� ⇒ δ | �,� ⇒ δ. So by
(ec), we obtain �CSemRL G′ | �,� ⇒ δ as required.
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We prove the claim by induction on the height of d1. If
G = (G′ | x ⇒ x) or G = (G′ | α ⇒ α) for some other for-
mula α, then the result follows by (⇒e) or (id), respectively.
Otherwise, we consider the last rule applied in d1. The cases
of (ec) and (ew) are immediate using the induction hypothe-
sis. For the operational rules, we have many cases that follow
a common pattern. Suppose for example that d1 ends with

...

G′ | �1,1, [x]μ′ ⇒ α

...

G′ | �1,2, β, [x]μ1+1−μ′ ⇒ x

G′ | �1,1, �1,2, α → β, [x]μ1+1 ⇒ x
(→⇒)

where�1 = �1,1��1,2�[α → β] andG′ = ([�i ⇒ x]ni=1 |
[� j , [x]λ j ⇒ γ j ]mj=1 | [�k, [x]μk+1 ⇒ x]lk=2). There are
two subcases:

(1) If μ′ < μ1 + 1, then using the induction hypothesis
twice:

�CSemRL (G′,Hx )
D | �1,1, �

μ′ ⇒ α | �,� ⇒ δ

�CSemRL (G′,Hx )
D | �1,2, β, �μ1−μ′ ⇒ e | �,� ⇒ δ.

So by an application of (→⇒),

�CSemRL (G′,Hx )
D | �1, �

μ1 ⇒ e | �,� ⇒ δ.

(2) If μ′ = μ1 + 1, then using the induction hypothesis
twice:

�CSemRL (G′,Hx )
D | �1,1, �

μ1+1 ⇒ α | �,� ⇒ δ.

�CSemRL (G′,Hx )
D | �1,2, β,� ⇒ δ | �,� ⇒ δ.

So by an application of (→⇒):

�CSemRL (G′,Hx )
D | �1, �

μ1+1,� ⇒ δ | �,� ⇒ δ.

But clearly also, using (⇒e),

�CSemRL (G′,Hx )
D |⇒ e | �,� ⇒ δ.

Hence by an application of (com),

�CSemRL (G′,Hx )
D | �1, �

μ1 ⇒ e | �,

� ⇒ δ | �,� ⇒ δ,

and the desired result follows by a further application of
(ec).

Suppose that the last rule applied is (com). We assume first
that d1 ends with

.

.

.

G′ | �1,1, �1,1, [x]λ′+1 ⇒ x

.

.

.

G′ | �1,2, �1,2, [x]λ1−λ′−1 ⇒ γ1

G′ | �1 ⇒ x | �1, [x]λ1 ⇒ γ1
(com)

where �1 = �1,1 � �1,2, �1 = �1,1 � �1,2, and

G′ = ([�i ⇒ x]ni=2 | [� j , [x]λ j

⇒ γ j ]mj=2 | [�k, [x]μk+1 ⇒ x]lk=1).

Our goal is to show that

�CSemRL (G′,Hx )
D | �1,� ⇒ δ | �1, �

λ1 ⇒ γ1.

By the induction hypothesis,

�CSemRL (G′,Hx )
D | �1,2,�1,2, �

λ1−λ′−1 ⇒ γ1,

and, using an application of (e⇒),

�CSemRL (G′,Hx )
D | �1,2,�1,2, �

λ1−λ′−1, e ⇒ γ1.

But also by the induction hypothesis,

�CSemRL (G′,Hx )
D | �1,1,�1,1, �

λ′ ⇒ e,

and an application of (cut) yields

�CSemRL (G′,Hx )
D | �1,�1, �

λ1−1 ⇒ γ1.

Now let ·(�1) be the product of the formulas in �1. Using
applications of (ew), (e⇒), and (·⇒), we obtain

�CSemRL (G′,Hx )
D | ·(�1),�1, �

λ1−1⇒γ1 | �, ·(�1)⇒δ.

Moreover, by substituting all occurrences of x with ·(�1)

in the derivation d2 and adding an application of (ew), we
obtain

�CSemRL (G′,Hx )
D | � ⇒ ·(�1) | �, ·(�1) ⇒ δ.

Hence, an application of (cut) yields

�CSemRL (G′,Hx )
D | �1, �

λ1 ⇒ γ1 | �, ·(�1) ⇒ δ.

But also, easily

�CSemRL (G′,Hx )
D | �1, �

λ1 ⇒ γ1 | �1 ⇒ ·(�1).

So an application of (cut) gives the desired result.
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Now suppose that d1 ends with:

G′ | �1,1, �1,1 ⇒ x G′ | �1,2, �1,2, [x]λ1+μ1+1 ⇒ γ1

G′ | �1, [x]λ1 ⇒ γ1 | �1, [x]μ1+1 ⇒ x
(com)

where �1 = �1,1 � �1,2, �1 = �1,1 � �1,2, and

G′ = ([�i ⇒ x]ni=1 | [� j ,

[x]λ j ⇒ γ j ]mj=2 | [�k, [x]μk+1 ⇒ x]lk=2

)
.

By the induction hypothesis twice,

d3 �CSemRL H′ | �1,1, �1,1,� ⇒ δ

and d4 �CSemRL H′ | �1,2, �1,2, �
λ1+μ1+1 ⇒ γ1,

where H′ = ((G′,Hx )
D | �,� ⇒ δ). So we can construct

the following derivation:

... d3
H′ | �1,1, �1,1,� ⇒ δ

... d4
H′ | �1,2, �1,2, �

λ1+μ1+1 ⇒ γ1

H′ | �,� ⇒ δ | �1, �1, �
λ1+μ1 ⇒ γ1

(com)

H′ | �1, �1, �
λ1+μ1 ⇒ γ1

(ec) H′ |⇒ e
(⇒e)

H′ | �1, �
λ1 ⇒ γ1 | �1, �

μ1 ⇒ e
(com)

Suppose that d1 ends with

G′ | �1,1, �2,1, [x]μ1+μ2+2 ⇒ x G′ | �1,2, �2,2 ⇒ x

G′ | �1, [x]μ1+1 ⇒ x | �2, [x]μ2+1 ⇒ x
(com)

where �1 = �1,1 � �1,2, �2 = �2,1 � �2,2, and

G′ = ([�i ⇒ x]ni=1 | [� j , [x]λ j ⇒ γ j ]mj=1

| [�k, [x]μk+1 ⇒ x]lk=3).

By the induction hypothesis twice,

d3 �CSemRL H′ | �1,1, �2,1, �
μ1+μ2+1 ⇒ e

and d4 �CSemRL H′ | �1,2, �2,2,� ⇒ δ

where H′ = ((G′,Hx )
D | �,� ⇒ δ). We first apply the

rule (e⇒) to last hypersequent of d4, obtaining a derivation
of H′ | �1,2, �2,2,�, e ⇒ δ. Then by (cut) with the last
hypersequent of d3, we obtain a derivation

d5 �CSemRL H′ | �1, �2, �
μ1+μ2+1,� ⇒ δ.

The required derivation is then

.

.

. d5
H′ | �1, �2, �

μ1+μ2+1, � ⇒ δ H′ |⇒ e
(⇒e)

H′ | �, � ⇒ δ | �1, �2, �
μ1+μ2 ⇒ e

(com)

H′ | �1, �2, �
μ1+μ2 ⇒ e

(ec) H′ |⇒ e
(⇒e)

H′ | �1, �
μ1 ⇒ e | �2, �

μ2 ⇒ e
(com)

The remaining cases are all straightforward. ��
We then obtain immediately from Lemma 4.

Theorem 8 The variety of commutative semilinear residu-
ated lattices is densifiable.

5 Concluding remarks

The Jenei–Montagna method for proving densifiability has
been used in Theorems 3, 4, and 5 of this paper to char-

acterize a broad range of densifiable varieties of semilinear
residuated lattices, in particular, those defined over the vari-
ety of integral semilinear residuated lattices SemIRL by
�-monoid equations. This latter family may be further broad-
ened using syntactic characterizations and proof-theoretic
techniques based on the Metcalfe–Montagna method (Baldi
and Ciabattoni 2015b; Baldi and Terui 2016). However, a
general syntactic characterization of the densifiable varieties
of integral semilinear residuated lattices that admit a cut-free
hypersequent calculus is still lacking.

For non-integral varieties of semilinear residuated lattices,
the picture is less clear. The proof-theoretic proof of densifi-
ability described here for the variety CSemRL of commuta-
tive semilinear residuated lattices has been extended to other
non-integral varieties inMetcalfe andMontagna (2007), Cia-
battoni and Metcalfe (2008), Baldi (2014) and Baldi and
Ciabattoni (2015a), but the scope of the method is unclear.
It is not known, for example, if all varieties defined over
CSemRL by monoid inequations are densifiable. Moreover,
there are two specific cases that are of particular interest.
First, it is not known if the variety of involutive commutative
pointed semilinear residuated lattices, defined over pointed
CSemRL by adding the involution axiom schema¬¬x ≈ x ,
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is densifiable. Second, an axiomatization is lacking for the
variety of residuated lattices generated by all dense residu-
ated chains.
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